
MIT Open Access Articles

Redesign for flexibility and maintainability: a case study

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Christopher Ackermann, Mikael Lindvall, Greg Dennis, "Redesign for Flexibility and
Maintainability: A Case Study," csmr, pp.259-262, 2009 European Conference on Software
Maintenance and Reengineering, 2009. © 2010 IEEE

As Published: http://dx.doi.org/10.1109/CSMR.2009.60

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58869

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58869

Redesign for Flexibility and Maintainability: A Case Study

Abstract

In this paper, we analyze software that we inherited

from another party. We analyze its architecture and use

common design principles to identify critical changes in

order to improve its flexibility with respect to a set of

planned extensions. We describe flexibility issues that

we encountered and how they were addressed by a

redesign and re-implementation. The study shows that

basic and well-established design concepts can be used

to guide the design and redesign of software.

1. Introduction

The objective of software maintenance is to modify

the existing software product while preserving its

integrity [4]. While the development process may be

long and expensive, it is dwarfed by software

maintenance. Often, this period lasts an average of 10

years [1] while the cost constitutes 60%-80% of the

entire software budget [2]. The original software

developers are often not available, for example, because

software development and maintenance is frequently

outsourced to different organizations. Thus, it is

important to facilitate maintenance of software by

developers that were not involved in the original

development.

A crucial factor for maintainability is the quality of

the software architecture. Software architecture is the

structure of the system comprising software elements,

the externally visible properties of those elements, and

the relationships among them [3]. Well structured,

clearly defined, and adequately documented systems are

easier to understand, change, and test; and consequently,

they are easier to maintain [5]. Structures that allow for

easy and quick changes are considered flexible.

Flexibility is the degree to which a system supports

possible or future changes to its requirements. The more

complex the task of adapting a system to modified

requirements, the less flexible is the system. Flexibility

is thus defined relative to a set of anticipated categories

of changes.

 In this paper, we describe how we analyzed a

working software prototype of the Tactical Separation

Assisted Flight Environment (TSAFE), which we used

as the basis for a software test bed. At first, the design

of the system seemed reasonable, but upon

investigating the feasibility of implementing some new

features, we discovered several critical issues related to

flexibility that required modifications. We analyzed

these issues and how they impacted the flexibility of the

software system. We analyzed and resolved these issues

in order to reduce future maintenance effort.

2. TSAFE

The system we redesigned and re-implemented is a

prototype of TSAFE as specified by NASA Ames

Research Center and implemented by Greg Dennis at

MIT [6]. TSAFE was proposed as a principal

component of a larger Automated Airspace Computing

system that shifts the burden from human controllers to

computers. The TSAFE prototype checks conformance

of flights to their flight plans, predicts future

trajectories, and displays results on a geographical map.

We call the original prototype TSAFE I and the

redesigned version TSAFE II. They have different

structures but their external GUI and behavior are

identical.

3. TSAFE I

 The requirements of TSAFE I (and TSFAFE II) are

summarized as follows. The system shall continuously

read radar flight data from a server. Based on the radar

flight data, the system shall compute, for each flight, the

expected trajectory, conformance status, and snap back

point. The factors determining the trajectory are: the

current position, the speed and the heading of the flight.

The conformance status indicates whether a flight is

satisfactorily conforming to (i.e. following) its planned

route as defined in the flight plan and a set of

thresholds. The snap back point represents the point on

a flights’ planned route that is closest to the current

flight position. When a flight is conforming to the flight

plan, the computed trajectory shall be based on the

assumption that the flight will converge to the planned

route and the computed trajectory shall therefore follow

the plan. A graphical user interface shall display the air

traffic on a map of a geographical area. The display

shall be updated at a fixed time interval. The user shall

be able to select geographical area at system launch.

During run-time, the user shall be able to alter

Christopher Ackermann
1
, Mikael Lindvall

1,
, Greg Dennis

2

Fraunhofer Center for Experimental Software Engineering Maryland
1

Massachusetts Institute of Technology
2

cackermann@fc-md.umd.edu, mikli@fc-md.umd.edu, gdennis@mit.edu

2009 European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.60

254

European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.60

259

thresholds and other GUI-oriented settings and be able

to select flights and flight plans to be displayed.

Since TSAFE I was a prototype, it only

implemented the most basic functions from the original

NASA description. We identified several features that

could arise as new requirements in the future. Some

potential change scenarios were already mentioned in

the TSAFE I specification [6]. Other change requests

emerged from our reasoning about the demands on

TSAFE I when operating in a real environment.

FIG reader. Add a feature to read Feed Input

Generator (FIG) files, which store recorded flight data.

LOS detector. Add a Loss of Separation Detector

(LOS) detecting flights that are too close to each other.

Dynamic map. Add capabilities to view a different

part of the airspace during runtime.

Textual client. Add a command line-based user

interface.

4. Analyzing TSAFE I

The following describes how we conducted the

analysis of TSAFE I in order to derive a basic

understanding of the software in preparation of

implementing the change requests.

Conceptual View. Figure 1 shows the conceptual

view of TSAFE I as provided in the software

documentation [6]. From the description we could infer

that the Client component initiates communication with

all other components and that the Parser updates the

Database continuously.

Figure 1: Conceptual view.

Structural View. Since the documentation did not

include any structural design documents, we recovered

the high level architecture from the source code using

the file structure as a guide for identifying the

architecture components. The structural view is shown

in Figure 2.

The data package was used by all components (but

the database), which led us to believe that the data

package was a passive library. The feed package

contained one class called FeedParser and a package

called asdi. The main package contained several

classes, which were connected to a number of classes in

other packages and a package called gui. All other

packages did not contain any sub packages but only a

number of classes. In the following sections, we will

describe architectural characteristics that are of interest

for the remainder of this paper.

Figure 2: The structure of TSAFE I.

Program Flow. The program flow was retrieved

manually by observing the program running in the

debugger. Since TSAFE I used two main threads that

ran in parallel, two separate program flows could be

identified. Thread 1 parsed the feed source continuously

and stored the flight data in the database. Thread 2, the

main thread, updated the flight data on the gui every 3

seconds. This timer was located in the client

component, which queried the database for flight data

and passed the flight data to the engine component.

When the engine component completed its

computations, it sent the results back to the client and

the client displayed the flight data on the GUI.

Figure 3: The program flow of TSAFE I.

Figure 3 illustrates the parsing and the main thread.

The actions of the parsing thread are labeled 1.x. The

actions of the main thread are labeled 2.x. The variable

x represents the logical order of the actions.

4.1. Problems with implementing changes

When assessing the impact the changes might have

on the program and estimating the change effort, we

discovered several issues.

During the first step of the change impact analysis

we derived a general understanding of the program. We

identified the main functions and where the source code

would have to be modified to implement the change

requests. The conceptual view provided us with a first

glance of the program’s functional components and the

255260

architecture recovery gave us more information about

the implementation. The program flow analysis was

tedious but allowed us to better understand the

dynamics of the program.

Conceptual View. The first point that confused us

was the naming of the components in the conceptual

view. The client seemed to coordinate the entire

program, thus, acting as a mediator. It was also unclear

what role the engine would play in the program.

Structural View. The structure of the

implementation surprised us for a number of reasons.

First, the names of the conceptual components were not

all represented in the high-level structure. Instead, other

components were present, for example, a single class

with unclear role. The names were not intuitive. For

example, the parser function was implemented in the

feed and the runtime data structures were located in the

data package. The main package contained a somewhat

random collection of classes and packages.

Program Flow. The program flow seemed to

follow the conceptual view.

Since the goal was to assess the change impact for

the new features of TSAFE, we conducted an analysis

that focused on these tasks and encountered a number of

flexibility issues.

Implementing the FIG Reader. This change

request was difficult to analyze due to the lack of

cohesion of the functions the FIG reader had to interact

with. The FIG reader would read data from a file and

save it to the runtime database. The classes that

implement the database were located in different

packages.

Implementing the LOS detector. The main

criticism regarding the conditions for implementing the

LOS detector were the lack of cohesion of the functions

the LOS detector had to interact with and the misuse of

design patterns. The location of the LOS

implementation would be in the engine package

because it contains all other computation. While the

structure of the engine package was rather intuitive, the

decomposition of the calculator function was confusing.

The calculator class contained methods for

conducting simple calculations, some of which are

needed by LOS. The calculator was implemented using

a Template Design Pattern in which an interface defines

the methods that are accessible and a concrete class

implements them. However, the calculator classes were

not located in the same package. Furthermore, there was

no need for a Template Design Pattern because the

calculator function was not planned to be extended

(according to the documentation). The convoluted

structure also caused low cohesion and unnecessary

high coupling.

Implementing the Dynamic Map feature. The

greatest challenge with implementing this change

request would be changes to the program flow. The

information about the area that is displayed in the

graphical user interface i.e., the bounds, were read from

a settings file in the beginning of the program and then

locally stored by the database, computation, and client.

The dynamic map requirement means that when the user

changes the boundaries in the client, they must be

propagated to all other components.

Implementing the Textual Client. The client

component contained not only the display of the

information but also the responsibility of driving and

mediating the entire program. Since there was no

component that was solely responsible for user

interaction, it was difficult to identify how a textual

client could be added. This caused low cohesion in and

high coupling of the client components, making

change in general more difficult.

Summary. The problems we encountered were due

to a number of design and documentation issues. First,

the conceptual view was not consistent with the actual

structure of the system. Second, low cohesion of the

system’s functions made it difficult to understand how

they are implemented. This emerged not only as a

problem when the function itself had to be changed (e.g.

the user interface) but also when the new feature was

supposed to use services provided by a function (e.g. the

calculator and database functions). Third, strong

coupling between components, made it difficult to

recognize interfaces in the structural view. Fourth,

design patterns that were misused had a negative effect

on the flexibility of the system as it made it difficult to

understand. Design patterns were misused because they

were implemented in a wrong way (e.g. observer pattern

between client and engine) or they were simply not

needed (e.g. calculator). Lastly, understanding and

changing the program flow emerged as cumbersome

and time consuming.

5. TSAFE II

The analysis of future requirements detected several

issues related to lack of flexibility. The goal of the

redesign was to first fix those problems and then to

create structures to accommodate the implementation of

these requirements.

Renaming. The package called feed was renamed

to parser to match the structural with the conceptual

view. The engine was renamed to computation to better

represent its functionality.

Relocation. A new package was created for the

database classes. The ServerMediator class was

introduced to take over the role of the driving

component from the client and all the methods were

moved from the client to the new class.

Interfaces. Each package now has one class

responsible for the inter-package communication.

256261

Dependencies to the common_datastructures package

are excepted from this rule.

Design Pattern. In order to decouple the GUI from

the program logic a client-server architectural style was

introduced. It clearly separates the program logic

(server) from the display functionality (client). A

mediator pattern now coordinates the sub-packages of

the server package to clearly identify the driver of the

program and minimize inter-sub-package coupling.

Program flow. The main program flow remained

the same with the difference that the ServerMediator is

now responsible for coordinating all activities.

Furthermore, an additional flow was added from the

client through the ServerMediator and to the server

sub-packages that operate on the bounds to

accommodate updating the bounds data needed to

implement the Dynamic Map change request.

Figure 4: The high level structure of TSAFE II.

6. Conclusion

The high level design provided in the specification

of the software system we inherited seemed to be well

structured. Each component appeared to have well

defined responsibility, and intra-system communication

seemed to be conducted through the exchange of a few

messages. When planning the implementation of new

features – based on a thorough analysis of the static

structure and the dynamic behavior of the system – we

discovered that the documentation did not match the

implementation. The responsibilities of the components

were ambiguous, main functionalities were not located

in one component but spread out, and the

communication between the components was difficult to

understand. We addressed these issues through a

redesign, and re-implemented the system accordingly.

Programmers often inherit software systems so the

issues that this paper describes are not unusual. Our

analysis can therefore be useful for programmers who

encounter similar situations. However, such issues could

even be avoided in the first place, when developing a

software system from scratch, but requires that the same

kind of analysis is conducted based on early artifacts

such as design and architecture documents. We believe

that by identifying and avoiding the issues described in

this study, during design or during maintenance, one

may reduce the maintenance costs since fixing such

issues may be complex and time consuming. Such

issues may even make the software degenerate and

prohibit necessary change.

The detailed description of the changes and the

reasoning based on basic design principles can be useful

when applying a redesign to other software systems that

lack flexibility. The modifications can also serve as

examples of how to prepare software systems for the

implementation of future requirements.

Acknowledgements

We thank Jens Knodel for helping with an early version

of this paper and providing us with valuable

suggestions. This work is sponsored by NSF grant

CCF0438933, “Flexible High Quality Design for

Software.”

References

[1] T. Tamai and Y. Torimitsu, “Software Lifetime

and its Evolution Process over Generations”,

Proceedings of 1992 Conference on Software

Maintenance, Nov. 1992.

[2] Stark, G.E., “Measurements for managing

software maintenance”, Proceedings of the

International Conference on Software

Maintenance, pp. 152 – 161, 1996.

[3] Bass, L., Clements and P., Kazman, R.,

“Software Architecture in Pratice”, Addison-

Wesley, 1998.

[4] Garlan, D., “Software architecture: a roadmap”,

Proceedings of the conference on The future of

Software engineering, p.91-101, 2000.

[5] Lindvall M., Tesoriero R., and Costa P.,

"Avoiding Architectural Degeneration: An

Evaluation Process for Software Architecture",

In Proceedings of International Symposium on

Software Metrics, IEEE, 2002, pp. 77-86.

[6] Dennis G., "TSAFE: Building a Trusted

Computing Base for Air Traffic Control

Software." Masters Thesis MIT, 2003.

257262

