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A Positive Definite Polynomial Hessian that Does not Factor

Amir Ali Ahmadi and Pablo A. Parrilo

Abstract— The notion of sos-convexity has recently been pro-
posed as a tractable sufficient condition for convexity of polyno-
mials based on a sum of squares decomposition of the Hessian
matrix. A multivariate polynomial p(x) = p(x1, . . . , xn) is
said to be sos-convex if its Hessian H(x) can be factored as
H(x) = MT (x)M(x) with a possibly nonsquare polynomial
matrix M(x). The problem of deciding sos-convexity of a
polynomial can be reduced to the feasibility of a semidefinite
program, which can be checked efficiently. Motivated by this
computational tractability, it has been speculated whether every
convex polynomial must necessarily be sos-convex. In this paper,
we answer this question in the negative by presenting an explicit
example of a trivariate homogeneous polynomial of degree eight
that is convex but not sos-convex.

I. INTRODUCTION

In many problems in applied and computational math-
ematics, we would like to decide whether a multivariate
polynomial is convex or to parameterize a family of convex
polynomials. Perhaps the most obvious instance appears
in optimization. It is well known that in the absence of
convexity, global minimization of polynomials is generally
NP-hard [1], [2], [3]. However, if we somehow know a priori
that the polynomial is convex, nonexistence of local minima
is guaranteed and simple gradient descent methods can find a
global minimum. In many other practical settings, we might
want to parameterize a family of convex polynomials that
have certain properties, e.g., that serve as a convex envelope
for a non-convex function, approximate a more complicated
function, or fit some data points with minimum error. To
address many questions of this type, we need to have an
understanding of the algebraic structure of the set of convex
polynomials.

Over a decade ago, Pardalos and Vavasis [4] put the
following question proposed by Shor on the list of seven most
important open problems in complexity theory for numerical
optimization: “Given a quartic (degree 4) polynomial in n
variables, what is the complexity of determining whether this
polynomial describes a convex function?” To the best of our
knowledge, the question is still open but the general belief
is that the problem should be hard (see the related work in
[5]). Not surprisingly, if testing membership to the set of
convex polynomials is hard, searching and optimizing over
them also turns out to be a hard problem.

The notion of sos-convexity has recently been proposed
as a tractable relaxation for convexity based on semidefinite
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programming. Broadly speaking, the requirement of positive
semidefiniteness of the Hessian matrix is replaced with
the existence of an appropriately defined sum of squares
decomposition. As we will briefly review in this paper, by
drawing some appealing connections between real algebra
and numerical optimization, the latter problem can be re-
duced to the feasibility of a semidefinite program. Besides
its computational implications, sos-convexity is an appealing
concept since it bridges the geometric and algebraic aspects
of convexity. Indeed, while the usual definition of convexity
is concerned only with the geometry of the epigraph, in sos-
convexity this geometric property (or the nonnegativity of
the Hessian) must be certified through a “simple” algebraic
identity, namely a factorization of the Hessian.

Despite the relative recency of the concept of sos-
convexity, it has already appeared in a number of theo-
retical and practical settings. In [6], Helton and Nie use
sos-convexity to give sufficient conditions for semidefinite
representability of semialgebraic sets. In [7], Lasserre uses
sos-convexity to extend Jensen’s inequality in convex anal-
ysis to linear functionals that are not necessarily probability
measures, and to give sufficient conditions for a polynomial
to belong to the quadratic module generated by a set of
polynomials [8]. More on the practical side, Magnani, Lall,
and Boyd [9] use sum of squares programming to find sos-
convex polynomials that best fit a set of data points or to find
minimum volume convex sets, given by sub-level sets of sos-
convex polynomials, that contain a set of points in space.
In [10], Chesi and Hung give semidefinite programming
relaxations for parameterizing convex polynomial Lyapunov
functions or for guaranteeing convexity of sub-level sets of
polynomial Lyapunov functions.

Even though it is well-known that sum of squares and
nonnegativity are not equivalent, because of the special
structure of the Hessian matrix, sos-convexity and convexity
could potentially turn out to be equivalent. This speculation
has been bolstered by the fact that finding a counterexample
has shown to be difficult and attempts at giving a non-
constructive proof of its existence have seen no success
either. Our contribution in this paper is to give the first
such counterexample, i.e., the first example of a polynomial
that is convex but not sos-convex. This example is presented
in Theorem 3.2. Our result further supports the hypothesis
that deciding convexity of polynomials should be a difficult
problem. We hope that our counterexample, in a similar way
to what other celebrated counterexamples [11]–[14] have
achieved, will help stimulate further research and clarify the
relationships between the geometric and algebraic aspects of
positivity and convexity.

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeB04.6

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 1195



The organization of the paper is as follows. Section II
is devoted to mathematical preliminaries required for under-
standing the remainder of this paper. We begin this section
by introducing the cones of nonnegative and sum of squares
polynomials. We briefly discuss the connection between
sum of squares decomposition and semidefinite programming
highlighting also the dual problem. Formal definitions of sos-
convex polynomials and sos-matrices are also given in this
section. In Section III, we present our main result, which is
an explicit example of a convex polynomial that is not sos-
convex. Some of the properties of this polynomial are also
discussed at the end of this section.

A more comprehensive version of this paper is presented
in [15]. Because our space is limited here, some of the
technical details and parts of the proofs have been omitted
and can be found in [15]. Furthermore, in [15], we explain
how we have found our counterexample using software and
by utilizing techniques from sum of squares programming
and duality theory of semidefinite optimization. The method-
ology explained there is of independent interest since it can
be employed to search or optimize over a restricted family
of nonnegative polynomials that are not sums of squares.

II. MATHEMATICAL BACKGROUND

A. Nonnegativity and sum of squares

We denote by K[x] := K[x1, . . . , xn] the ring of poly-
nomials in n variables with coefficients in the field K.
Throughout the paper, we will have K = R or K = Q. A
polynomial p(x) ∈ R[x] is said to be nonnegative or positive
semidefinite (psd) if p(x) ≥ 0 for all x ∈ Rn. Clearly, a
necessary condition for a polynomial to be psd is for its total
degree to be even. We say that p(x) is a sum of squares (sos),
if there exist polynomials q1(x), ..., qm(x) such that

p(x) =
m∑

i=1

q2i (x). (1)

It is clear that p(x) being sos implies that p(x) is psd. In
1888, David Hilbert [16] proved that the converse is true
for a polynomial in n variables and of degree d only in the
following cases:
• n = 1 (univariate polynomials of any degree)
• d = 2 (quadratic polynomials in any number of vari-

ables)
• n = 2, d = 4 (bivariate quartics)

Hilbert showed that in all other cases there exist poly-
nomials that are psd but not sos. Explicit examples of
such polynomials appeared nearly 80 years later, starting
with the celebrated example of Motzkin, followed by more
examples by Robinson, Choi and Lam, and Lax-Lax and
Schmüdgen. See [17] for an outstanding exposition of these
counterexamples.

A polynomial p(x) of degree d in n variables has l =
(
n+d

d

)
coefficients and can therefore be associated with the l-tuple
of its coefficients, which we denote by ~p ∈ Rl. A polynomial
where all the monomials have the same degree is called a
form. A form p(x) of degree d is a homogenous function

of degree d (since it satisfies p(λx) = λdp(x)), and has(
n+d−1

d

)
coefficients. The set of forms in n variables of

degree d is denoted by Hn,d. It is easy to show that if a
form of degree d is sos, then the polynomials qi in the sos
decomposition are forms of degree d/2. We also denote the
set of psd (resp. sos) forms of degree d in n variables by
Pn,d (resp. Σn,d). Both Pn,d and Σn,d are closed convex
cones [17], and we have the relation Σn,d ⊆ Pn,d ⊆ Hn,d.

Any form of degree d in n variables can be dehomoge-
nized into a polynomial of degree ≤ d in n− 1 variables by
setting xn = 1. Conversely, any polynomial p of degree d in
n variables can be homogenized into a form ph of degree d
in n+ 1 variables, by adding a new variable y, and letting

ph(x1, . . . , xn, y) := ydp

(
x1

y
, . . . ,

xn

y

)
.

The properties of being psd and sos are preserved under
homogenization and dehomogenization.

Example 2.1: The Motzkin polynomial

M(x1, x2) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1 (2)

is historically the first explicit example of a polynomial that
is psd but not sos. Positive semidefiniteness follows from the
arithmetic-geometric inequality, and the nonexistence of an
sos decomposition can be shown by some clever algebraic
manipulations (see [17]) or by a duality argument. We can
homogenize this polynomial and obtain the Motzkin form

Mh(x1, x2, x3) := x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3, (3)

which belongs to P3,6 \ Σ3,6 as expected.

B. Sum of squares, semidefinite programming, and duality

Deciding nonnegativity of polynomials is an important
problem that arises in many areas of systems theory, control,
and optimization [18]. Unfortunately, this problem is known
to be NP-hard even when the degree of the polynomial is
equal to four [2], [3]. On the other hand, deciding whether
a given polynomial admits an sos decomposition turns out
to be a tractable problem. This tractability stems from the
underlying convexity of the problem as first pointed out in
[19], [20], [21]. More specifically, it was shown in [21]
that one can reduce the problem of deciding whether a
polynomial is sos to feasibility of a semidefinite program
(SDP). Semidefinite programs are a well-studied subclass of
convex optimization problems that can be efficiently solved
in polynomial time using interior point algorithms. Because
our space is limited, we refrain from further discussing
SDPs and refer the interested reader to the excellent review
paper [22]. The main theorem that establishes the link
between sum of squares and semidefinite programming is
the following.

Theorem 2.1 ( [21], [2]): A multivariate polynomial
p(x) in n variables and of degree 2d is a sum of squares
if and only if there exists a positive semidefinite matrix Q
(often called the Gram matrix) such that

p(x) = zTQz, (4)
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where z is the vector of monomials of degree up to d

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n]T . (5)

Given a polynomial p(x), by expanding the right hand side of
(4) and matching coefficients of p, we get linear constraints
on the entries of Q. We also have the constraint that Q
must be a positive semidefinite (PSD1) matrix. Therefore, the
feasible set of this optimization problem is the intersection
of an affine subspace with the cone of PSD matrices. This
is exactly the structure of the feasible set of a semidefinite
program [22].

Since the entries of the vector of monomials z can
generally be algebraically dependent, the matrix Q in the
representation (4) is not in general unique. The size of the
matrix Q depends on the size of the vector of monomi-
als. When there is no sparsity to be exploited Q will be(
n+d

d

)
×
(
n+d

d

)
. If the polynomial p(x) is homogeneous of

degree 2d, then it suffices to consider in (4) a vector z of
monomials of degree exactly d [2]. This will reduce the size
of Q to

(
n+d−1

d

)
×
(
n+d−1

d

)
.

The conversion step of going from an sos decomposition
problem to an SDP problem is fully algorithmic and has been
implemented in the SOSTOOLS [23] software package. We
can input a polynomial p(x) into SOSTOOLS and if the
code is feasible, it will return a matrix Q and a vector of
monomials z. Since Q is PSD, one can compute its Cholesky
factorization Q = V TV , which immediately gives rise to an
explicit sos decomposition

p(x) =
∑

i

(V z)2i . (6)

Solutions returned from interior point algorithms are nu-
merical approximations computed via floating point manipu-
lations. In many applications in pure mathematics where the
goal is to formally prove a theorem (as is the case in this
paper), it is required to get an exact algebraic solution. What
we mean by this is that given a polynomial p(x) ∈ Q[x],
i.e., a polynomial with rational coefficients, we would like to
compute a rational sos decomposition, i.e., a decomposition
only consisting of squares of polynomials in Q[x]. This issue
has been studied in detail in [24] where it is shown that
the existence of a rational sos decomposition is equivalent
to the existence of a Gram matrix with rational entries.
SOSTOOLS is endowed with a feature that computes rational
decompositions. The work in [24] proposes an efficient
mixed symbolic-numerical approach for this purpose and
has been separately implemented as an sos package on the
computer algebra system Macaulay 2.

A very useful feature of sos-programming is that when
the semidefinite program deduced from Theorem 2.1 is
infeasible, we get a certificate that the polynomial is not
sos (though it might still be psd). This certificate is readily
given to us by a feasible solution of the dual semidefinite
program. By definition, the dual cone Σ∗n,d of the sum of

1To avoid potential confusion, we use the abbreviation psd for positive
semidefinite polynomials and PSD for positive semidefinite matrices. We
also denote a PSD matrix A with the standard notation A � 0.

squares cone Σn,d is the set of all linear functionals µ that
take nonnegative values on it, i.e.,

Σ∗n,d := {µ ∈ H∗n,d, 〈µ, p〉 ≥ 0 ∀p ∈ Σn,d}. (7)

Here, the dual space H∗n,d denotes the space of all linear
functionals on Hn,d, and 〈., .〉 represents the pairing between
the elements of the primal and the dual space. If a polynomial
is not sos, we can find a dual functional µ ∈ Σ∗n,d that
separates it from the closed convex cone Σn,d. The basic idea
behind this is the well known separating hyperplane theorem
in convex analysis; see e.g. [25]. In Section III, we will see
a concrete example of the use of duality when we prove
that our polynomial is not sos-convex. For a more thorough
treatment of the duality theory in semidefinite and sum of
squares programming, we refer to reader to [22] and [2]
respectively.

C. Sum of squares matrices and sos-convexity

The notions of positive semidefiniteness and sum of
squares of scalar polynomials can be naturally extended to
polynomial matrices, i.e., matrices with entries in R[x]. We
say that a symmetric polynomial matrix P (x) ∈ R[x]m×m

is PSD if P (x) is PSD for all x ∈ Rn. It is straightforward
to see that this condition holds if and only if the polynomial
yTH(x)y in m+ n variables [x; y] is psd. The definition of
an sos-matrix is as follows [26], [27], [28].

Definition 1: A symmetric polynomial matrix
P (x) ∈ R[x]m×m, x ∈ Rn is an sos-matrix if there
exists a polynomial matrix M(x) ∈ R[x]s×m for some
s ∈ N, such that P (x) = MT (x)M(x).

Lemma 2.2: A polynomial matrix P (x) ∈ R[x]m×m,
x ∈ Rn is an sos-matrix if and only if the scalar polynomial
yTP (x)y is a sum of squares in R[x; y] .

Proof: One direction is trivial: if P (x) admits
the factorization MT (x)M(x), then the scalar polynomial
yTMT (x)M(x)y = (M(x)y)T (M(x)y) is sos. For the
reverse direction see [26].
Lemma 2.2 enables us to easily check whether a given poly-
nomial matrix is an sos-matrix with the machinery explained
in Section II-B. Remarkably, in the univariate case (x ∈ R),
any PSD polynomial matrix P (x) ∈ R[x]m×m is an sos-
matrix; see e.g. [29]. For more details about univariate sos-
matrices, their interesting connection to the famous Kalman-
Yakubovich-Popov lemma, as well as an efficient eigenvalue-
based method for finding their sos decomposition, we refer
the reader to [30].

In the multivariate case, however, not every PSD poly-
nomial matrix must be an sos-matrix. The first nontrivial
counterexample is due to Choi [14]. Even though Choi did
not have polynomial matrices in mind, in [14] he showed
that not every psd biquadratic form is a sum of squares of
bilinear forms. His counterexample can be rewritten as the
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following polynomial matrix

C(x) =


x2

1 + 2x2
2 −x1x2 −x1x3

−x1x2 x2
2 + 2x2

3 −x2x3

−x1x3 −x2x3 x2
3 + 2x2

1

 , (8)

which is PSD for all x ∈ R3 but is not an sos-matrix.
We will now specialize polynomial matrices to the Hessian

matrix and discuss convexity of polynomials. It is well
known that a polynomial p(x) := p(x1, . . . , xn) is convex if
and only if its Hessian

H(x) =



∂2p
∂x2

1

∂2p
∂x1 ∂x2

· · · ∂2p
∂x1 ∂xn

∂2p
∂x2 ∂x1

∂2p
∂x2

2
· · · ∂2p

∂x2 ∂xn

...
...

. . .
...

∂2p
∂xn ∂x1

∂2p
∂xn ∂x2

· · · ∂2p
∂x2

n


(9)

is PSD for all x ∈ Rn, i.e., is a PSD polynomial matrix.
Definition 2 ( [6]): A multivariate polynomial p(x) is

sos-convex if its Hessian H(x) is an sos-matrix.
With this definition, it must be clear that sos-convexity

is a sufficient condition for convexity of polynomials. In
the univariate case, sos-convexity is in fact equivalent to
convexity. The reason is that the Hessian of a univariate
polynomial is simply a scalar univariate polynomial. As
explained in Section II-A, every psd univariate polynomial
is sos.

In the multivariate case, even though we know that not
every PSD polynomial matrix is an sos-matrix, it has been
speculated that because of the special structure of the Hessian
as the matrix of the second derivatives, convexity and sos-
convexity of polynomials could perhaps be equivalent. We
will show in the next section that this is not the case.
Note that the example of Choi in (8) does not serve as a
counterexample. The polynomial matrix C(x) in (8) is not
a valid Hessian, i.e., it cannot be the matrix of the second
derivatives of any polynomial. If this was the case, the third
partial derivatives would commute. However, we have in
particular

∂C1,1(x)
∂x3

= 0 6= −x3 =
∂C1,3(x)
∂x1

.

In [29], Choi, Lam, and Reznick generalize the earlier
results of Choi [14] and provide more examples of psd
multiforms that are not sos. Some of their examples can
be rewritten as PSD polynomial matrices that are not sos-
matrices. In a similar fashion, we can show that those
matrices also fail to be valid Hessians.

III. A POLYNOMIAL THAT IS CONVEX BUT NOT
SOS-CONVEX

We start this section with a lemma that will appear in the
proof of our main result.

Lemma 3.1: If P (x) ∈ R[x]m×m is an sos-matrix, then
all its 2m − 1 principal minors2 are sos polynomials. In
particular, det(P ) and the diagonal elements of P must be
sos polynomials.

Proof: The proof follows from the Cauchy-Binet for-
mula and is presented in [15].

Remark 3.1: The converse of Lemma 3.1 does not hold.
The polynomial matrix of Choi given in (8) serves as a coun-
terexample. It is easy to check that all 7 principal minors of
C(x) are sos polynomials and yet it is not an sos-matrix. This
is in contrast with the fact that a polynomial matrix is PSD if
and only if all its principal minors are psd polynomials. The
latter statement follows almost immediately from the well-
known fact that a constant matrix is PSD if and only if all
its principal minors are nonnegative.

We are now ready to state our main result.
Theorem 3.2: There exists a polynomial that is convex but

not sos-convex. In particular, the trivariate form of degree 8
given by:

p(x) = 32x8
1 + 118x6

1x
2
2 + 40x6

1x
2
3 + 25x4

1x
4
2

−43x4
1x

2
2x

2
3 − 35x4

1x
4
3 + 3x2

1x
4
2x

2
3

−16x2
1x

2
2x

4
3 + 24x2

1x
6
3 + 16x8

2

+44x6
2x

2
3 + 70x4

2x
4
3 + 60x2

2x
6
3 + 30x8

3

(10)

has these properties.
Proof: Let H(x) denote the Hessian of p(x). Convexity

follows from the fact that

(x2
1 + x2

2 + x2
3)H(x) = MT (x)M(x), (11)

for some polynomial matrix M(x). Equivalently,

(x2
1 + x2

2 + x2
3)yTH(x)y (12)

is a sum of squares in R[x; y], which shows that H(x) is a
PSD polynomial matrix. We have used SOSTOOLS along
with the SDP solver SeDuMi [31] to get an explicit sos
decomposition of (12) with Gram matrices that have rational
entries. This decomposition is given in [15], where a more
complete version of this work is presented. As explained in
Section II-B, rational Gram matrices lead to a rational sos
decomposition which constitutes a formal proof.

To prove that p(x) is not sos-convex, by Lemma 3.1 it
suffices to show that

H1,1(x) = ∂2p
∂x1∂x1

= 1792x6
1 + 3540x4

1x
2
2 + 1200x4

1x
2
3

+300x2
1x

4
2 − 516x2

1x
2
2x

2
3 − 420x2

1x
4
3

+6x4
2x

2
3 − 32x2

2x
4
3 + 48x6

3
(13)

2We remind the reader that the principal minors of an m×m matrix A
are the determinants of all k× k (1 ≤ k ≤ m) sub-blocks whose rows and
columns come from the same index set S ⊂ {1, . . . , m}.
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is not sos (thought it must be psd because of convexity). Let

S := span{x6
1, x

4
1x

2
2, x

4
1x

2
3, x

2
1x

4
2, x

2
1x

2
2x

2
3,

x2
1x

4
3, x

4
2x

2
3, x

2
2x

4
3, x

6
3}

(14)

be the set of all trivariate sextic forms which contain only
the monomials in (14). Note that H1,1 belongs to S. We will
prove that H1,1 is not sos by presenting a dual functional ξ
that separates H1,1 from Σ3,6 ∩ S .

Consider the vector of coefficients of H1,1
3 with the

ordering as written in (13):

~HT
1,1 = [1792, 3540, 1200, 300,−516,−420, 6,−32, 48].

(15)
Using the same ordering, we can represent our dual func-
tional ξ with the vector

cT = [0.039, 0.051, 0.155, 0.839, 0.990,

1.451, 35.488, 20.014, 17.723],
(16)

which will serve as a separating hyperplane. We have

〈ξ,H1,1〉 = cT ~H1,1 = −8.948 < 0. (17)

On the other hand, we claim that for any form w ∈ Σ3,6∩S,
we will have

〈ξ, w〉 = cT ~w ≥ 0. (18)

Indeed, if w is sos, by Theorem 2.1 it can be written in the
form

w(x) = zTQz = Tr Q · zzT , (19)

for some Q � 0, and a vector of monomials

zT = [x3
1, x1x

2
2, x1x

2
3, x

2
1x2, x2x

2
3, x1x2x3, x3x

2
1, x3x

2
2, x

3
3]

(20)
that includes all monomials of degree 3 except for x3

2, which
is not required. It is not difficult to see that

cT ~w = TrQ · (zzT )|c, (21)

where by (zzT )|c we mean a matrix where each monomial
in zzT is replaced with the corresponding element of the
vector c (or zero, if the monomial is not in S). This yields
the matrix

(zzT )|c = (22)


0.039 0.051 0.155 0 0 0 0 0 0
0.051 0.839 0.990 0 0 0 0 0 0
0.155 0.990 1.451 0 0 0 0 0 0

0 0 0 0.051 0.990 0 0 0 0
0 0 0 0.990 20.014 0 0 0 0
0 0 0 0 0 0.990 0 0 0
0 0 0 0 0 0 0.155 0.990 1.451
0 0 0 0 0 0 0.990 35.488 20.014
0 0 0 0 0 0 1.451 20.014 17.723



which can be checked to be positive definite. Therefore,
equation (21) along with the fact that Q is PSD implies that
(18) holds. This completes the proof.

We end our discussion with a few remarks on some of the
properties of the polynomial p(x) in (10).

3As a trivariate form of degree 6, H1,1 should have 28 coefficients. We
refrain from showing the coefficients that are zero since our analysis is done
in the lower dimensional subspace S.

Remark 3.2: The Gram matrices in the sos decomposition
of (12) (presented in [15]) turn out to be positive definite.
This shows that for all x 6= 0, H(x) is a positive definite
matrix and hence p(x) is in fact strictly convex; i.e.,

∀x, x̄ ∈ R3 and λ ∈ (0, 1)

p(λx+ (1− λ)x̄) < λp(x) + (1− λ)p(x̄).
Remark 3.3: Because of strict convexity and the fact that

H1,1 is strictly separated from Σ3,6 (see (17)), it follows
that p(x) is strictly in the interior of the set of trivariate
forms of degree 8 that are convex but not sos-convex. In
other words, there exists an ε-neighborhood of polynomials
around p(x), such that every polynomial in this neighborhood
is also convex but not sos-convex.

Remark 3.4: As explained in Section II-A, we can deho-
mogenize the form in (10) into a polynomial in two variables
by letting

pdh(x1, x2) := p(x1, x2, 1). (23)

The bivariate polynomial pdh has degree 8 and we can check
that it is still convex but not sos-convex. It is interesting
to note that pdh is an example with the minimum possible
number of variables since we know that all convex univariate
polynomials are sos-convex. As for minimality in the degree,
we do not know if an example with lower degree exists.
However, we should note that a bivariate form of degree 4
cannot be convex but not sos-convex. The reason is that the
entries of the Hessian of such polynomial would be bivariate
quadratic forms. It is known that a matrix with such entries
is PSD if and only if it is an sos-matrix [14].

Remark 3.5: Unlike nonnegativity and sum of squares,
sos-convexity may not be preserved under homogeniza-
tion. To give a concrete example, one can check that
p̄dh(x2, x3) := p(1, x2, x3) is sos-convex, i.e., the 2 × 2
Hessian of p̄dh(x2, x3) is an sos-matrix.

Remark 3.6: It is easy to argue that the polynomial p in
(10) must itself be nonnegative. Since p is strictly convex,
it has a unique global minimum. Clearly, the gradient of
p has no constant terms and hence vanishes at the origin.
Therefore, x = 0 must be the unique global minimum of
p. Because we have p(0) = 0, it follows that p is in fact
positive definite.

Remark 3.7: In [6], Helton and Nie prove that if a non-
negative polynomial is sos-convex, then it must be sos. Since
p is not sos-convex, we cannot directly use their result
to claim that p is sos. However, we have independently
checked that this is the case simply by getting an explicit
sos decomposition of p using SOSTOOLS.
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