
MIT Open Access Articles

Decentralized Planning for Complex Missions
with Dynamic Communication Constraints

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ponda, S. et al. “Decentralized planning for complex missions with dynamic
communication constraints.” American Control Conference (ACC), 2010. 2010. 3998-4003. ©2010
IEEE.

As Published: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5531232&isnumber=5530425

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58889

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58889

Decentralized Planning for Complex Missions

with Dynamic Communication Constraints

Sameera Ponda, Josh Redding, Han-Lim Choi, Jonathan P. How, Matt Vavrina and John Vian

Abstract— This paper extends the consensus-based bundle
algorithm (CBBA), a distributed task allocation framework pre-
viously developed by the authors, to address complex missions
for a team of heterogeneous agents in a dynamic environment.
The extended algorithm proposes appropriate handling of
time windows of validity for tasks, fuel costs of the vehicles,
and heterogeneity in the agent capabilities, while preserving
the robust convergence properties of the original algorithm.
An architecture to facilitate real-time task replanning in a
dynamic environment is also presented, along with methods
to handle varying communication constraints and dynamic
network topologies. Simulation results and experimental flight
tests in an indoor test environment verify the proposed task
planning methodology for complex missions.

I. INTRODUCTION

Modern day network centric operations involve large

teams of agents, with heterogeneous capabilities, interacting

together to perform missions. These missions involve execut-

ing several different tasks such as conducting reconnaissance,

surveillance, target classification, and rescue operations [1].

Within the heterogeneous team, some specialized agents are

better suited to handle certain types of tasks than others. For

example, UAVs equipped with video can be used to perform

search, surveillance and reconnaissance operations, human

operators can be used for classification tasks, ground teams

can be deployed to perform rescue operations, etc. Ensuring

proper coordination and collaboration between agents in the

team is crucial to efficient and successful mission execution.

To this effect it is of interest to develop autonomous task

allocation methods to improve mission coordination.

Autonomous task allocation is a significantly complex

combinatorial problem (NP-hard) [6]. The planner must

simultaneously allocate a set of tasks among a team of

heterogeneous agents so as to optimize overall mission

efficiency and reduce expected costs. These tasks can have

different locations and time-windows of validity and may

require coordinated execution between several agents [4,10].

Furthermore, the planning architecture must account for

vehicle limitations, agent-task compatibility requirements,

and network configuration and communication requirements.

Fig. 1 depicts the structure of a real-time autonomous task

allocation architecture for a heterogeneous team. The overall

system involves a mission control center responsible for

defining a list of tasks that comprise the mission, a decen-

S. Ponda, J. Redding, H.-L. Choi, and J. P. How are with the
Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA, {sponda,
jredding, hanlimc, jhow}@mit.edu

M. Vavrina and J. Vian are with Boeing R&T, Seattle, WA,
{matthew.a.vavrina, john.vian}@boeing.com

Fig. 1. Real-time decentralized task allocation architecture for a heteroge-
neous team divided into sub-networks

tralized network detection scheme to detect the network/sub-

network structure in real-time, decentralized task allocation

planners that coordinate planning within each sub-network,

assigning tasks to the different agents, and sensors and

actuators to interact with the “World”. Given up-to-date agent

models, network configuration information, and task lists, the

decentralized planning process allocates the resources (i.e.

agents) to the respective tasks over some planning horizon,

thereby creating schedules for each of the heterogeneous

agents. This allocation is determined by taking into account

the availability and capabilities of the agents up front, with

the object of minimizing delays and costs while improving

mission efficiency. The planning loop is executed in real-time

and the agent models and network configuration are updated

as more information from the world becomes available.

Previous literature on multi-agent multi-task allocation has

focused on many variants of the Traveling Salesman Problem

(TSP) and the Dynamic Vehicle Routing Problem (DVRP).

Extensive literature has focused on problems involving

DVRP with time-windows (DVRPTW) [18]. A few examples

include servicing impatient customers [16], where a cen-

tralized planning framework is used to distribute resources

to customers with strict service time-windows, and devel-

oping MILP frameworks and hybrid models for DVRPTW

problems [10,14]. Other work has focused on multi-agent

coordination in dynamic environments with applications for

teams of UAVs [4,7,8]. Many of these approaches involve

solving large, complex combinatorial optimization problems

to allocate resources and coordinate the behavior of multiple

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

ThC02.6

978-1-4244-7427-1/10/$26.00 ©2010 AACC 3998

heterogeneous agents.

For large teams of agents, centralized approaches quickly

become infeasible and decentralized architectures must be

adopted [8]. One class of decentralized combinatorial al-

gorithms involves using auction algorithms augmented with

consensus protocols to allocate tasks over a team of agents

while resolving conflicting assignments locally among the

agents [2,7,8,17]. Most of this previous multi-agent multi-

task allocation work does not consider team heterogene-

ity, dynamic environments or varying communication con-

straints. Literature on limited communication environments

includes several examples of maintaining network connec-

tivity through relay teams [12,15] and optimally placing

vehicles in order to maintain communication links [9]. While

these works address the challenges of dealing with communi-

cations in uncertain and dynamic environments, they restrict

networks of agents to always maintain connectivity, limiting

the scope of the theater of operation. In realistic mission

scenarios, communication links are broken and created in

real-time and teams of agents can reconfigure themselves

into different network/sub-network structures.

This paper presents a decentralized task allocation algo-

rithm for a network of heterogeneous agents that simultane-

ously allocates tasks with known time-windows of validity to

all agents in the heterogeneous team. A real-time replanning

architecture is also implemented to handle changes in the

environment and varying communication constraints, and

different strategies to execute distributed planning over sub-

networks are proposed and compared.

II. DISTRIBUTED TASKING WITH TIME WINDOWS

A. Problem Statement

Given a list of Nt tasks and Na agents, the goal of the

task allocation algorithm is to find a conflict-free matching

of tasks to agents that maximizes some global reward. An

assignment is said to be free of conflicts if each task is

assigned to no more than one agent. The global objective

function is assumed to be a sum of local reward values,

while each local reward is determined as a function of the

tasks assigned to that particular agent.

The task assignment problem described above can be

written as the following integer (possibly nonlinear) program:

max

Na
∑

i=1





Nt
∑

j=1

cij(τij(pi(xi)))xij





subject to:

Nt
∑

j=1

xij ≤ Lt, ∀i ∈ I

Na
∑

i=1

xij ≤ 1, ∀j ∈ J (1)

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

where the binary decision variable xij is 1 if agent i is

assigned to task j, and xi ∈ {0, 1}
Nt is a vector whose

j-th element is xij . The index sets are defined as I ,

{1, . . . , Na} and J , {1, . . . , Nt}. The vector pi ∈ (J ∪

{∅})Lt represents an ordered sequence of tasks for agent i;
its k-th element is j ∈ J if agent i conducts j at the k-

th point along the path, and becomes ∅ (denoting an empty

task) at the k-th point if agent i conducts less than k tasks.

Lt is a limit on the maximum number of tasks that can be

assigned to an agent. The summation term in brackets in the

objective function represents the local reward for agent i.
Key assumptions underlying the above problem formula-

tion are:

1) The score cij that agent i obtains by performing task j
is defined as a function of the arrival time τij at which

the agent reaches the task (or possibly the expected

arrival time in a probabilistic setting).

2) The arrival time τij is uniquely defined as a function

of the path pi that agent i takes.

3) The path pi is uniquely defined by the assignment

vector of agent i, xi.

Many interesting design objectives for multi-agent deci-

sion making problems feature scoring functions that satisfy

the above set of assumptions. The time-discounted value of

targets [3,5] is one such example, in which the sooner an

agent arrives at the target, the higher the reward it obtains.

However, in more complex missions scenarios, it may not be

desirable to visit the target as soon as possible. For example,

if the task is to re-investigate a previously observed target at

some scheduled time in the future, a more reasonable choice

of score function would have its maximum at the desired

re-visiting time and lower values at re-visit times around the

optimal time. This work develops methodologies to address

these types of complicated scoring structures.

B. Consensus-Based Bundle Algorithm

Our approach to this complex combinatorial optimization

planning problem is inspired by the Consensus-Based Bun-

dle Algorithm (CBBA) [8]. CBBA is a distributed auction

protocol that provides provably good approximate solutions

for multi-agent multi-task allocation problems over networks

of agents. CBBA consists of iterations between two phases: a

bundle building phase where each vehicle greedily generates

an ordered bundle of tasks, and a consensus phase where

conflicting assignments are identified and resolved through

local communication between neighboring agents. There are

several core features of CBBA that can be exploited to

develop an efficient planning mechanism for heterogeneous

teams. First, CBBA is a decentralized decision architecture,

which is a necessity for planning over large teams due

to the increasing communication and computation overhead

required for centralized planning with a large number of

agents. Second, CBBA is a polynomial-time algorithm. The

worst-case complexity of the bundle construction isO(NtLt)
and CBBA converges within max{Nt, LtNa}D iterations,

where D is the network diameter (always less than Na).

Thus, the CBBA framework scales well with the size of

the network and/or the number of tasks (or equivalently,

the length of the planning horizon). Third, various design

objectives, agent models, and constraints can be incorporated

by defining appropriate scoring functions. If the resulting

3999

scoring scheme satisfies a certain property called diminishing

marginal gain (DMG) [8], a provably good feasible solution

is guaranteed. The next section describes the extensions to

this algorithm to explicitly account for tasks with time-

windows of validity, and addresses a few implementation

details for using CBBA to plan for heterogeneous teams of

autonomous vehicles.

C. Scoring Functions with Time Windows

Definition 1 To begin the discussion on incorporating scor-

ing functions with more complicated temporal dependencies,

this work defines the following entities:

1) Score Profile (sj(t)): The score profile sj(t) represents

the reward an agent gets from task j when it arrives

at the task at time t, and is based on the value of the

task, Rj , and any time penalty associated with the task.

An example score profile is sj(t) = e−λj(t−tjstart
)Rj ,

where (t − tjstart
) is the difference between the task

start time and the agent arrival time, and λj > 0 is

a discount parameter to penalize late arrivals. Without

time discounting the score profile is sj(t) = Rj .

2) Time Window (uj(t)): The time window of validity for

a task represents the time in which the task is allowed

to be started. For task j this window is defined as

uj(t) =

{

1, tjstart
≤ t ≤ tjend

0, otherwise.

Using time windows for tasks provides a framework

to penalize early arrivals as well as late arrivals.

The score an agent receives for a task is a function of his

arrival time at the task location, τij , and can be computed

as cj(τij) = sj(τij)uj(τij). The arrival time, τij , is in turn

a function of the path the agent has taken before reaching

task j. Given a path pi which is composed of tasks, and a

corresponding set of best times τ⋆ik(pi) for all k ∈ pi, the

bidding process can be described as follows. For each task

j /∈ pi, the best time to do task j can be found by solving

the following problem,

τ⋆ij(pi) = argmax
τij∈[0,∞)

cj(τij(pi ⊕ j))

subject to: τik(pi ⊕ j) = τ⋆ik(pi), ∀k ∈ pi

(2)

where ⊕ signifies inserting task j into path pi without

shuffling the order of tasks already in pi. The constraint

states that the insertion of the new task j into path pi cannot

impact the current arrival times for the tasks already in the

path. The path is updated by inserting j in the best location,

pi ← (pi ⊕ j). The best time and score for task j are then

saved as τij(pi) = τ⋆ij and cij(τij(pi)) = cj(τ
⋆
ij).

An important property for convergence is the diminishing

marginal gain property (DMG). In words, DMG means that

the score for a task not in the path cannot increase as more

tasks are added to the path, i.e., ∀j /∈ pi

cij(τij(pi ⊕ j)) ≥ cij(τij(p
′

i ⊕ j))

where p
′

i = {pi ⊕m}.

Consider the calculation of the best arrival time for task j
when the current path is p′

i instead of pi. Then, the following

optimization needs to be solved:

τ⋆ij(p
′

i) = argmax
τij∈[0,∞)

cj(τij(p
′

i ⊕ j))

subject to: τik(p
′

i ⊕ j) = τ⋆ik(p
′

i), ∀k ∈ p
′

i

(3)

The constraint can be rewritten recursively as the following

set of constraints,

τik(pi ⊕m⊕ j) = τ⋆ik(pi ⊕m) = τ⋆ik(pi), ∀k ∈ pi (4)

τim(pi ⊕m⊕ j) = τ⋆im(pi ⊕m). (5)

Therefore, calculation of τ⋆ij(p
′

i) involves solving an opti-

mization with the same objective function but an additional

constraint (5). Thus, the optimal objective value for (3) can-

not be greater than that for (2); i.e. cj(τ
⋆
ij(pi)) ≥ cj(τ

⋆
ij(p

′

i)),
which means the DMG property is satisfied. In other words,

with the arrival time defined by the optimization in (2), the

score function satisfies DMG regardless of the details of the

score profiles.

D. CBBA Implementation Details

A few other implementation details for defining the prob-

lem in CBBA involve accounting for agent-task compatibility

and for expected fuel consumption while executing the task.

In order to account for the heterogeneous nature of the team,

agents can be classified according to their capabilities and

tasks according to their requirements. A set of constraints

can then be incorporated into the planning process specifying

which types of agents can do which types of tasks (i.e. UAV’s

can perform aerial surveillance, ground teams can perform

rescue operations, etc). A straightforward way to incorporate

these constraints is by making the agent’s bid zero for tasks

with which it is not compatible.

To account for fuel consumption, the score function for

a task can be augmented with a fuel penalty due to travel

distance for a given agent,

cij(τ
⋆
ij ,pi) = e−λj(τ

⋆
ij−tjstart

)Rjuj(τ
⋆
ij)− Fi∆Dij(pi)

where Fi is the cost of fuel per meter incurred by agent

i and ∆Dij(pi) is the distance traveled by the agent to

get to the task location from its previous location. To

ensure satisfaction of DMG, a constant heuristic distance,

∆D′

ij , representing the distance from the vehicle’s initial

position to the task location, was used instead. Monte Carlo

simulation results verified that this type of heuristic penalty

produced equally efficient task allocation assignments as

those obtained using the actual travel distance ∆Dij(pi),
while guaranteeing convergence of the algorithm to conflict-

free assignments.

III. DISTRIBUTED PLANNING IN AN UNCERTAIN AND

DYNAMIC ENVIRONMENT

A. Real-Time Replanning Architecture

In order to ensure that the task allocation remains relevant

in a dynamically changing environment it is necessary to

4000

replan in real-time. Replanning at a fast enough rate ensures

that vehicle states and network topologies are up to date,

new tasks are accounted for and older or irrelevant tasks are

pruned, and that the impact of discrepancies between the

agent models in the planner and the actual agent behavior

is minimized. Figure 1, shown in Section I, depicts the

overall system architecture. The vehicle models are updated

in real-time using vehicle states from the world, decentralized

network detection is performed locally by agents through

communication with their immediate neighbors, and the

task list is maintained by adding new pop-up tasks and

pruning completed tasks. The “World” can represent either a

simulated world or a real flight test environment as described

in Section III-D. The decentralized planning algorithm runs

in real-time and leads to a deconflicted task allocation if

the network maintains connectivity. If the network becomes

disconnected, agents will not know about other agents’

bids outside of their sub-network, nor will they be able to

communicate with these other agents in order to execute

consensus. In this situation the planner may not converge

and multiple agents from different sub-networks might bid

on the same tasks leading to conflicting assignments. The

next section describes these communication challenges and

proposes methodologies for handling network disconnects.

B. Dynamic Network Handling Protocols

In a dynamic mission environment, it is likely that some

communication links may break and other new ones may be

formed. For example, if vehicles need to be within a certain

distance in order to communicate (communication radius),

but if there exist some tasks such that a vehicle is forced

to travel outside of this communication radius, then the

vehicle must lose connectivity with its neighbors in order to

accomplish these tasks. In these situations, since the vehicle

is not able to communicate its current winning bids, the next

round of replanning may assign that agent’s tasks to other

agents. This is undesirable since sending multiple agents to

do the same tasks leads to unnecessary fuel consumption.

Furthermore, it is assumed that when vehicles get within

the prescribed communication radius they will be able to

resolve the assignment conflict, but if the planner replan rate

is not fast enough, they may not be able to deconflict in

time, possibly leading to collisions. It is necessary, therefore,

to have a method to ensure that task assignments remain

conflict-free in the presence of network disconnects.

There are several possible methods of handling varying

network topologies. Depending on the bandwidth, level of

detail, and availability of communications with the mis-

sion control center, different methods for distributing tasks

amongst the various sub-networks can be adopted. This work

compares a few of these, discussing the advantages and

drawbacks of each. First we consider the default behavior,

where all agents know about and are free to bid on any tasks

in the entire task list (No task list adjustment). If the network

is disconnected, the task allocation algorithm will run locally

within each sub-network, and the global allocation may

contain conflicting assignments between agents in different

sub-networks. Next, we consider a deconfliction protocol that

requires that the mission control center distribute all the

tasks amongst the agents by assigning tasks to the closest

compatible agent to the particular task (Central task list

adjustment). Agents then run the task allocation algorithm

locally within their sub-network over the set of tasks that

are assigned to agents in that sub-network. This approach

guarantees conflict-free assignments but requires the mission

control center to redistribute the entire task list amongst the

agents every time a replan is required, which for realistic

missions would involve significant overhead and communi-

cation, limiting the real-time performance of the team. A

last approach considered involves notifying only the closest

compatible agent to the task every time a new task is created,

and replanning locally within each sub-network over the set

of tasks that are currently in the paths and in the new task

lists for all agents within that sub-network (Local task list

adjustment), which also guarantees conflict-free assignments.

Both the central and local task list adjustment methods re-

quire that the mission control center maintain updated agent

information, however, the local adjustment method involves

significantly less overhead than the central method, since task

assignments from the mission control center only occur once

per new task. The next section describes simulation results

comparing these three different methods.

C. Comparison of Different Network Handling Protocols

The scenario used to test the different task adjustment

approaches described above involved a team of 12 heteroge-

neous agents (6 UAVs and 6 ground robots). The simulation

was initialized with 12 UAV tasks with random start times,

40 sec time windows and 5 sec durations. Once the UAV

tasks were started a secondary ground robot rescue task

was created for each UAV task. Additional pop-up UAV

tasks were created at 5 sec intervals and the task allocation

algorithm replanned every 2 sec. The simulation consisted

of a mission control center, a network detector and local

agent simulations. The network detector used the vehicle

positions and a communication radius parameter to determine

if two vehicles were able to communicate and returned a list

of subnetworks. The local agent simulations implemented

models of the vehicles to execute the tasks in each agent’s

path. The mission control center maintained the list of tasks

by creating pop-up tasks and pruning completed tasks from

the list, in addition to implementing the responsibilities

for the different task adjustment methods described in the

previous section. The overall mission score was obtained by

adding the individual scores for the agents as described in

Section II-D

Figure 2 presents a snapshot of the simulation interface

showing the agent paths and schedules over the course of the

simulation. The display on the left shows the agents and their

proposed paths and the tasks along with a countdown to their

expiry time. The right display shows the agent schedules,

including the past history and the proposed future schedule

(on either side of the time line). The time-windows of validity

for the tasks are shown (black lines) along with the actual

4001

time that the agent executed the task (colored block).

Fig. 2. Simulation showing 12 agents (6 UAVs & 6 UGVs) bidding on
and accomplishing a dynamic set of tasks

Using this simulation infrastructure as a testbed, the three

methods described in the previous section were implemented,

and Monte Carlo simulations of 200 iterations were exe-

cuted to compare the mission performance for these three

approaches under different communication radii. Figure 3

shows the overall mission scores, the number of completed

tasks and the team fuel consumption as a function of the

communication radius normalized by the maximum distance

of the theater of operation. The results show that for all three

methods the mission score increases as the communication

radius increases, since agent coordination improves with

communication. With a normalized communication radius

of about 0.3 and higher and with a team of 12 agents,

the network remains connected in most cases and all three

methods yield similar performance. With less agents this

communication radius threshold would be higher since, for

a given communication radius, it is more likely that the net-

work would lose connectivity with less agents. The baseline

case (No adjustment) is seen to have the lowest score and

highest fuel consumption, especially at low communication

radii. This is because without task list adjustments there will

be many assignment conflicts between different subnetworks,

resulting in unnecessary fuel usage from having multiple

agents attempt to perform the same tasks as well as a

lower number of overall completed tasks (since agents are

busy traveling to tasks that they will never accomplish).

As the connectivity decreases and the number of subnet-

works increases this problem becomes worse. With task list

adjustments the mission performance greatly improves as

seen in the results for both the central and local task list

adjustment methods. Since the task allocation is guaranteed

to be conflict-free over the entire team there is no excess

fuel usage and the total number of completed tasks is higher

since the coordination of the team is improved. The central

adjustment method has lower total fuel consumption than

the local adjustment method, however, due to the amount

of overhead required by the mission control center this

strategy does not scale well as the size of the team increases.

The local adjustment method achieves a similar number of

Cameras

Processing

Position reference system

Command

and control

Ground computers

Vehicles

Fig. 4. Boeing Vehicle Swarm Technology Laboratory [11] (top) and MIT
RAVEN Multi-Vehicle Testbed [19] (bottom)

completed tasks as the central adjustment method, and al-

though the fuel usage is slightly higher, the overhead required

to implement this local adjustment strategy is significantly

lower. The next section describes the implementation of real-

time decentralized planning within local sub-networks on

actual vehicles in an indoor flight facility.

D. Complex Mission Execution in a Real Flight Environment

Flight experiments were conducted at the Boeing Ve-

hicle Swarm Technology Laboratory (VSTL) [11] and at

MIT’s Real-time indoor Autonomous Vehicle test ENviron-

ment (RAVEN) [13,19], shown in Figure 4. These indoor

flight facilities are equipped with motion-capture systems

which yield accurate, high-bandwidth position and attitude

data for all tracked vehicles within the flight volume. The

environmental conditions of these indoor facilities can be

carefully controlled for flight testing, and can range from

ideal to wind-induced. The controlled environment is avail-

able 24/7 since it is not dictated by weather, poor visibility,

day/night cycles, or other external factors.

Flight experiments were conducted for a heterogeneous

team of 6 agents (3 quad-rotor air vehicles and 3 ground

vehicles), with a normalized communication radius of 0.1.

CBBA with time-windows was used to perform the task

allocation within the sub-networks and the different replan-

ning architectures with task list adjustments described in

the previous sections were implemented. The flight results,

shown in Table I, exhibit similar trends to those shown

in the simulation results. Both the central and local ad-

justment methods achieved similar scores and number of

4002

Fig. 3. Mission scores, completed tasks and fuel consumption as a function of communication radius for different network handling protocols

TABLE I

FLIGHT TEST RESULTS

Adjustment Method Score Tasks Fuel

No Adjustment 897.32 22 111.35

Central Adjustment 1561.44 37 62.79

Local Adjustment 1458.46 34 71.51

tasks completed. The central adjustment method performed

slightly better than the local adjustment method, with a lower

overall fuel consumption as expected, but with a higher

computational and communication overhead. With no task

list adjustments the team performance was fairly poor with

more fuel consumed and less overall tasks completed.

IV. CONCLUSION

This paper presents a real-time decentralized task alloca-

tion algorithm for a team of heterogeneous agents operating

in a complex environment. The algorithm described is an

extension of the CBBA planning algorithm, a polynomial-

time decentralized auction protocol that provides provably

good approximate solutions for multi-agent multi-task allo-

cation problems. This paper extends the CBBA algorithm to

explicitly account for tasks with time-windows of validity

and heterogeneous agent-task compatibility constraints. A

real-time replanning architecture is presented along with

task list adjustment methods to handle dynamic network

topologies, and advantages and drawbacks for the different

methods are discussed. Implementing local task list adjust-

ments is shown to drastically improve mission performance

under low communication environments, with only marginal

increases in required overhead. Simulation and experimental

flight tests have verified that this decentralized algorithm

can successfully enable a heterogeneous team to perform

complex missions in real-time dynamic environments under

varying communication constraints.

ACKNOWLEDGMENTS

This research was supported in part by AFOSR (FA9550-

08-1-0086), MURI (FA9550-08-1-0356), and Boeing Re-

search and Technology.

REFERENCES

[1] Unmanned aircraft systems roadmap, 2005-2030. Technical report,
Office of the Secretary of Defense, August 2005.

[2] A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha. Task
assignment for a physical agent team via a dynamic forward/reverse
auction mechanism. In International Conference on Integration of

Knowledge Intensive Multi-Agent Systems, 2005.
[3] M. Alighanbari and J. P. How. Decentralized task assignment for

unmanned aerial vehicles. In Proceedings of the 44th IEEE Conference

on Decision and Control, and the European Control Conference, 2005.
[4] M. Alighanbari, Y. Kuwata, and J. How. Coordination and control

of multiple uavs with timing constraints and loitering. In American

Control Conference, 2003. Proceedings of the 2003, volume 6, pages
5311–5316 vol.6, June 2003.

[5] J. Bellingham, M. Tillerson, A. Richards, and J. How. Multi-Task
Allocation and Path Planning for Cooperating UAVs. In Proceedings

of Conference of Cooperative Control and Optimization, Nov. 2001.
[6] D. Bertsimas and R. Weismantel. Optimization over integers. Dynamic

Ideas Belmont, MA, 2005.
[7] L. Bertuccelli, H. Choi, P. Cho, and J. How. Real-time Multi-UAV

Task Assignment in Dynamic and Uncertain Environments.
[8] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized

auctions for robust task allocation. IEEE Trans. on Robotics, 25
(4):912 – 926, 2009.

[9] C. Dixon and E. Frew. Maintaining optimal communication chains in
robotic sensor networks using mobility control. Mobile Networks and

Applications, 14(3):281–291, 2009.
[10] R. Dondo and J. Cerdá. An MILP framework for dynamic vehicle

routing problems with time windows. Latin American Applied Re-

search, 36(4):255–261, 2006.
[11] E. Saad, J. Vian, G.J. Clark and S. Bieniawski. Vehicle Swarm Rapid

Prototyping Testbed. In AIAA Infotech@Aerospace, Seattle, WA, 2009.
[12] A. Ibrahim, K. Seddik, and K. Liu. Improving connectivity via

relays deployment in wireless sensor networks. In Proc. IEEE

Global Telecommunications Conference (Globecom07), pages 1159–
1163, 2007.

[13] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor
autonomous vehicle test environment. Control Systems Magazine,
28(2):51–64, April 2008.

[14] Q. Jun, J. Wang, and B. Zheng. A Hybrid Multi-objective Algorithm
for Dynamic Vehicle Routing Problems. Lecture Notes in Computer

Science, 5103:674–681, 2008.
[15] H. Nguyen, N. Pezeshkian, M. Raymond, A. Gupta, and J. Spector.

Autonomous communication relays for tactical robots. In Proceedings

of the International Conference on Advanced Robotics (ICAR), 2003.
[16] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and

dynamic vehicle routing problem with time windows and customer
impatience. Mobile Networks and Applications, 14(3):350–364, 2009.

[17] S. Sariel and T. Balch. Real time auction based allocation of tasks
for multi-robot exploration problem in dynamic environments. In
Proceedings of the AIAA Workshop on ”Integrating Planning Into

Scheduling”, 2005.
[18] P. Toth and D. Vigo. The vehicle routing problem. Society for

Industrial Mathematics, 1987.
[19] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. Indoor Multi-

Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery.
In Proceedings of the AIAA Guidance, Navigation, and Control

Conference and Exhibit, Keystone, CO, August 2006.

4003

