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Abstract—The Flume system is an implementation of decentralized
information flow control (DIFC) at the operating system level. Prior work
has shown Flume can be implemented as a practical extension to the
Linux operating system, allowing real Web applications to achieve useful
security guarantees. However, the question remains if the Flume system
is actually secure. This paper compares Flume with other recent DIFC
systems like Asbestos, arguing that the latter is inherently susceptible
to certain wide-bandwidth covert channels, and proving their absence
in Flume by means of a noninterference proof in the Communicating
Sequential Processes formalism.

I. INTRODUCTION

Recent work in operating systems [1], [2], [3] makes the case that
Distributed Information Flow Control (DIFC) [4] solves important
application-level security problems for real systems. For example,
modern dynamic web sites are trusted to safeguard private data for
millions of users, but they often fail in their task (e.g., [5], [6], [7],
[8], [9], [10]). Web applications built atop DIFC operating systems
can achieve better security properties, by factoring security-critical
code into small, isolated, trustworthy processes, while allowing the
rest of the application to balloon without affecting the TCB.

To achieve such a split between trustworthy and untrustworthy
components, DIFC must monitor and regulate the information flows
among them. Enforcement today exists in two forms: static, as an
extension of a programming language’s type system; and dynamic,
as a feature of an OS’s system call interface. These two styles have
their strengths and weaknesses: DIFC for programming languages
gives fine-grained guarantees about which parts of the program have
been influenced by which types of data, but it requires rewrites of
existing applications using one of a few compiled languages. DIFC
at the OS level gives coarser-grained information flow tracking (each
process is its own security domain) but supports existing applications
and languages. In particular, popular Web applications written in
popular interpreted languages (e.g. Python, PHP, Perl and Ruby) can
achieve improved security on DIFC OSes. A case can be made for
both techniques, but to date, only DIFC at the language level has
enjoyed formal security guarantees.

This paper considers the Flume system: a DIFC OS implemented
as a 30,000-line extension to a standard Linux kernel [3]. Flume
allows legacy processes to run as before, while confining those
that need strong security guarantees (like web servers and network
applications) to a tightly-controlled sandbox, from which all of their
communication must conform to DIFC-based rules. This technique
produces real security improvements in real web applications, like
the popular Python-based MoinMoin Wiki package. But all claims of
application-level security presuppose a correct OS kernel, appealing
to intuition alone to justify the OS’s security. Intuition can mislead:
other seemingly-secure OSes ([1], [11]) have inadvertently included
high-bandwidth covert channels in their very interface, allowing
information to leak against intended security policies (see Section III
for more details).

This paper presents the first formal noninterference security argu-
ment for a real DIFC operating system — in this case, Flume. A DIFC
OS with provable security guarantees is an important foundation for
provable application-level security, both in web services (Flume’s first
application) and in other security-sensitive applications.

The roadmap is follows. Section II reviews the Flume system and
its intended policies at a high level: first and foremost, that untrust-
worthy applications can compute with private data without being
able to reveal (i.e. leak) it. Section III describes potential pitfalls,
motivating a formal approach. Section IV describes the important
parts of the Flume System using a formal process algebra, namely
Communicating Sequential Processes (CSP). This model captures a
trustworthy kernel, untrustworthy user-space applications, and user-
space applications with privilege, which can selectively reveal or
declassify sensitive data. Next, Section V proves that this model
fulfills noninterference: that unprivileged user processes cannot leak
data from the system, whether via explicit communication or implicit
channels. Flume meets a CSP definition of noninterference that we
have minimally extended to accommodate user-space declassifiers.
Though the arguments focus on secrecy, the same model and proof
also applies to integrity.

In sum, this paper contributes the following new results:

1) A formal model for a real DIFC Linux-based operating system,
which captures a trustworthy kernel, and both privileged and
unprivileged user-space applications; and

2) A formal proof of noninterference.

There are important limitations. First, the actual Flume implemen-
tation is not guaranteed to follow the model described in the process-
algebra. Second, there are no guarantees that covert channels do not
exist in parts of the system that the model abstracts. In particular, the
Flume model does not capture physical hardware, so covert channels
might of course exist in Flume’s use of the processor, the disk,
memory, etc. What our result does imply is that those operating
systems the follow the given interface (like Flume) have a chance of
achieving good security properties; i.e., wide leaks are not “baked”
into their specifications. We leave a machine-checkable proof and a
verified implementation of the model to future work.

II. REVIEW OF FLUME

This section reviews Flume’s security primitives, previously re-
ported elsewhere [3]. Flume uses tags and labels to track data as it
flows through a system. Let T be a very large set of opaque tokens
called tags. A tag carries no inherent meaning, but processes generally
associate each tag with some category of secrecy or integrity. For
example, a tag b ∈ T may label Bob’s private data.

Labels are subsets of T . Labels form a lattice under the partial
order of the subset relation [12]. Each Flume process p has two
labels, Sp for secrecy and Ip for integrity. Both labels serve to (1)
summarize which types of data have influenced p in the past and (2)
regulate where p can read and write in the future. Consider a process
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p and a tag t. If t ∈ Sp, then the system conservatively assumes
that p has seen some private data tagged with t. In the future, p
can read more private data tagged with t but requires consent from
an authority who controls t before it can reveal any data publicly. If
there are multiple tags in Sp, then p requires independent consent for
each tag before writing publicly. Process p’s integrity label Ip serves
as a lower bound on the purity of its influences: if t ∈ Ip, then every
input to p has been endorsed as having integrity for t. To maintain
this property, the system only allows p to read from other sources
that also have t in their integrity labels. Files (and other objects) also
have secrecy and integrity labels; they can be thought of as passive
processes.

Distributed Information Flow Control (DIFC) is a generalization of
centralized IFC. In centralized IFC, only a trusted “security officer”
can create new tags, subtract tags from secrecy labels (declassify
information), or add tags to integrity labels (endorse information).
In Flume DIFC, any process can create new tags, which gives that
process the privilege to declassify and/or endorse information for
those tags.

A. Capabilities

Flume represents privilege using two capabilities per tag. Capa-
bilities are objects from the set O = T × {−, +}. For tag t, the
capabilities are denoted t+ and t−. Each process p owns a set of
capabilities Op ⊆ O. A process with t+ ∈ Op owns the t+ capability,
giving it the privilege to add t to its labels; and a process with
t− ∈ Op can remove t from its labels. In terms of secrecy, t+ lets
a process add t to its secrecy label, granting itself the privilege to
receive secret t data, while t− lets it remove t from its secrecy label,
effectively declassifying any secret t data it has seen. In terms of
integrity, t− lets a process remove t from its integrity label, allowing
it to receive low-t-integrity data, while t+ lets it add t to its integrity
label, endorsing the process’s current state as high-t-integrity. A
process that owns both t+ and t− has dual privilege for t and can
completely control how t appears in its labels. The set Dp where

Dp � {t | t+ ∈ Op ∧ t− ∈ Op}

represents all tags for which p has dual privilege.
Any process p can invent or “allocate” a new tag. Tag allocation

yields a fresh tag t ∈ T and sets Op ← Op ∪ {t+, t−}, granting p
dual privilege for t. Tag allocation should not expose any information
about system state.

For a set of capabilities O ⊆ O, we define the notation:

O+ � {t | t+ ∈ O} , O− � {t | t− ∈ O} .

B. Global Capabilities

Flume also supports a global capability set Ô, Every process has
access to every capability in Ô, useful for implementing key security
policies (see Section II-D). A process p’s effective set of capabilities
is given by:

Ōp � Op ∪ Ô

Similarly, its effective set of dual privileges is given by:

D̄p � {t | t+ ∈ Ōp ∧ t− ∈ Ōp}

Tag allocation can update Ô; an allocation parameter determines
whether the new tag’s t+, t−, or neither is added to Ô (and thus
to every current and future process’s Ōp).

Flume restricts access to the shared set Ô, lest processes manip-
ulate it to leak data. A first restriction is that processes can only
add a tag to Ô during the tag’s allocation (otherwise a process p

could leak information to a process q by either adding or refraining
from adding a pre-specified tag to Ô). A second restriction is that no
process p can enumerate Ô or Ōp (otherwise, p could poll ‖Ô‖ while
q allocated new tags, allowing q to communicate bits to p). Processes
can, however, enumerate their non-global capabilities (those in Op),
since they do not share this resource with other processes.

A process p can grant capabilities in Op to process q so long as
p can send a message to q. p can also subtract capabilities from Op

as it sees fit.

C. Security

The Flume model assumes many processes running on the same
machine and communicating via messages, or “flows”. The model’s
goal is to track data flow by regulating both process communication
and process label changes.

1) Safe Label Changes: In the Flume model (as in HiStar), the
labels Sp and Ip of a process p can be changed only by an explicit
request from p itself. Other models allow a process’s label to change
as the result of receiving a message [1], [13], [11], but implicit label
changes turn the labels themselves into covert channels [12], [2]
(see Section III). Only those label changes permitted by a process’s
capabilities are safe:

Definition 1 (Safe label change). For a process p, let the label L be
Sp or Ip, and let L′ be the requested new value of the label. The
change from L to L′ is safe if and only if:

L′ − L ⊆ (Ōp)
+ and L − L′ ⊆ (Ōp)

− .

For example, say process p wishes to subtract tag t from Sp, to
achieve a new secrecy label S′p. In set notation, t ∈ Sp − S′p, and
such a transition is safe only if p owns the subtraction capability for
t (i.e. t− ∈ Ōp). Likewise, t can be added only if t+ ∈ Ōp.

2) Safe Messages: Information flow control restricts process
communication to prevent data leaks. The Flume model restricts
communication among unprivileged processes as in traditional IFC:
p can send a message to q only if Sp ⊆ Sq (“no read up, no write
down” [14]) and Iq ⊆ Ip (“no read down, no write up” [15]).

Flume relaxes these rules to better accommodate declassifiers.
Specifically, if two processes could communicate by changing their
labels, sending a message using the centralized IFC rules, and then
restoring their original labels, then the model can safely allow the
processes to communicate without actually performing label changes.
A process can make such a temporary label change only for tags in
D̄p, i.e., those for which it has dual privilege. A process p with labels
Sp, Ip would get maximum latitude in sending messages if it were
to lower its secrecy to Sp − D̄p and raise its integrity to Ip ∪ D̄p. It
could receive the most messages if it were to raise secrecy to Sp∪D̄p

and lower integrity to Ip − D̄p.
The following definition captures these hypothetical label changes

to determine what messages are safe:

Definition 2 (Safe message). A message from p to q is safe iff

Sp − D̄p ⊆ Sq ∪ D̄q and Iq − D̄q ⊆ Ip ∪ D̄p .

3) External Sinks and Sources: Any data sink or source outside
of Flume’s control, such as a remote host, the user’s terminal, a
printer, and so forth, is modeled as an unprivileged process x with
permanently empty secrecy and integrity labels: Sx = Ix = {} and
also Ox = {}. As a result, a process p can only write to the network
or console if it could reduce its secrecy label to {} (the only label
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Fig. 1. The “leaking” system initializes.
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Fig. 2. p sends a “0” to qi if the ith bit of the message is 0.
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= {}

Sq1
= {t}

1

Fig. 3. If qi did not receive a “0” before the timeout, it assumes an implicit
“1” and writes “1” to q at position i.

with Sp ⊆ Sx), and a process can only read from the network or
keyboard if it could reduce its integrity label to {} (the only label
with Ip ⊆ Ix).

D. Security Policies

The most important security policy in Flume is export protection,
wherein untrustworthy processes can compute with secret data with-
out the ability to reveal it. An export protection tag is a tag t such
that t+ ∈ Ô and t− /∈ Ô. For a process p to achieve such a result, it
creates a new tag t and grants t+ to the global set Ô, while closely
guarding t−. To protect a file f , p creates the file with secrecy label
{t}. If a process q wishes to read f , it must first add t to Sq, which
it can do since t+ ∈ Ô ⊆ Ōq . Now, q can only send messages to
other processes with t in their labels. It requires p’s authorization
to remove t from its label or send data to the network. Additional
Flume policies exist, like those that protect integrity.

III. COVERT CHANNELS IN DYNAMIC LABEL SYSTEMS

As described in Section II-C, processes in Flume change their
labels explicitly; labels do not change implicitly upon message
receipt, as they do in Asbestos [1] or IX [11]. We show by example
why implicit label changes (also known as “floating” labels) enable
high-throughput information leaks (as predicted by Denning [12]).

Consider a process p with secrecy label Sp = {t} and a process q
with Sq = {}, both with empty ownership sets Op = Oq = {}. In a
floating label system like Asbestos, p can send a message to q, and
q will successfully receive it, upon which the kernel automatically
raises Sq = {t}. Thus, the kernel can track which processes have
seen secrets tagged with t, even if those processes are uncooperative.
Such a scheme introduces new problems: what if a process q doesn’t
want its label to change from Sq = {}? For this reason, Asbestos
also introduces “receive labels,” which let processes filter out traffic
and avoid unwanted label changes.

The problem with floating is best seen through example (see
Figures 1–3). Imagine processes p and q as above, with a sender
process p wanting to leak the 2-bit secret “01” to a receiver process
q. Their goal is to transmit these bits without q’s label changing.
Figure 1 shows the initialization: q launches two helper processes
(q1 and q2), each with a label initialized to Sqi

= {}. q’s version of

the secret starts out initialized to all 0s, but it will overwrite some
of those bits during the attack.

Next, p communicates selected bits of the secret to its helpers. If
the ith bit of the message is equal to 0, then p sends the message
“0” to the process qi. If the ith bit of the message is 1, p does
nothing. Figure 2 shows this step. When receiving this 0 bit, q1’s
label changed, floating up from {} to {t}, as the kernel accounts for
how information flowed.

In the last step (Figure 3), the qi processes wait for a predefined
time limit before giving up. At the timeout, each qi which did not
receive a message (here, q2) sends a message “1” to q, and upon
receipt of this message q updates the bit at position i to 1. The
remaining processes (q1) do not write to q, nor could they without
affecting q’s label. Now, q has the exact secret, copied bit-for-bit from
p. This example shows 2 bits of data leak, but by forking n processes,
p and q can leak n bits per timeout period. Because Asbestos’s event
process abstraction makes forking very fast, this channel on Asbestos
can leak kilobits of data per second.

This attack fails against the Flume system. In Figure 2, each qi

must each make a decision: should it raise its secrecy label to Sqi
=

{t}, or leave it as is? If qi raises Sqi
then it will receive messages

from p, but it won’t be able to write to q. Otherwise, qi will never
receive a message from p. In either case, qi cannot alter its messages
to q in response to messages from p. And crucially, qi must decide
whether to upgrade Sqi

before receiving messages from p.

IV. THE FORMAL FLUME MODEL

That the above attack fails against the Flume model is useful
intuition but proves nothing. This section and the next seek a formal
separation between the Asbestos style of “floating” labels and the
Flume style of “explicitly specified” labels. The ultimate goal is to
prove that Flume exhibits noninterference: for example, that processes
with empty ownership and whose secrecy label contains t cannot in
any way alter the execution of those processes with empty labels.
Such a noninterference result requires a formal model of Flume,
which we build up here. Section V provides the proof that the
Flume Model meets a standard definition of noninterference with
high probability.

We present a formal model for the Flume System in the Commu-
nicating Sequential Processes (CSP) process algebra [16] (reviewed
in Appendix A). The model captures a kernel and arbitrary user pro-
cesses that can interact through a system call interface. Processes can
communicate with one another over IPC, changing labels, allocating
tags, and forking new processes. The model dictates which kernel
details are safe to expose to user-level applications, where I/O can
safely happen, which return codes from system calls to provide, etc.
It does not capture lower-level hardware details, like CPU, cache,
memory, network or disk usage. Therefore, it is powerless to disprove
the existence of covert channels that modulate CPU, cache, memory,
network or disk usage to communicate data from one process to
another.

Figure 4 depicts the Flume model organization. At a high level,
the model splits each Unix-like process i running on a system (e.g.,
a web server or text editor) into two logical components: a user
half Ui that can take almost any form, and a kernel half i:K that
behaves according to a strict state machine.1 The user half of a
process can communicate with its kernel half (and thus, indirectly,
with other user processes) through the system call interface, which
takes the form of a CSP channel i.s between the Ui and i:K.

1The CSP notation i:K means the i-th instance of a template process K .
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Ui Uj

i:K j:K

TAGMGR

i:QUEUES j:QUEUESSWITCH

PROCMGR

i.c j.c

j.si.s

i.g j.g

i.q j.q

i.p j.p

Fig. 4. Two user processes, Ui and Uj , in the CSP model for Flume.
i:K and j:K are the kernel halves of these two processes (respectively),
TAGMGR is the process that manages the global set of tags and associated
privileges, PROCMGR manages the process ID space, and SWITCH enables
all user-visible interprocess communication. Arrows denote CSP communica-
tion channels.

The kernel halves communicate with one another to deliver IPCs
initiated by user processes. Also inside the kernel, a global process
(TAGMGR) manages the circulation of tags and globally-shared
privileges; another global process (PROCMGR) manages the process
ID space. The process SWITCH is involved with communication
between user-level processes. The remainder of this section fills out
the details of the Flume model.

A. System Call Interface

The “system-call” interface consists of events on the channel i.s
between Ui and i:K. Each user-level process has access to the
following system calls:

• t ← create tag(which)
Allocate a new tag t, and depending on the parameter which,
make the associated capabilities for t globally accessible. Here,
which can be one of None, Remove or Add. For Remove, add
t− to Ô, effectively granting it to all other processes; likewise,
for Add, add t+ to Ô.

• rc ← change label(which, L)
Change the process’s which label to L. Return Ok on success
and Error on failure. Here, which can be either Secrecy or
Integrity.

• L ← get label(which)
Read this process’s own label out of the kernel’s data structures.
Here, which can be either Secrecy or Integrity, controlling
which label is read.

• O ← get caps()
Read this process’s ownership set out of the kernel’s data
structures.

• send(j, msg, X)
Send message msg and capabilities X to process j. (Crucially,
the sender gets no indication whether the transmission failed due
to label checks.)

• (msg, X) ← recv(j)
Receive message msg and capabilities X from process j. Block
until a message is ready.

• j ← fork()
Fork the current process; yield a process j. fork returns j in the
parent process and 0 in the child process.

• i ← getpid()
Return i, the ID of the current process.

• drop caps(X)
Set Oi ← Oi − X.

See Appendix E for a description of the select system call that allows
receiving processes to listen on multiple channels at once.

The Flume model places no restrictions on the Uis other than
on their communication. A process Ui can communicate with i:K
via channel i.s; it can communicate with itself via channels that it
invents; otherwise, it has no other communication channels.

B. Kernel Processes

Each process i has an instantiation of the kernel process K that
obeys a strict state machine. We apply CSP’s standard technique for
“relabeling” the interior states of a process, giving i:K. By definition,
i:K and j:K have different alphabets for i �= j, so their operations
cannot interfere. Each process i:K takes on a state configuration
based on process i’s labels. That is, i:KS,I,O denotes the kernel half
of process i, with secrecy label Si ⊆ T , integrity label Ii ⊆ T , and
ownership of capabilities given by Oi ⊆ O.

At a high level, a kernel process K starts idle, then springs to life
upon receiving an activation message. Once active, it receives either
system calls from its user half, or internal messages from other kernel
processes on the system. It eventually dies when the user process
exits. In CSP notation:

K = b?(S, I,O) → KS,I,O

where b is the channel that K listens on for its “birth” message. It
expects arguments of the form (S, I, O), to instruct it which labels
and capabilities to start its execution with. Subsequently, KS,I,O

handles the bulk of the kernel process’s duties:

KS,I,O = SYSCALLS,I,O | INTRECVS,I,O

where SYSCALL is a subprocess tasked with handling all system
calls, and INTRECV is the internal receiving sub-process, tasked with
receiving internal messages from other kernel processes.

Each system call gets its own dedicated subprocess:

SYSCALLS,I,O = NEWTAGS,I,O |

CHANGELABELS,I,O |

READMYLABELS,I,O |

READMYCAPSS,I,O |

DROPCAPSS,I,O |

SENDS,I,O |

RECVS,I,O |

FORKS,I,O |

GETPIDS,I,O |

EXITS,I,O

Section IV-D presents all of these subprocesses in more detail.

C. Process Alphabets

In the next section, we will prove properties about the system, in
particular, that messages between “high processes” (those that have
a specified tag in their secrecy label) do not influence the activity of
“low processes.” The standard CSP approach to such proofs is to split
the system’s alphabet into two disjoint sets: “high” symbols, those
that the secret influences; and “low” symbols, those that should not
be affected by the secret. We must provide the appropriate alphabets
for these processes so that any symbol in the model unambiguously
belongs to one set or the other.

For example, take process i with secrecy label Si = {t} and
integrity label Ii = {}. When Ui issues a system call (say
create tag(Add)) to its kernel half i:K, the trace for Ui is of the
form

〈. . . , i.s!(create tag, Add), . . .〉
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and the trace for the kernel half i:K is of the form

〈. . . , i.s?(create tag, Add), . . .〉 .

That is, Ui is sending a message (create tag, Add) on the channel
i.s, and i:K is receiving it. The problem, however, is that looking at
these traces does not capture the fact that i’s secrecy label contains t
and therefore that Ui is in a “high” state in which it should not affect
low processes. Such a shortcoming does not inhibit the accuracy
of the model, but it does inhibit the proof of noninterference in
Section V.

A solution to the problem is to include a process’s labels in the
messages it sends. That is, once i has a secrecy label of S = {t}, its
kernel process should be in a state such as K{t},{},{}. When a kernel
process is in this state, it will only receive system calls of the form
i.s?({t}, {}, {}, create tag, Add). Thus, Ui must now send system
calls in the form:

i.s!({t}, {}, {}, create tag, Add)

In this regime, Ui must do its own accounting of Si and Ii. If it fails
to do so and sent a system call of the form

i.s!({}, {}, {}, create tag, Add)

the kernel would reject the call. Such a failure on Ui’s part does not
compromise security guarantees.

Messages of the form c!(S, I, O, . . . ) and c?(S, I,O, . . . ), for
various channels c, occur often in our model. For concision, where S,
I and O can be inferred from context in a kernel process i:KS,I,O,
we use this notation:

c !
κ
(x) � c!(S, I, O, x) , c?

κ
(x) � c?(S, I, O, x)

For example, kernel process i:K{t},{u},{t−}’s call to s?
κ
(fork) is

expanded as s?({t}, {u}, {t−}, fork).

D. System Calls

We now define the sub-processes of KS,I,O that correspond to
the kernel’s implementation of each system call. The first system
call subprocess handles a user process’s request for new tags. Much
of this system call is handled by a subroutine call to the global tag
manager TAGMGR. After tag allocation, the kernel process transitions
to a different state, reflecting the new privilege(s) it acquired for tag
t.2

NEWTAGS,I,O =
(
s?
κ
(create tag, w) →

g !
κ
(create tag, w)?(t,Onew) →

s !
κ
t → KS,I,O∪Onew

)

The CHANGELABEL subprocess is split into two cases, one for
secrecy and one for integrity (the latter elided for brevity):

CHANGELABELS,I,O = S-CHANGES,I,O | I-CHANGES,I,O

S-CHANGES,I,O =
(

check : CHECKS,I,O�
(
s?
κ
(change label, Secrecy, S′) →

check!(S, S′) → check?r →

if r then s !
κ

Ok → KS′,I,O

else s !
κ

Error → KS,I,O

))

2A note on notation: the channel between Ui and i:K is named i.s as stated
earlier. However, the “i.” prefix is induced by the CSP renaming operator on
the “template” kernel process K . In this section we define the subprocesses
of K , so the channel is named merely s.

In both cases, the user process specifies a new label, and the CHECK
subroutine determines if that label change is valid. In the success case,
the kernel process transitions to a new state, reflecting the new labels.
In the failure case, the kernel process remains in the same state. The
CHECK process computes the validity of the label change based on
the process’s current capabilities, as well as the global capabilities Ô
(captured by a global process listening on the g channel):

CHECKS,I,O =?(L, L′) →

g!(check-, L − L′ − O−) → g?r →

g!(check+, L′ − L − O+) → g?a →

!(r ∧ a) → CHECKS,I,O

As we will see below, the global tag register replies True to
(check-, L) iff L ⊆ Ô−, and replies True to (check+, L) iff
L ⊆ Ô+. Thus, we have that the user process can only change from
label L to L′ if it can subtract all tags in L−L′ and add all tags in
L′ − L, either by its own capabilities or those globally owned (see
Definition 1 in Section II-C).

The user half of a process can call the kernel half to determine its
own S or I labels and its capabilities O:

READMYLABELS,I,O =
(
s?
κ
(get label, Secrecy) → s !

κ
S → KS,I,O |

s?
κ
(get label, Integrity) → s !

κ
I → KS,I,O

)

READMYCAPSS,I,O =
(
s?
κ
(get caps) → s !

κ
O → KS,I,O

)

A process also can discard capabilities using DROPCAPS:

DROPCAPSS,I,O =
(
s?
κ
(drop caps, X) → KS,I,O−X

)

On a successful drop of capabilities, the process transitions to a new
kernel state, reflecting the reduced ownership set.

The next process to cover is forking. Recall that each active task i
on the system has two components: a user component Ui and a kernel
component i:K. The Flume model does not capture what happens to
Ui when it calls fork,3 but the kernel-side behavior of fork is specified
as follows:

FORKS,I,O =
(
s?
κ
(fork) →

p !
κ
(fork, O) → p?j →

s !
κ
j → KS,I,O

)

Recall that i.p is a channel from the i-th kernel process to the process
manager in the kernel, PROCMGR. (The latter allocates the child’s
process ID j and gives birth to j:K.)

The process handling getpid is straightforward:

GETPIDS,I,O =
(
s?
κ
(getpid) →

p!(getpid) → p?i →

s !
κ
i → KS,I,O

)

And user processes issue an exit system call as they terminate:

EXITS,I,O =
(
s?
κ
(exit) →

q!(clear) → p!(exit) → SKIP
)

Once a process with a given ID has run and exited, its ID is retired,
never to be used again.

3In Flume’s concrete implementation of this model, forking has the fa-
miliar semantics of copying the address space and configuring the execution
environment of the child process.
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E. Communication

The communication subprocesses are the crux of the Flume CSP
model. They require care to ensure that subtle state transitions in high
processes do not result in observable behavior by low processes. At
the same time, they must make a concerted effort to deliver messages,
so that the system is useful.

The beginning of a message delivery sequence is the process
i:SENDS,I,O , invoked when Ui wishes to send a message to Uj .
Messages are of the form (X, m), where X is a set of capabilities,
and m is an arbitrary string. To send, the kernel shrinks the process’s
S label and grows its integrity label I as much as allowed by its
privileges. The kernel also winnows the transmitted capabilities to
those that Ui actually owns (X ∩ O). The message (X, m) passes
through the switchboard process SWITCH via channel i.c, which
forwards it j.

SENDS,I,O =
(
s?
κ
(send, j, X, m) →

g!(dual privs, O) → g?D →

c!(S − D, I ∪ D, j, X ∩ O, m) → KS,I,O

)

The process SWITCH listens on the other side of the receive
channel i.c. It accepts messages of the form i.c?(S, I, j, X, m) and
forwards them to the process j:K as j.c!(S, I, i, X, m):

SWITCH = |∀i

(
i.c?(S, I, j, X, m) →

((j.c!(S, I, i, X, m) → SKIP) � SWITCH)
)

The SWITCH process sends messages in parallel with the next
receive operation. This parallelism avoids deadlocking the system
if the receiving process has exited, not yet started, or is waiting
to send a message. In other words, the SWITCH process is always
willing to receive a new message, delegating potentially-blocking
send operations to an asynchronous child process.

Once the message leaves the switch, the receiver process handles
it with its INTRECV subprocess. After performing the label checks
given by Definition 2 in Section II-C2, this process enqueues the
incoming message for later retrieval:

INTRECVS,I,O = c?(Sin, Iin, j, X, m) →

g!(dual privs, O) → g?D →

if (Sin ⊆ S ∪ D) ∧ (I − D ⊆ Iin)

then q!(enqueue, (X, m)) → KS,I,O

else KS,I,O

The final link in the chain is the actual message delivery in user
space. For a user process to receive a message, it calls into the kernel,
asking it to dequeue and deliver any waiting messages. Receiving also
updates the process’s ownership, to reflect new capabilities it gained.

RECVS,I,O =
(
s?
κ
(recv, j) →

q!(dequeue, j) → q?(X, m) →

s !
κ
m → KS,I,O∪X

)

F. Helper Processes

It now remains to fill in the details for the helper processes that
the various KS,I,O processes call upon. They are: TAGMGR, which
manages all global tag allocation and global capabilities; QUEUES,
which manages receive message queues, one per process; and finally
PROCMGR, which manages process creation, deletion, etc.

1) The Tag Manager (TAGMGR): The tag manager keeps track of
a global universe of tags (T ), and the global set of privileges available
to all processes (Ô). It also tabulates which tags have already been
allocated, so as never to reissue the same tag. The set T̂ refers to
those tags that were allocated in the past. Thus, the task manager’s
state is parameterized as TAGMGRÔ,T̂ . Initially, Ô and T̂ are empty:

TAGMGR = TAGMGR{},{}

Once active, the tag manager services several calls:

TAGMGRÔ,T̂ = NEWTAG+Ô,T̂ |

NEWTAG–Ô,T̂ |

NEWTAG0Ô,T̂ |

DUALPRIVSÔ,T̂ |

CHECK+Ô,T̂ |

CHECK-Ô,T̂

Many of these subprocesses will call upon a subroutine that
randomly chooses an element from a given set. We define that
subroutine here. Given a set Y :

CHOOSEY = ?(S, I,O) → �
y∈Y

(!y) → STOP

That is, the subprocess CHOOSE nondeterministically picks an
element y from Y and returns it to the caller. As we will see
in Section V, CHOOSE’s refinement (i.e., its instantiation) has an
important impact on security. It can, and in some cases should, take
into account the labels on the kernel process on whose behalf it
operates.

The first set of calls involve allocating new tags, such as:

NEWTAG+Ô,T̂ = choose:CHOOSET −T̂ �
∣
∣
∀i

(
i.g ?

κ
(create tag, Add) →

choose!(S, I, O)?t →

i.g!(t, {t−}) →

TAGMGRÔ∪{t+},T̂∪{t}

)

That is, the subprocess NEWTAG+ picks a channel i such that i.g has
input available. Then, it chooses an unallocated tag t via CHOOSE
and returns that tag to the calling kernel process. It services the next
request in a different state, reflecting that a new capability is available
to all processes (t+) and the tag t is now allocated.

We next define NEWTAG– and NEWTAG0 similarly:

NEWTAG–Ô,T̂ = choose :CHOOSET −T̂ �
∣∣
∀i

(
i.g ?

κ
(create tag, Remove) →

choose!(S, I, O)?t →

i.g!(t, {t+}) →

TAGMGRÔ∪{t−},T̂∪{t}

)

NEWTAG0Ô,T̂ = choose :CHOOSET −T̂ �
∣
∣
∀i

(
i.g ?

κ
(create tag, None) →

choose!(S, I,O)?t →

i.g!(t, {t−, t+}) →

TAGMGRÔ,T̂∪{t}

)

The DUALPRIVS subprocess gives a user process Ui access to the
shared capabilities in Ô. On input Oi, it returns D̄i, the set of tags
for which process i has dual privilege. DUALPRIVS is formulated as
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below to prevent user processes from enumerating the contents of Ô.
Since there are no tags t such that {t−, t+} ⊆ Ô, the process must
privately own at least one privilege for t to get dual privilege for it.
Thus, DUALPRIVS does not alert a process to the existence of any
tags it did not already know of:

DUALPRIVSÔ,T̂ =
∣
∣
∀i

(
i.g?(dual privs, Oi) →

i.g!((O+
i ∪ Ô+) ∩ (O−i ∪ Ô−)) →

TAGMGRÔ,T̂

)

Finally, the behavior of CHECK+ has already been hinted at.
Recall this subprocess checks to see if the supplied set of tags is
globally addable:

CHECK+Ô,T̂ =
∣∣
∀i

(
i.g?(check+, L) →

(if L ⊆ Ô+

then i.g!True

else i.g!False) →

TAGMGRÔ,T̂

)

And similarly:

CHECK-Ô,T̂ =
∣
∣
∀i

(
i.g?(check-, L) →

(if L ⊆ Ô−

then i.g!True

else i.g!False) →

TAGMGRÔ,T̂

)

2) The Process Manager (PROCMGR): The main job of the pro-
cess manager is to allocate process identifiers when kernel processes
call fork. We assume a large space of process identifiers, P . The
process manager keeps track of subset P̂ ⊆ P to account for which
of those processes identifiers have already been used. In then allocates
from P − P̂ .

PROCMGRP̂ = PM-FORKP̂ | PM-GETPIDP̂ | PM-EXITP̂

To answer the fork operation, the process manager picks an unused
process ID (j) for the child, gives birth to the child (j:K) with the
message j.b!(S, I, O), and returns child’s process ID to the parent:

PM-FORKP̂ =choose : CHOOSEP−P̂ �
∣
∣
∀i

(
i.p?(S, I,O, fork) →

choose!(S, I, O)?j →

j.b!(S, I, O) → i.p!(j) →

PROCMGRP̂∪{j}

)

Trivially:

PM-GETPID =
∣
∣
∀i

(
i.p?(getpid)!i → PROCMGR

)

Kernel processes notify the process manager of their exits, which
are handled as no-ops:

PM-EXIT =
∣
∣
∀i

(
i.p?(exit) → PROCMGR

)

A final task for the process manager is to initialize the system,
launching the first kernel process. This process runs with special
process ID init, off-limits to other processes. Thus:

PROCMGR0 = init.b!({}, T , {}) → PROCMGRP−{init}

See Appendix B for a description of the QUEUES process, which
is mostly an implementation detail.

G. High Level System Definition

The overall system SYS is an interleaving of all the processes
specified. Recall that P is the set of all possible process IDs. The
user-half of the system is:

UPROCS = �
j∈P

Uj

The kernel processes are:4

KS = �
j∈P

j:
((

K ‖
{j.q}

QUEUES
)
\ αQUEUES

)
(1)

Adding in the helper process gives the complete kernel:

KERNEL1 =
(

KS ‖
P.c

SWITCH
)
\ αSWITCH

KERNEL2 =
(

KERNEL1 ‖
P.g

TAGMGR
)
\ αTAGMGR

KERNEL =
(

KERNEL2 ‖
P.p

PROCMGR0
)
\ αPROCMGR0

Finally:
SYS = UPROCS ‖

P.s

KERNEL

This assembly of kernel process makes extensive use of the CSP
hiding operator (“\”). That is, the combined process SYS does not
show direct evidence of internal state transitions such as: communica-
tions between any i:K and the switch; communications with the tag
manager; communications with the process manager; etc. In fact the
only events that remain visible are the workings of the user processes
Ui and their system calls given by i.s?

κ
and i.s !

κ
. By implication,

kernels that implement the Flume model should hide the system’s
inner workings from unprivileged users (which is indeed the case for
the Flume implementation). In practical terms, the CSP model for
SYS shows what a non-root Unix user might see if examining his
processes with the strace utility.

V. NONINTERFERENCE

A mature definition in the literature for models like Flume’s is
noninterference. Informally [17]:

One group of users, using a certain set of commands, is
noninterfering with another group of users if what the first
group does with those commands has no effect on what the
second group of users can see.

In terms of Flume, select any export-protection tag t, a process p with
t ∈ Sp, and a process q with t /∈ Sq. Noninterference means that
p’s execution path should be entirely independent of q’s. If p could
somehow influence q, then it could reveal to q information tagged
with t, violating the export-protection policy.

A. Definition

We use Ryan and Schneider’s definition of noninterference [18],
where process equivalence follows the stable failures model [19],
[20]. This definition considers all possible pairs of traces for S that
vary only by elements in the high alphabet (i.e., they are equal
when projected to low). For each pair of traces, two experiments
are considered: advancing S over the elements in left trace, and
advancing S over the elements in the right trace. The two resulting
processes must look equivalent from a “low” perspective. Formally:

4Notation: As per standard CSP, αK denotes the “alphabet” of process K .
Also, P.c � {p.c | p ∈ P}
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Fig. 5. Intransitive Noninterference. Arrows depict allowed influence. All
influences are allowed except high to low.

Definition 3 (Noninterference for System S). For a CSP process S,
and an alphabet of low symbols LO ⊆ αS, the predicate NILO(S) is
true iff

∀tr,tr′ ∈ traces(S) : tr � LO = tr′ � LO ⇒

SF�S/tr� � LO = SF�S/tr′� � LO .

We say that the process S exhibits noninterference with respect to
the low alphabet LO iff NILO(S) is true.

That is, after being advanced by tr and tr′, the two processes must
accept all of the same traces (projected to low) and refuse all of the
same refusal sets (projected to low).

Given an arbitrary export-protection tag t (one such that t+ ∈ Ô
and t− /∈ Ô), we define the high and low alphabets as follows. The
high symbols emanate from a process with t ∈ Si:

HIt �
{
i.b.(S, I, O, . . . ) | t ∈ S

}
∪
{
i.s.(S, I, O, . . . ) | t ∈ S

}

The low symbols are the complement set:

LOt �
{
i.b.(S, I,O, . . . ) | t /∈ S

}
∪
{
i.s.(S, I,O, . . . ) | t /∈ S

}

1) Stability and Divergence: There are several complications. The
first is the issue of whether or not the stable failures model is
adequate. For instance, if a high process caused the kernel to diverge
(i.e., hang), a low process could record such an occurrence on reboot,
thereby leaking a bit (very slowly!) to low. By construction, the Flume
kernel never diverges. One can check this property by examining each
system call and verifying that only a finite number of internal events
can occur before the process is ready to receive the next call. User-
space process (e.g., Ui) can diverge, but they cannot observe each
other’s divergence, and so their divergence is inconsequential in our
security analysis.

If divergence attacks were a practical concern, we could capture di-
vergent behavior with the more general Failures, Divergences, Infinite
Traces (FDI) model [20]. We conjecture that Flume’s noninterference
results under the stable failures model also hold in the FDI model,
but the proof mechanics are yet more complicated.

2) Declassification: The second complication is declassification,
also known as intransitive noninterference. That is, the system should
allow certain flows of information from “high” processes to “low”
processes, if that flow traverses the appropriate declassifier. Figure 5
provides a pictorial representation: the system allows low processes
and the declassifier to influence all other processes, and the high
processes to influence other high processes and declassifiers but not
to influence low processes. However, in the transitive closure, all
processes can influence all other processes, which negates any desired
security properties.

Previous work by Roscoe et al. assumes a global security policy,
and modifies existing noninterference definitions to rule out flows

not in that policy [21]. The most relevant definition is that of Bossi
et al., which partitions the space of symbols into three sets —
high, low, and declassify — and adjusts definitions in the CCS/SPA
process algebra accordingly [22]. These extensions are not directly
applicable in our setting, since Flume processes can dynamically
transition between high, low and declassify states by creating new
tags, receiving capabilities, changing labels, and dropping capabilities
(all of the six transitions are possible).

To accommodate Flume’s model we present a new definition,
whose key distinction is to consider declassification orthogonally to
secrecy. That is, at any given time, each process can be either high
or low (determined by whether t ∈ S) and either declassify or non-
declassify (determined by whether t− ∈ O). We define a new set
of symbols MIDt that emanate from or are received by declassifier
processes. MIDt has the property that MIDt and HIt need not be
disjoint, nor do MIDt and LOt:

MIDt �
{
i.b.(S, I,O, . . . ) | t− ∈ O

}
∪

{
i.s.(S, I, O, . . . ) | t− ∈ O

}

Next, consider all pairs of traces that differ only in high non-
declassify elements, and are therefore equivalent when projected to
LOt ∪ MIDt. Again, two experiments are performed, advancing S
over the left and right traces. The two resulting processes must look
equivalent from a low, non-declassify perspective. The final definition
captures the notion that high, non-declassifying processes cannot
interfere with low, non-declassifying processes. If a high process
wishes to influence a low process, it must communicate through a
declassifier process.

Definition 4 (Noninterference with declassification). For a CSP
process S, alphabets LO and MID contained in αS, the predicate
NIDMID

LO (S) is true iff

∀tr,tr′ ∈ traces(S) : tr � (LO ∪ MID) = tr′ � (LO ∪ MID) ⇒

SF�S/tr� � (LO − MID) = SF�S/tr′� � (LO − MID) .

Note that this extended definition is equivalent to the standard
definition if MID = {}, i.e., if declassification is disallowed. We
conjecture an “unwound” version of this definition is equivalent to
Bossi et al.’s DP BNDC if HIt and MIDt are disjoint, but we defer
the proof to future work.

B. Allocation of Global Identifiers

The model presented in Section IV is almost fully-specified, with
an important exception: the process CHOOSE:

CHOOSEY = ?(S, I) → �
y∈Y

(!y) → STOP

The “internal (nondeterministic) choice” operator (�) implies that
the model requires further refinement. The question becomes: how to
allocate tags and process identifiers?

An idea that does not work is sequential allocation, yielding the
tag (or process ID) sequence 〈1, 2, 3, . . .〉. To attack this scheme, a
low process forks, retrieving a child ID i. To communicate the value
“k”, the high process forks k times. The next time the low process
forks, it gets process ID i + k, and by subtracting i recovers the
high message. There are two problems: (1) low and high processes
share the same process ID space; and (2) they can manipulate it in
a predictable way.

The second weakness is exploitable even without the first. In a
different attack, a high process communicates a “1” by allocating
a tag via create tag(Add), and communicates a “0” by refraining
from allocating. If a low process could guess which tag was allocated
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(call it t), it could then attempt to change its label to S = {t}. If the
change succeeds, then the low process had access to t+ through Ô,
meaning the high process allocated the tag. If the change fails, the
high process must not have allocated. The weakness here is that the
low process “guessed” the tag t without the high process needing to
communicate it. If such guesses were impossible (or very unlikely),
the attack would fail.

Another idea—common to all DIFC kernels (c.f., Asbestos [1],
HiStar [2] and the Flume implementation)—is random allocation
from a large pool. The random allocation scheme addresses the
second weakness—predictability—but not the first. That is, oper-
ations like process forking and tag creation always have globally
observable side affects: a previously unallocated resource becomes
claimed. Consider, as an example, this trace for the Flume system:

tr = 〈i.b.({t}, {}, {}, {}),

i.s.({t}, {}, {}, fork),

j.b.({t}, {}, {}, {}),

i.s.({t}, {}, {}, j), . . .〉

A new process i is born, with secrecy label Si = {t}, and empty
integrity and ownership. Thus, i’s actions fall into the HIt alphabet.
Once i starts, it forks a new process, which the kernel randomly picks
as j. The child j runs with secrecy Sj = {t}, inheriting its parent’s
secrecy label.

Projecting this trace onto the low alphabet yields the empty
sequence (tr � LOt = 〈〉). Thus, this trace should have no impact
on the system from a low process k’s perspective. Unfortunately, this
is not the case. Before tr occurred, l could have forked off process
j, meaning:

tr′ = 〈k.b.({}, {}, {}, {}),

k.s.({}, {}, {}, fork),

j.b.({}, {}, {}, {}),

k.s.({}, {}, {}, j), . . .〉

was also a valid trace for the system. But after tr occurs, tr′ is no
longer possible, since the process j can only be born once. In other
words, tr � tr′ is not a valid trace for the system but tr′ is by itself.
This contradicts the definition of noninterference in the stable failures
model of process equivalence.

To summarize, we have argued that allocation of elements from
Ô and P̂ , must obey two properties: (1) unpredictability and (2)
partitioning. Our approach is to design a randomized allocation
scheme that achieves both. Define parameters:

α � log2(the number of tags)

β � log2(maximum number of operations)

ε � − log2(acceptable failure probability)

A reasonable value for β is 80, meaning that no instance of the
Flume system will attempt more that 280 operations. Since tag
allocation, forking and constructing labels count as operations, the
system expresses fewer than 2β tags, process IDs, or labels in its
lifetime. A reasonable value for ε is 100, meaning the system fails
catastrophically at any moment with probability at most 2−100.

Define a lookup table s(·), that given any label or capability
set outputs a integer in [0, 2β) that uniquely identifies it. This
serialization can be predictable. Next consider the family of all
injective functions:

G : ({0, 1}β , {0, 1}β , {0, 1}β , {0, 1}β) → {0, 1}α

The Flume system, upon startup, picks an element g ∈ G at random.
When called upon by a process with labels S, I,O to allocate a
new tag or process ID, it returns g(s(S), s(I), s(O), x), for some
heretofore unused x ∈ {0, 1}β . The output is a tag in {0, 1}α.
Appendix C derives α ≥ max(ε + 1, 4β), meaning α = 320 for
our example parameters.

Thus, we let T = P = {0, 1}α, for a sufficiently large α. The
kernel picks g ∈ G at random upon startup. Then CHOOSE is refined
as:

CHOOSEY = ?(S, I, O) → �
y∈G(S,I,O,Y )

(!y) → STOP

where

G(S, I,O, Y ) =
{
t | x ∈ T ∧ t = g(s(S), s(I), s(O), x)∧ t ∈ Y

}
.

Note that G(S, I, O, Y ) ⊆ Y , so the nature of the refinement is just
to restrict the set of IDs that CHOOSEY will ever output, based on
the capabilities, secrecy and integrity labels of the calling process.

C. Theorem and Proof

The main theorem is as follows:

Theorem 1 (Noninterference in Flume). For any security parameter
ε, there exists an instantiation of CHOOSE such that: for any export-
protection tag t, for any Flume instance SYS, Pr[NIDMIDt

LOt
(SYS)] ≥

1 − 2−ε.

In other words, the system administrator of a Flume system first
decides on a security parameter ε, expecting calamitous system
collapse with probability of at most 1−2−ε. He instantiates CHOOSE
with ε, then boots the system. The init process runs, spawning
an assortment of user processes, which combine with the kernel
processes to constitute a new overall system SYS. For any export
protection tag t that is allocated as the system runs, the extended
noninterference property holds with the desired probability. This
guarantee holds over all instances of SYS, regardless of what user
processes (i.e., UPROCS) malicious users might cook up.

The proof is by induction over the number of low symbols in
the two traces, tr and tr′. (Recall that tr and tr′ are equivalent when
projected to the low/mid alphabets). For the base case, tr and tr′ have
no low symbols, and therefore have no high symbols, since the system
accepts only low symbols in its initial state. Since tr = tr′ = {}, the
theorem follows trivially.

We prove the inductive step casewise, considering each system
call and whether the kernel is looking to accept a new system call
or reply to an outstanding call. Most cases reason about the causal
relationships among events in the trace. A more involved case is
change label, which must consider the unlikely case that a low
process guessed which tags a high process received from the kernel
when calling create tag. See Appendix D for details.

VI. DISCUSSION

To review, we have described the Flume kernel both informally
and with CSP formalism and proven that the CSP model upholds
a definition of noninterference. In this section, we discuss the
implications of these results, and how they can be translated to a
practical system.

A. Refinement

Due to the well-known refinement paradox, the Flume model might
satisfy noninterference, but implementations (i.e. refinements5) of

5Q is a refinement of P iff SF�Q� ⊆ SF�P �.
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it might not [23]. To circumvent this paradox, Lowe has recently
strengthened notions of noninterference, requiring that a system like
SYS and all of its refinements exhibit noninterference [24]. Other
work has suggested restricting refinement to a set of operators known
to preserve security guarantees [25]. We follow Lowe’s approach
as best as possible, arguing that noninterference holds for most
refinements.

The parts of the Flume model that need refinement are those that
display non-determinism via the � or � operators: (1) the CHOOSE
process; (2) the user processes Ui; (3) “scheduling”; and (4) the tock
events in timed CSP. As for (1), the proof in Section D holds for
some refinements of CHOOSE, such as the random function specified
in Section V-B and a more practical hash-based approach considered
below. A Flume implementation should refine CHOOSE as specified,
or with a method known to preserve noninterference. As for (2), the
proof in Section D holds for arbitrary refinements of user processes
Uis, as long as they communicate only through the designated system
calls (see Section IV-A). In practice, we cannot hope to isolate the Uis
completely from one another: they can communicate by manipulating
shared hardware resources (e.g., disks, CPU cache, CPU cycles,
network bandwidth, etc.)

As for (3), the Flume model hides scheduling for simplicity: any in-
terleaving of processes is admissible, by Equation 1 in Section IV-G.
However, a practical refinement of Flume would implement “fairness”
restrictions on scheduling, disallowing one process from consuming
more than its “fair” share of resources. Scheduling refinements, in and
of themselves, do not affect the proof of security: noninterference
holds in any reordering of high and low processes, as long as all
processes get to run eventually, and do not have any comprehension
of time. As for (4), Appendix E explores extending the Flume model
to show an explicit passage of time: the event tock denotes one clock
tick, and all parts of the model must stand aside and yield to tock. We
conjecture that if tock ∈ HIt, then the proof holds for all refinements
of the scheduler, and that if tock ∈ LOt, that the proof holds for only
some refinements. Further exploration is deferred to future work.

In sum, we believe the Flume model to maintain noninterference
under important refinements—tag allocation, arbitrary user processes,
and scheduling—if timing channels are excluded (i.e., if tock ∈ HIt).
Of course, this is a far cry from proving noninterference in a working
implementation, but a significant improvement over the status quo.
Systems such as Asbestos and IX have gaping covert channels baked
into their very specifications, so any refinements of those systems
are insecure. By contrast, an OS developer has a fighting chance to
realize a secure Flume implementation.

B. Kernel Organization

The Flume DIFC model is a “monolithic” kernel design, in which
the kernel is a hidden black box, and user-level processes have a
well-specified system call interface. Some modern approaches to
kernel design (e.g. the Exokernel [26] and the Infokernel [27]) expose
more of the kernel’s inner workings to give application developers
more flexibility. However, such transparency in an information-flow
control setting can leak information: imagine a high process issuing
create tag, and a low process observing TAGMGR’s transitions. The
simplest way to work around this problem is to conceal the inner
workings of the kernel (as we have done). Another, more complicated
solution, is to model more parallelism inside the kernel, so that the
tag manager can serve both high and low concurrently.

The Flume model captures most of the kernel processes—like the
i:K, the tag manager, and the process manager—as single-threaded
processes. For instance, if the tag manager is responding to a request

for i.g.(create tag, w), it cannot service j.g.(create tag, w) until
it replies to i.g.(create tag, w). In practical implementations of this
CSP model, such serialization might be a bottleneck for performance.
More parallelism internal to the kernel is possible, but would require
explicit synchronization through locks, and more complexity overall.

C. Tag Allocations

The use of a truly random function for CHOOSE is impractical, as
are tag sizes of 320 bits. In practice, a weaker cryptographic primitive
suffices, such as a Message Authentication Code (MAC) [28] with a
collision-resistant hash function [29]. Let M be such a MAC of suit-
able input length. The kernel picks a random secret key k on startup,
and then computes new tags and process IDs using Mk(S, I,O, x) for
a counter variable x. This construction approximates both important
properties. The unforgability property of the MAC implies that
an adversary cannot find (S, I, O, x) �= (S′, I ′, O′, x′) such that
HMACk(S, I,O, x) = HMACk(S′, I ′, O′, x′), so a high process
with secrecy {t} and a low process with secrecy {} will not get
the same tag. Similarly, user processes cannot predict the output of
HMACk(S, I,O, x) without knowing k.

D. Integrity

Though we have focused on secrecy, the same arguments hold for
integrity. Analogously, one would pick an integrity-protection tag t,
one for which t− ∈ Ô and t+ /∈ Ô. The low symbols are those
whose integrity tags contain t, and the high symbols are those that
do not. The same proof shows that the high events do not interfere
with the low.

VII. RELATED WORK

Information flow control (IFC) at the operating system level dates
back to the centralized military systems of the 70s, and 80s [30],
[15], [31]. Several systems like IX [11] and SELinux [32] integrated
information-flow ideas with Unix-like operating systems in 90s.
Denning first pointed out that dynamically-adjusted security labels
could leak data [12] and suggested instead static checking, which later
found fruition as type-analysis [33]. Decentralized declassification
and endorsement proved a key relaxation, making IFC practical for
language-based systems [4], and eventual spurring a revitalization
of the idea in operating systems and web-serving settings with the
Asbestos [1], HiStar [2] and Flume [3] systems. HiStar introduced
the idea of “self-tainting,” solving the wide covert channel described
in Section III. Flume later adopted a similar strategy, but within a
streamlined label system.

Taint-tracking is another technique for tracking information flow
through legacy software written in arbitrary languages [34], [35].
Such systems run a target application as rewritten binary, without the
cooperation or recognition of the application in question, meaning
they must infer label changes. Therefore taint-tracking systems are
susceptible to the covert channel attacks described in Section III, and
cannot uphold noninterference.

Goguen and Meseguer introduced the idea of noninterference
for security protocols [17], while Volpano et al. first showed that
type systems could provably uphold the idea [36]. More recently,
Zheng and Myers [37] and also Tse and Zdancewic [38] proved
that statically-typed systems with runtime principles could still obey
noninterference. Relative to Flume, information flow is monitored at
a finer granularity. On the other hand, the Flume model provides more
flexibility as to how the various user processes Ui behave: it restricts
these processes from accessing all but one communication channel,
but otherwise they can act arbitrarily and need not be type-checked.
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The proofs offered here are manual. In future work, we hope to
investigate shaping the Flume model used in the proof to a form that
is amenable to automated analysis. Lowe first used an automated
checker to break protocol previous assumed secure [39]. Ryan and
Schneider also describe how the FDR automated checker can verify
standard security protocols [40],

VIII. CONCLUSION

This paper presented the first formal security argument for a DIFC-
based operating system. It modelled Flume using the CSP formalism,
and proved that the model fulfills noninterference—an end-to-end
property that protects secrecy and integrity even against subtle
covert channel attacks. The model and proof are not substantially
weakened by the refinement paradox, since the proof holds for many
refinements of the model. Future work calls for further investigation
of timing-based covert and side channels, and automation of the proof
techniques, for both the model and its implementation.
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APPENDIX

A. Review of CSP

Communicating Sequential Processes (CSP) is a process algebra
useful in specifying systems as a set of parallel state machines that
sometimes synchronize on events. We offer a brief review of it here,
borrowing heavily from Hoare’s book [16].

1) CSP Processes: Among the most basic CSP examples is
Hoare’s vending machine:

VMS = in25 → choc → VMS

This vending machine waits for the event in25, which corresponds
to the input of a quarter into the machine. Next, it accepts the event
choc, which corresponds to a chocolate falling out of the machine.
Then it returns to the original state, with a recursive call to itself. The
basic operator at use here is the prefix operator. If x is an event, and
P is a process, then (x → P ), pronounced “x then P ,” represents
a process that engages in event x and then behaves like process P .
For a process P , the notation αP describes the “alphabet” of P . It
is a set of all of the events that P is ever willing to engage in. For
example, αVMS = {in25, choc}.

For any CSP process P , we can discuss a trace of events that P
may accept. For the VMS example, various traces include:

〈〉

〈in25〉

〈in25, choc〉

〈in25, choc, in25, choc, in25〉

For two traces tr and tr′, define tr � tr′ to be their concatenation.
The next important operator is “choice,” denoted by “|”. If x and

y are distinct events, then:

(x → P | y → Q)

denotes a process that accepts x and then behaves like P or accepts
y and then behaves like Q. For example, a new vending machine
can accept either a coin and output a chocolate, or accept a bill and
output an ice cream cone:

VMS2 = (bill → cone → VMS2 | in25 → choc → VMS2)

CSP offers a more general choice function (for choosing between
many inputs succinctly), but the Flume model only requires simple
choice.

A related operator is internal (nondeterministic) choice, is denoted
“�”. In simple choice, the machine reacts exactly to events it fields
from the machine’s user. In nondeterministic choice, the machine be-
haves unpredictably from the perspective of the user, maybe because
the machine’s description is underspecified, or maybe because the
machine is picking from a random number generator. For instance, a

change machine might return coins in any order, depending on how
the machine was last serviced:

CHNG = (in25 → (out10 → out10 → out5 → CHNG �

out10 → out5 → out10 → CHNG))

That is, the machine takes as input a quarter, and returns two dimes
and a nickel in one of two orderings. Another standard operator,
“external choice” denoted “�”, has different semantics but does not
appear in Flume’s model.

CSP provides useful predefined processes like STOP, the process
that accepts no events, and SKIP, the process that shows a successful
termination and then behaves like STOP. Other processes like DIV,
RUN and CHAOS are standard in the literature, but are not required
here.

The next class of operators relate to parallelism. The notation:

P ‖
A

Q

denotes P running in parallel with Q, synchronizing on events in A.6

This means a stream of incoming events can be arbitrarily assigned
to either P or Q, assuming those events are not in A. However,
for events in A, both P and Q must accept them in synchrony. As
an example, consider the vending machine and the change machine
running in parallel, synchronizing on the event in25:

FREELUNCH = VMS ‖
{in25}

CHNG

Possible traces for this new process are the various interleavings of
the traces for the two component machines that agree on the event
in25. For instance:

〈in25, choc, out10, out10, out5, . . .〉

〈in25, out10, choc, out10, out5, . . .〉

〈in25, out10, out10, choc, out5, . . .〉

〈in25, choc, out10, out5, out10, . . .〉

〈in25, out10, out5, out10, choc, . . .〉

are possible execution paths for FREELUNCH.
Another variation on parallel composition is arbitrary interleaving,

denoted: P � Q. In interleaving, P and Q never synchronize,
operating independently of one another. P �Q is therefore equivalent
to P ‖{} Q, which means P and Q run in parallel and synchronize
on the empty set.

Processes that run in parallel can communicate with one another
over channels. A typical channel c can carry various values v, denoted
c.v.7 This is represented as the sending process accepting the event
c!v while the receiving process accepts the event c?x (where x is
thus far unbound) and sets x to v. Communication on a channel
is possible only when the sender and receiver processes are in the
respective states simultaneously. If one process is at the suitable state
and the other is not, the ready process waits until its partner becomes
ready. In a slight deviation from Hoare’s semantics, channels here are
bidirectional: messages can travel independently in either direction
across a channel. The Flume model uses channels extensively.

The next important CSP feature is concealment or hiding. For a
process P and a set of symbols C, the process P\C is P with
symbols in C hidden or concealed. The events in C become internal

6Parallelism differs between Hoare’s original CSP formulation and more
modern formulations, like Schneider’s. We use Schneider’s “interface paral-
lelism” in this model.

7If the channel has a compound name like i.c, its values are respectively
denoted i.c.v. Channel names are prefix-free so this is never ambiguous.
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transitions, that cannot be observed by other processes through
synchronization or channel communication. Concealment can induce
divergence—an infinite sequence of internal transitions. For instance,
the process P = (c → P )\{c} diverges immediately, never to be
useful again. The use of concealment in the Flume model is careful
never to induce divergence in this manner.

Concealment enables subroutines (or subordination, in Hoare’s
terminology). For two process P and Q whose alphabets fulfill
αP ⊆ αQ, the new process P � Q is defined as (P ‖ Q)\αP . This
means that the subroutine P is available within Q, but not visible to
the outside world. The notation p:P � Q means a particular instance
p of the subroutine P is available in Q. Then an event such as p!x?y
within Q means that Q is calling subroutine p with argument x, and
that the return value is placed into y. Within P , the event ?x means
receive the argument x from the caller, and the event !y means return
the result y to the caller.

A final important language feature is renaming. Given a “template”
process P , the notation i:P means a “renaming” of P with all events
prefixed by i. That is, if the event c!v appears in P , then the event
i.c!v appears in i:P , where i.c is the channel c that has been renamed
to i.c. Thus, for any i �= j, the alphabets of i:P and j:P are disjoint:
α(i:P ) ∩ α(j:P ) = {}. This concludes our whirlwind tour of CSP
features. We refer the reader to Hoare’s [16], Schneider’s [20] and
Roscoe’s [19] books for many more details.

2) The Stable Failures Model: We now expand upon the idea of
traces to develop an idea of process equivalence in CSP. The traces of
P (denoted traces(P )) is the set of all traces accepted by the process
P . The refusals of P (denoted refusals(P )) is a set of sets. A set X
is in refusals(P ) if and only if P deadlocks when offered any event
from X. For instance, consider the process P0:

P0 = (a → STOP � b → STOP) .

We write that refusals(P0) = {{a}, {b}}. That is, P0 can nondeter-
ministically choose the left branch, in which case it will only accept
{a} and will refuse {b}. On the other hand, if it nondeterministically
chooses the left branch, it will accept {b} and refuse {a}. Thus, due
to nondeterminism, we write refusals(P ) as above, and not as the
flattened union {a, b}.

The notation Q ↓ is a predicate that denotes the process Q is
“stable.” Unstable states are those that transition internally, or those
that diverge. For example, the process P0 begins at an unstable
state, since it can make progress in either the left or right direction
without accepting any input. However, once it makes its first internal
transition, arriving at either a → STOP or b → STOP, it becomes
stable. A process that diverges, such as (c → P )\{c}, has no stable
states.

Though the CSP literature explores many notions of process
equivalence, this paper uses the “stable failures” model, given in
Hoare’s book [16] and rephrased by Schneider [20] and Roscoe [19].
For a process P , the stable failures of P , written SF�P �, are defined
as:

SF�P � = {(s,X) | s ∈ traces(P ) ∧ P/s ↓ ∧

X ∈ refusals(P/s)}.

In other words, the failures of P captures which traces P accepts,
and which sets it refuses after accepting those traces. For example:

SF�P0� = {(〈〉, {a}), (〈〉, {b}), (〈a〉, {a, b}), (〈b〉, {a, b})} .

In the stable failures model, two processes P and Q are deemed
equivalent if and only if SF�P � = SF�Q�.

Lastly, CSP offers a way to identify processes in states other than
their initial states: the process P/tr is P advanced to the state after
the trace tr has occurred. Next, we often talk about the effects of
“purging” certain events from traces and process states. The operator
“�” denotes projection. The trace tr � A is the trace tr projected onto
the set A, meaning all events not in A are removed. For instance, if
A = {a}, and tr = 〈a, b, c, d, a, b, c〉, then tr � A = 〈b, c, d, b, c〉.
For a set C, the set C � A is simply the intersection of the two.
Define two projected processes P � A and Q � A equivalent if and
only if SF�P � � A = SF�Q� � A, where:

SF�P � � A = {(tr � A, X ∩ A) | (tr, X) ∈ SF�P �}

and similarly for Q.

B. Per-process Queues (QUEUES)

Each kernel process i:K needs it own set of queues, to handle
messages received asynchronously from other processes. For con-
venience, we package up all of the queues in a single process
i:QUEUES, which i:K can access in all of its various states. The
channel q serves communication between the queues and the kernel
process. The building block of this process is a single QUEUE
process, similar to that defined in Hoare’s book. This process is
parameterized by the value stored in the queue, and of course the
queue starts out empty:

QUEUE = QUEUE<>

From here, we define state transitions:

QUEUE〈〉 =
(
?(enqueue, x) → QUEUE〈x〉 |

?(select, j)!{} → QUEUE〈〉
)

QUEUE
〈x〉

�
s

=
(
?(enqueue, y) → if #s + 1 < NQ

then QUEUE
〈x〉

�
s
�
〈y〉

else QUEUE
〈x〉

�
s
|

?(dequeue)!x → QUEUEs |

?(select, j)!{j} → QUEUE
〈x〉

�
s

)

Note that these queues are bounded beneath NQ elements. Attempts
to enqueue messages on filled queues result in dropped messages.
The model combines many QUEUE subprocesses into a collection
processes called QUEUESET:

QUEUESET =‖i∈P i:QUEUE

The process called QUEUES communicates with kernel processes.
Recall that i.q is the channel shared between i:K and i:QUEUES:

QUEUES = s : QUEUESET � sel : QSELECTs � μX•
(
q?(enqueue, j, m) → s.j!(enqueue, m)

→ X |

q?(dequeue, j) → s.j!(dequeue)?m

→ q!m → X |

q?(select, Y ) → sel!Y ?Z → q!Z → X |

q?(clear) → QUEUES
)

Finally, the point of QSELECT is to determine which of the supplied
queues have pending messages. This process uses tail recursion to
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add to the variable Z as readied queues are found.

QSELECTs =Z : VAR � ?Y →

Z := {} ;
(
μX • (if Y = {}

then (!Z → QSELECTs)

else pick j ∈ Y ;

Y := Y − {j} ;

(s.j!(select, j) → s.j?A →

(Z := Z ∪ A ; X))
)

C. Determining Tag Sizes

We can solve for how big α must be in terms of β and ε.
Partitioning requires that functions from G must be injective, giving
24β ≤ 2α, or equivalently, α ≥ 4β. As for unpredictability, g is
chosen randomly from G, so it will output elements in {0, 1}α in
random order. After 2β calls, g outputs elements from a set sized
2α − 2β at random. Since α ≥ 4β1, this “restricted” range for g
still has well in excess of 2α−1 elements. Failure occurs when a
process can predict the output of g, which happens with probability no
greater than 2α−1. Thus, α−1 ≥ ε. Combining these two restrictions,
α ≥ max(ε + 1, 4β). For β = 80 and ε = 100 we get α = 320.

D. Proof

1) Alphabets: The relevant high, mid and low alphabets were
defined in Section V-A2. The rest of the events in the Flume
model (like communication through the switch, to the process or tag
manager, etc.) are all hidden by the CSP-hiding operators, as given
in Section IV-G. For convenience, we define the set of events that
correspond to kernel process i’s incoming system calls, and a set of
event that correspond to process i’s responses:

Ci �
{
i.s.(S, I, create tag, w) |

S, I ⊂ T ∧ w ∈ {Add, Remove, None}
}
∪

{
i.s.(S, I, change label, w, L) |

S, I,L ⊂ T ∧ w ∈ {Integrity, Secrecy}
}
∪

{
i.s.(S, I, get label, w) |

w ∈ {Integrity, Secrecy}
}

∪ · · ·

and so on for all system calls. The returns from system calls are:

Ri �
{
i.s.(S, I, t) | S, I ⊂ T ∧ t ∈ T

}
∪

{
i.s.(S, I, r) | S, I ⊂ T ∧ r ∈ {Ok, Error}

}
∪

{
i.s.(S, I, L) | S, I,L ⊂ T

}
∪

{
i.s.(S, I, O) | S, I ⊂ T ∧ O ⊂ O

}
∪

{
i.s.(S, I, p) | S, I ⊂ T ∧ p ∈ P

}

Also, we often describe the failures of a process P projected onto
the low alphabet LOt − MIDt, abbreviated:

Lt�P � � SF�P � � (LOt − MIDt)

2) Proof: Consider any two traces tr and tr′ that are equivalent
when projected to LOt ∪MIDt. Perform induction over the length of
the traces tr and tr′. To do so, invent a function λ(·):

λ(tr) � # (tr � (LOt ∪ MIDt))

that outputs the number of low and mid events in a trace. It
immediately follows that λ(tr) = λ(tr′). We first show the theorem
holds for all traces tr and tr′ such that λ(tr) = λ(tr′) = 0. We then

assume it holds for all traces with λ(tr) = λ(tr′) = k− 1 and prove
it holds for all traces with λ(tr) = λ(tr′) = k.

a) Base Case: For the base case, consider all tr, tr′ ∈
traces(SYS) such that λ(tr) = λ(tr′) = 0. In other words, tr, tr′ ∈
(HIt − MIDt)

∗.
At the system startup (SYS after no transitions), all of the kernel

process i:K are waiting on a message of the form i.b before they
spring to life. Until such a message arrives, i:K will refuse all events
Ci and Ri. The one exception is the process init, which is already
waiting to accept incoming system calls when the system starts. By
construction Sinit = {} and Iinit = T . Since t /∈ Sinit, Cinit ∪ Rinit ⊆
LOt. Therefore, the system refuses all high events at startup, and
tr = 〈〉 is the only trace of SYS without low symbols (and for which
λ(tr) = 0). For tr = tr′ = 〈〉, the claim trivially holds.

b) Inductive Step, l /∈ MIDt: For the inductive step, assume the
claim holds for all traces tr, tr′ of SYS such that tr � (LOt∪MIDt) =
tr′ � (LOt ∪ MIDt) and also λ(tr) = λ(tr′) = k − 1. Now, we seek
to show the claim holds for all equivalent traces with one more low
symbol.

Given an arbitrary trace tr ∈ traces(SYS) such that λ(tr) = k,
write tr in the form tr = p � l � h, where p is a prefix of tr,
l ∈ LOt ∪ MIDt is a single low event, and h ∈ (HIt − MIDt)

∗ are
traces of high events. There are two cases : l /∈ MIDt and l ∈ MIDt.
Consider the first here (l /∈ MIDt), and see Section D2c below for
the second.

Write the right trace in the same form: tr′ = p′ � l � h′. It
suffices to show that Lt�S/tr� = Lt�S/(p � l)�. Indeed, if we
have shown this equality for arbitrary tr, then the same applies for
S/tr′, meaning Lt�S/tr′� = Lt�S/(p′�l)�. By inductive hypothesis,
Lt�S/p� = Lt�S/p′�, and therefore Lt�S/(p�l)� = Lt�S/(p′�l)�.
By transitivity, we have that Lt�S/tr� = Lt�S/tr′�, which is what
needs to be proven. Thus, the crux of the argument is to show that the
high events of tr do not affect low’s view of the system; the second
trace tr′ is immaterial.

We consider the event l case-by-case over the relevant events in
SYS:

• l ∈ Ri for some i
That is, l is a return from a system call into user space. Because
l is a low event, l is of the form i.s.(S, I, O, . . . ) where t /∈ S.
After this event, i:K is in a state ready to receive a new system
call (i : KS,I,O). Because all events in h are high events, none
are system calls of the form i.s.(S, I,O, . . . ) with t /∈ S, and
therefore, none can force i:K into a different state. In other
words, the events h can happen either before or after l; SYS
will accept (and refuse) the same events after either ordering.
That is:

Lt�SYS/(p � l � h)� = Lt�SYS/(p � h � l)�.

We can apply the inductive hypothesis to deduce that:

Lt�SYS/(p � h)� = Lt�SYS/p�

Appending the same event l to the tail of each trace gives:

Lt�SYS/(p � h � l)� = Lt�SYS/(p � l)�

and by transitivity:

Lt�SYS/(p � l � h)� = Lt�SYS/(p � l)�

which proves the claim for this case.
Note two special events here: first, a return from create tag
in which i receives the special tag t; and second, a return from

74

Authorized licensed use limited to: MIT Libraries. Downloaded on April 21,2010 at 15:34:07 UTC from IEEE Xplore.  Restrictions apply. 



recv in which i receives the capability t− from another process.
After either system call return, i:KS,I,O transitions to some new
state i:KS,I,O∪{t−}. From this point forward, the failures of i:K
lie outside of LOt − MIDt, and need not be considered by our
extended definition of noninterference.

• l = i.s.(S, I,O, create tag, w) for some i ∈ P , and some
w ∈ {Add, Remove, None}
After accepting this event, the process i:K can no longer
accept system calls; it can only accept a response in the form
i.s.(S, I, O, t′) for some tag t′. Since l ∈ LOt, it follows
that t /∈ S for both the system call and its eventual reply.
The high events in h could affect the return value to this
system call (and therefore SF�S/tr�) if the space of t’s re-
turned somehow depends on h, because h changed the state
of the shared tag manager. An inspection of the tag manager
shows that its state only changes as a result of a call to
e = j.g.(S′, I ′, O′, create tag, w) for some process j, and
labels S′, I ′ and O′. Such a call would result in a tag such
as t′ = g(S′, I ′, O′, x) being allocated, for some arbitrary x.
Because e ∈ h is a high event, t ∈ S′. Because l is a low event,
t /∈ S. Thus, S′ �= S, and assuming g is injective, it follows that
t′ �= t, for all x. Therefore, events in h cannot influence which
tags t′ might be allocated as a result of a call to create tag.
We apply the same argument as above, that h and l can happen
either before or after one another without changing the failures
of the system.

• l = i.s.(S, I,O, change label, w, L) for some i ∈ P , w ∈
{Add, Remove, None} and L ⊆ T .
Consider all traces of the form tr = p � l � h, where l is as
above. As usual, we consider all elements of h that might affect
process i:K after it has accepted event l. After l, the process
i:K can only accept an event of the form i.s.(S, I, O, r) for
r ∈ {Ok, Error}, to indicate whether the label change succeeded
or failed.
The only way an event in h can influence the outcome r is to
alter the composition of Ô, which the tag manager checks on i’s
behalf by answering i.g.(check+) and i.g.(check-) within the
CHECK subprocess. That is, some high process j must request
a new tag with system call e = j.s.(S′, I ′, O′, create tag, w),
where t ∈ S′, and e ∈ h. Moreover, the kernel must return as a
result some new tag t′ such that t′ ∈ L, where L is the label that
low process i desires to change to. If both of these conditions
hold, then the tag manager might have switched to a new state
in which t′

+
∈ Ô or t′

−
∈ Ô, meaning the kernel’s response

to event l could have changed based on h.
Such an h is extremely unlikely. Since l happened before h
in trace tr, t′ can only be a member of L if Ui “predicted”
the output of the tag manager, which it can do with negligible
probability (2−ε). With high probability, h does not contain any
elements that can affect r or future states of i:K after event l.
Thus, Lt�p � l � h� = Lt�p � l�, which proves the case.

• l = i.s.(S, I,O, get label, w) for some w.
This call only outputs information about what state a kernel
process is in; this state only updates as a result of low events
i.s.(S, I, O, change label).

• l = i.s.(S, I,O, get caps).
There are three state transitions that can alter the reply
to the get caps system call: i.s.(S, I,O, create tag, w),
i.s.(S, I, O, drop caps, L) or i.s.(S, I, O, recv, j). None of
these calls are equal to an event in h, since they are low events

and h contains only high events.
• l = i.s.(S, I, fork)

The only event i:K will accept after l is i.s.(S, I, O, k) where
k is the process ID of the newly-forked child. By defini-
tion of CHOOSE above, there exists some x such that k =
g(s(S), s(I), s(O), x). If an event e ∈ h causes a process ID to
be chosen, it would be of the form p = g(s(S′), s(I ′), s(O′), y),
for some y, and some S′ such that t ∈ S′. That l is a low symbol
implies that t /∈ S and S �= S′. If g is injective then k �= p.
Therefore, event e will never change the value k that this kernel
process might output next as its reply to the system call l.
The other result of the fork system call is that now, a new process
k is running. That is, k : K has moved out of the “birth state”
and is now willing to accept incoming system calls in state
(k : KS,I,O). The same arguments as above apply here. Because
k was forked by a low process, it too is a low process, expecting
only low symbols before it transitions to a new state. Therefore,
the events in h cannot affect its state machine.

• l = i.s.(S, I, send, j, X, m) for some j, X, m.
The outcome of the send operation depends only on whether
X ⊆ O or not. It therefore does not depend on h.

• l = i.s.(S, I, O, recv, j)
The event after l that i:K accepts is i.s.(S, I,O, m) for some
message m. It might also change to a different state if the
process j sent capabilities. The relevant possibility for e ∈ h
to consider is e = j.s.(S′, I ′, O′, send, i, {t′

+
}, 〈〉), for some

high process j with t ∈ S′. The claim is that this message
will never be enqueued at i and therefore will not affect i’s
next visible event. Say that process j has ownership O′ and
dual privileges D′. That t is an export-protection tags implies
t− /∈ Ô; that all events in h are not in MIDt implies t− /∈ O′;
that l /∈ MIDt implies t− /∈ O. Thus, t /∈ D∪D′. Also, because
i is a low process t /∈ S. Therefore, t ∈ S′−D′ and t /∈ S∪D,
which implies that S′ − D′ �⊆ S ∪ D, and the kernel will not
enqueue or deliver j’s message to i. Again, we have that h does
not affect i’s possibilities for the next message it receives.

The remaining events (e.g., drop caps, exit, etc.) follow similarly
and are elided for brevity.

c) Inductive Step, l ∈ MIDt: The previous section considered
all traces of the form tr = p � l � h where l /∈ MIDt; it remains
to cover the case of l ∈ MIDt. When l consists of any system call
aside from send or drop caps, we claim that Lt�SYS/p � l� =
Lt�SYS/p�. That is, on either side of such an event, all processes
in a MIDt state stay in that state, and don’t communicate with any
low processes. If such processes allocate new tags or process IDs
(via fork), CHOOSE’s partitioning of the identifier space prevents
declassifiers from taking tag or process IDs from low processes.

If l is an event of the form i.s.(S, I, O, send, j, X, m) where j
corresponds to a “low” process, then l can affect the failures of a
low process. However, we can apply the same argument as above to
conclude that the elements of h do not interfere with j’s receipt of i’s
message, or its subsequent states. If t− ∈ X, then process j becomes
a declassifier upon receipt of i’s message, its traces no longer in the
set LOt − MIDt. High events (like those in h) can then influence i,
but the definition no longer considers j’s failures.

If l is an event of the form i.s.(S, I, O, drop caps, X), and t− ∈
X, then l represents process i’s rescinding its status as a declassifier;
it becomes a low process like any other. No high event can interfere
with the drop caps operation, since its success depends only on O
and X. Once the capability is dropped, i can be analyzed under the
first set of cases (pertaining to events in LOt but not in MIDt).
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We have covered all of the relevant cases, and the theorem follows
by induction.

E. select and Timing

Consider a new system call, select, that involves an explicit
timeout:

• Y ← select(t,X)
Given a set of process indices X, return a set Y ⊆ X such that
all j ∈ Y , calling recv(j) will yield immediate results. This call
will block until Y is non-empty, or until t clock ticks expire.

A new kernel subprocess SELECT handles the new system call; it
allows a user program to wait for the first available receive channel
to become readable:

SELECTS,I,O =
(
s?
κ
(select, t, A) →

(
μX • (q!(select, A) → q?B →

if B = {}

then INTRECV*S,I,O ; X

else s !
κ
B → KS,I,O)

�t

(
s !
κ
{} → KS,I,O

))

There are three new CSP operators here. The first is μX • F (X),
which (following Hoare’s original syntax) is the recursion operator:
the process X such that X = F (X). The syntax P ; Q denotes the
process P followed by Q upon P ’s successful termination. Successful
termination is denoted by the special CSP process SKIP. Lastly, the
“timed interrupt operator” �t [20] interrupts the selection process
after t clicks of the clock and outputs an empty result set.

In this formulation, the process SELECT calls subprocess
INTRECV*, which behaves mostly like INTRECV, except it keeps
receiving until an admissible message arrives:

INTRECV*S,I,O = c?(Sin, Iin, j, X, m) →

g!(dual privs, O) → g?D →

if (Sin ⊆ S ∪ D) ∧ (I − D ⊆ Iin)

then q!(enqueue, (X, m)) → SKIP

else INTRECV*S,I,O

With the inclusion of the select operation, the Flume CSP model
now explicitly models time. We must update our definitions and proof
accordingly. Schneider develops a full notion of process equivalence
in timed CSP [20], but the mechanics are complex. Instead, we
suggest a technique introduced by Ouaknine [41] and also covered by
Schneider [20]: convert a timed model into an untimed model with
the introduction of the event tock, which represents a discrete unit
of time’s passage. In particular, Schneider provides the Ψ function
for mapping processes from timed CSP to discrete-event CSP with
a tock event representing the passage of time. In the proof of
noninterference, consider tock a low event, that is not hidden by any
concealment operator. Then apply the Ψ translation to all states of
the Flume model.
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