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Bounds on Tracking Error using Closed-Loop
Rapidly-Exploring Random Trees

Brandon D. Luders, Sertac Karaman, Emilio Frazzoli, and Jonathan P. How

Abstract— This paper considers the real-time motion plan-
ning problem for autonomous systems subject to complex dy-
namics, constraints, and uncertainty. Rapidly-exploring random
trees (RRT) can be used to efficiently construct trees of dynam-
ically feasible trajectories; however, to ensure feasibility, it is
critical that the system actually track its predicted trajectory.
This paper shows that under certain assumptions, the recently
proposed closed-loop RRT (CL-RRT) algorithm can be used
to accurately track a trajectory with known error bounds and
robust feasibility guarantees, without the need for replanning.
Unlike open-loop approaches, bounds can be designed on the
maximum prediction error for a known uncertainty distribu-
tion. Using the property that a stabilized linear system subject
to bounded process noise has BIBO-stable error dynamics, this
paper shows how to modify the problem constraints to ensure
long-term feasibility under uncertainty. Simulation results are
provided to demonstrate the effectiveness of the closed-loop
RRT approach compared to open-loop alternatives.

I. INTRODUCTION

Rapidly-exploring random trees (RRT) have received in-
creased attention over the past decade as a sampling-based
approach to quickly identify feasible trajectories in com-
plex motion planning problems [1,2]. Even though several
approaches have been proposed to solve general motion
planning problems [3]–[5], approaches that incorporate ran-
domization or incremental sampling have demonstrated sev-
eral advantages for real-time motion planning, including:
trajectory-wise (e.g. non-enumerative) checking of possibly
complex constraints; applicability to general dynamical mod-
els; and incremental construction, facilitating use in on-line
implementations. Compared to other incremental sampling-
based methods [6]–[8], the RRT algorithm is particularly
useful for real-time motion planning of complex dynamical
systems in cluttered, high-dimensional configuration spaces.

For practical real-time implementations of RRTs, it is
critical that the predicted trajectories selected for execution
be accurately tracked by the system. Since various feasibility
conditions are checked based on the predicted trajectory,
significant deviations may result in dynamical infeasibility
and/or infeasibility due to collisions with obstacles. If devia-
tions grow large enough, it may be necessary to re-initialize
the tree to the system’s present state, resulting in the loss
of potentially useful planning computations. This problem is
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more complicated for systems that are unstable, inaccurately
modeled, or subject to external disturbances.

The closed-loop RRT algorithm (CL-RRT) has been pro-
posed to address these problems for autonomous vehi-
cles [9]–[11]. The algorithm was successfully demonstrated
as the motion planning subsystem for Team MIT’s vehicle,
Talos, at the 2007 DARPA Urban Challenge (DUC) [12].
The CL-RRT algorithm adds a path-tracking control loop in
the system’s RRT prediction model, such that RRT sampling
takes place in the reference input space rather than in
the vehicle input space. If the system executes a chosen
path using the same prediction model, any deviations are
propagated using the same closed-loop dynamics, resulting in
more accurate tracking than with open-loop prediction [13].

A common “hybrid” approach is to design the trajectory
in open-loop, and then close a loop on the actual system in
executing this path. However, without also incorporating this
loop closure in the prediction model, this paper shows that
the mismatch may still be significant. Deviations can also
be mitigated through periodic replanning, but each attempt
to do so requires solving a new instance of the planning
problem, undesirable in real-time applications with limited
computational resources.

While Ref. [11] presents the overall CL-RRT framework
and DUC results, this paper provides a more in-depth
analysis of the properties of the algorithm. In particular
it is shown that, under certain assumptions, CL-RRT can
be used to accurately track a trajectory with known error
bounds and robust feasibility guarantees, without the need for
replanning. These properties are established by considering
the evolution of the deviation between the predicted and
actual trajectory. Through appropriate choice of reference
model and input controller, bounds can be designed for
the maximum prediction error given a known uncertainty
distribution. Using the property that a stabilized linear system
subject to bounded process noise has BIBO-stable error
dynamics, this paper also shows that it is possible to modify
the problem constraints to ensure long-term robust feasibility.
Simulation results demonstrate the effectiveness of closed-
loop RRT compared to open-loop alternatives.

II. PROBLEM STATEMENT

Consider the uncertain, nonlinear, discrete-time dynamical
system

xt+1 = f (xt ,ut ,wt), (1)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input
vector, wt ∈Rnw is a disturbance vector acting on the system,
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and x0 ∈ Rnx is the known initial state at time t = 0. It is
assumed that the full state is available at all time steps.
The disturbance wt is unknown at current and future time
steps, but has a known probability distribution wt ∼ P(W ).
Each individual disturbance realization is assumed to be
independent. This disturbance may represent several possible
sources of uncertainty acting on the dynamics, such as
modeling errors or external forces. The system is subject
to state and input constraints, assumed decoupled,

xt ∈Xt , and ut ∈U . (2)

The time dependence of X allows the inclusion of both
static and dynamic state constraints.

The primary objective of the planning problem, and the
focus of this paper, is to identify a path which reaches the
goal region Xgoal ⊂ Rnx while satisfying the constraints (2)
for all time steps. The secondary objective, given that at
least one feasible path has been found, is to identify a path
which minimizes some cost function. This cost function may
include minimum-time, minimum-fuel, obstacle avoidance,
or other objectives [11].

III. RAPIDLY-EXPLORING RANDOM TREES

This section summarizes the RRT algorithm and its exten-
sion to the closed-loop RRT algorithm [11]. The fundamental
operation in the standard RRT algorithm is the incremental
growth of a tree of dynamically feasible trajectories, rooted
at the system’s current state xt . A node’s likelihood of being
selected to grow the tree is proportional to its Voronoi region
for a uniform sampling distribution. As a result, the RRT
algorithm is naturally biased toward rapid exploration of the
state space.

To grow a tree of dynamically feasible trajectories, it is
necessary for the RRT to have an accurate model of the
vehicle dynamics (1) for simulation. This model is assumed
to be a disturbance-free (e.g. w ≡ 0) form of the true
dynamics,

x̂t+k+1|t = f (x̂t+k|t , ût+k|t ,0), (3)
x̂t|t = xt , (4)

where t is the current system timestep, x̂t+k|t is the predicted
state at timestep t + k, and ût+k|t is the input applied at
timestep t +k. Because of wt in the true dynamics (1), there
may be a significant discrepancy between the actual state
xt+k and the prediction x̂t+k|t .

This paper considers the real-time RRT algorithm pro-
posed in [9] and later extended in [11,13,14], using both
open-loop and closed-loop control. The algorithm grows a
tree of feasible trajectories originating from the current state
that attempt to reach the goal region Xgoal. At the end
of each phase of tree growth, the best feasible trajectory
is selected for execution, and the process repeats. The two
primary operations of the algorithm, tree expansion and the
execution loop, are reviewed next.

Algorithm 1. Tree Expansion
Inputs: Tree T , goal region Xgoal, current timestep t

1: Take a sample xsamp from the environment
2: Identify the M nearest nodes using heuristics
3: for m≤M nearest nodes, in the sorted order do
4: Nnear ← current node, x̂t+k|t ← final state of Nnear
5: while x̂t+k|t ∈Xt+k and x̂t+k|t has not reached xsamp do
6: Select input ût+k|t ∈U
7: Simulate x̂t+k+1|t using (3)
8: Create intermediate nodes as appropriate
9: k← k+1
10: end while
11: for each feasible node N do
12: Update cost estimates for N
13: Add N to T
14: Try connecting N to Xgoal (lines 4-10)
15: if connection to Xgoal feasible do
16: Update upper-bound cost-to-go of N and ancestors
17: end if
18: end for
19: end for

A. Tree Expansion

The tree expansion algorithm, used to grow the tree, is
given in Algorithm 1. Similar to the basic RRT algorithm [1],
Algorithm 1 takes a sample (line 1), identifies nearest nodes
to connect to it (line 2), and attempts to form the connection
by generating a feasible trajectory (lines 5–10). The method
of selecting inputs to simulate trajectories (line 7) depends on
whether open-loop RRT or closed-loop RRT is being used,
and is discussed in detail in Section III-C.

A number of heuristics have been utilized to facilitate
tree growth, identify a feasible trajectory to the goal, and
identify “better” feasible paths once at least one has been
found (Section II). Samples are identified (line 1) by proba-
bilistically choosing between a variety of global and local
sampling strategies, some of which may be used to effi-
ciently generate complex maneuvers [11,14]. The nearest
node selection scheme (lines 2-3) strategically alternates
between several distance metrics for sorting the nodes,
including an exploration metric based on cost-to-go and
a path optimization metric based on estimated total path
length [9]. Each time a sample is generated, m≥ 1 attempts
are made to connect a node to this sample before being
discarded [11]. Intermediate nodes are occasionally inserted
during the trajectory generation process (line 8) to increase
the number of possible connection points and allow partial
trajectories to be added to the tree [9]. Since the primary
objective is to quickly find a feasible path to the goal, an
attempt is made to connect newly-added nodes directly to
Xgoal (line 14). Finally, a branch-and-bound cost scheme
is used (line 16) to prune portions of the tree whose lower-
bound cost-to-go is larger than the upper-bound cost-to-go of
an ancestor, since those portions have no chance of achieving
a lower-cost path [9].

B. Execution Loop

For environments which are dynamic and uncertain, the
RRT tree must keep growing during the execution cycle
to account for changes in the situational awareness [9].
Furthermore, given the extensive computations involved to
construct the tree, as much of the tree should be retained as
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Algorithm 2. Real-time RRT
Inputs: Initial state xI , goal region Xgoal

1: t← 0, xt ← xI
2: Initialize tree T with node at xI
3: while xt 6∈Xgoal do
4: Update current state xt and constraints Xt
5: Propagate the state xt by the computation time → x̂t+∆t|t

using (3)
6: while time remaining for this timestep do
7: Expand the tree by adding nodes (Algorithm 1)
8: end while
9: Use cost estimates to identify best path {Nroot, . . . ,Ntarget}
10: if no paths exist then
11: Apply safety action and goto line 19
12: end if
13: Repropagate the best path from x̂t+∆t|t using (3)
14: if repropagated best path is feasible then
15: Apply best path
16: else
17: Remove infeasible portion of best path and goto line 9
18: end if
19: t← t +∆t
20: end while

possible, especially in real-time applications [15]. Algorithm
2 shows how the algorithm executes some portion of the tree
while continuing to grow it.

The planner updates the current best path to be executed by
the system every ∆t seconds. During each cycle, the current
state is updated (line 4) and propagated to the end of the
planning cycle (line 5), yielding x̂t+∆t . The tree root is set to
the node whose trajectory the propagated state is following;
this node’s trajectory is committed and must be followed.
The remaining time in the cycle is used to expand the tree
(lines 6–8). Following this tree growth, the cost estimates
are used [9] to select the best path in the tree (line 9), and
this path is repropgated using the model dynamics from the
predicted state x̂t+∆t|t (line 13). This “lazy check” approach
eliminates the need to constantly re-check the entire tree
for feasibility [13]. If this path is still feasible, it is chosen
as the current path to execute (lines 14–15). Otherwise, the
infeasible portion of the path is removed and the process is
repeated (lines 16-17) until either a feasible path is found or
the entire tree is pruned. If the latter case occurs, the system
has no path to execute, and some “safety” motion primitive
is applied to attempt to keep the vehicle in a safe state [13].

C. Open-Loop RRT vs. Closed-Loop RRT

The RRT algorithm uses the system model in two different
ways: the prediction of the system motion, and the real-
time execution of a motion plan. Thus for the purposes of
trajectory following, two key considerations are (i) how the
model is controlled and (ii) how the system executes a given
path. The open-loop and closed-loop formulations are shown
graphically in Figures 1 and 2, respectively.

Inputs are selected for application to the system model
in line 6 of Algorithm 1, and may be selected either in
open-loop or closed-loop. In open-loop, the input u may be
selected through discretization of U , one-step optimization
of the trajectory over U , or a sampling-based approximation
of this optimization [1]. In closed-loop, some reference state
r ∈ Rnr is propagated based on the sample xsamp; the input

Model / System

Disturbances

u x

Fig. 1. Open-loop prediction using RRT; the predicted trajectory input
sequence u is applied directly to the system.

Controller Model/System

Disturbances

ur e

x

−

Fig. 2. Closed-loop prediction using RRT; reference commands r are used
to generate inputs u for the system model.

is then selected through the controller

u = κ(r,x) (5)

where u is the input to be applied to the node with state x
and κ is the (nonlinear) control law. Through the reference
r, the trajectories can be designed to meet certain qualitative
considerations, such as a desired speed.

The CL-RRT algorithm is distinct from existing RRT
approaches in that it samples in the space of the reference
inputs r, with the reference control loop (5) around the sys-
tem. Two separate trees are maintained: one for the reference
inputs, and one for the simulated trajectories (Figure 3). The
closed-loop simulation is not expected to accurately track
the reference trajectory; it is instead important for the actual
trajectory to match the predicted system trajectory.

Once a path has been selected via line 15 of Algorithm 2,
the path may be executed either in open-loop or closed-loop.
In open-loop, the inputs used to generate the path via line
6 of Algorithm 1 are applied directly to the system (1) in
the same sequence. In closed-loop, some reference law (5)
is applied to follow the path using closed-loop dynamics.
Note that this does not require the model to be closed-loop,
though the same reference law should be used in both cases.

IV. LINEAR SYSTEM - ERROR PROPAGATION

This section develops a model of the error dynamics
for a system controlled using RRT to consider how the
algorithm handles prediction mismatch whether in open-loop
or closed-loop. The error dynamics capture the evolution of
this prediction mismatch, or deviation between the predicted
trajectory of (3) and the actual trajectory of (1). Under the
assumption of linear time-invariance, we show that the model
dynamics are also applicable to the error dynamics, whether
open-loop or closed-loop; thus the controller can be designed
to achieve known bounds on the prediction error over time.

Assume an LTI system with an additive disturbance; the
system (1) and corresponding model (3) take the form

xt+1 = Axt +But +Gwt , (6)
x̂t+1 = Ax̂t +Bût . (7)
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Fig. 3. Trajectories are propagated using the closed-loop vehicle model
and checked for feasibility. The controller inputs are straight lines ending
at the sample [11].

If a closed-loop control law (5) is applied to the system, it
is assumed to take the linear form

ut = K(xt − rt), (8)

where rt is the reference at timestep t; the model uses

ût = K(x̂t − r̂t), (9)

where r̂t is the reference at timestep t. Note that if both the
system and model are closed-loop, then r̂t = rt ∀t, since it is
known a priori. Likewise, if both the system and model are
open-loop, then ût = ut ∀t.

We can use this simplified model to gain some intuition
on how mismatch between the system and model propagates
over time. Let et = xt− x̂t correspond to the error between the
actual system state and predicted state at timestep t; we are
interested in how how et ∈ Rnx evolves over time. Assume
that the error is initially zero, i.e. e0 = 0.

A. Open-Loop Model, Open-Loop System

Suppose that both the system (6) and model (7) are applied
in open-loop; the corresponding equations are then

xt+1 = Axt +But +wt , (10)
x̂t+1 = Ax̂t +But . (11)

At timestep t, the actual state xt and predicted state x̂t can
be shown to have the explicit representation

xt = Atx0 +
t−1

∑
j=0

At− j−1Bu j +
t−1

∑
j=0

At− j−1w j, (12)

x̂t = Atx0 +
t−1

∑
j=0

At− j−1Bu j. (13)

The resulting prediction error is

et =
t−1

∑
j=0

At− j−1w j ⇒ et+1 = Aet +wt . (14)

Note that the error dynamics are stable if and only if the
open-loop system is stable. There is thus no means to
stabilize the error dynamics, meaning the error may grow
without bound for an unstable system.

B. Closed-Loop Model, Closed-Loop System

The equations for closed-loop RRT, derived by inserting
(8) into (6) and (9) into (7), are

xt+1 = (A+BK)xt −BKrt +wt , (15)
x̂t+1 = (A+BK)x̂t −BKrt . (16)

At timestep t, the actual state xt and predicted state x̂t can
be shown to have the explicit representation

xt = (A+BK)tx0−
t−1

∑
j=0

(A+BK)t− j−1BKr j (17)

+
t−1

∑
j=0

(A+BK)t− j−1w j,

x̂t = (A+BK)tx0−
t−1

∑
j=0

(A+BK)t− j−1BKr j. (18)

The resulting prediction error is

et =
t−1

∑
j=0

(A+BK)t− j−1w j ⇒ et+1 = (A+BK)et +wt . (19)

Thus, if K is chosen to stabilize the open-loop matrix A,
the error dynamics will be stable, as well. The controller
provides the user with parameters to explicitly model the
error propagation bounds over time. Note that the error
dynamics are independent of the reference, as long as the
same reference is applied to both system and model.

C. Closed-Loop System, Open-Loop Model

Suppose the model is open-loop, but the system is actu-
ally executed in closed-loop (see Section III-C); then the
equations for the system and model are (10) and (16),
respectively. At timestep t, the actual state xt and predicted
state x̂t can be shown to have the explicit representations (12)
and (17). It is unreasonable to expect any kind of meaningful
trajectory tracking in this case, since the system is using a
controller in execution for which the RRT algorithm has zero
knowledge. Section VII shows that by using a closed-loop
model, not only is tracking performance improved, but the
predicted trajectories tend to be more realistic since they are
operating on the “stabilized” sample space.

V. LINEAR SYSTEM - ROBUSTNESS

This section establishes several theoretical properties for
the CL-RRT algorithm on linear systems, with the additional
assumption that the disturbance is bounded. In particular,
using the property that a stable linear system subject to
bounded process noise has error dynamics which are BIBO
(bounded-input / bounded-output) stable, it is shown that
appropriate tightening of the constraints Xt and U can be
performed to guarantee robust feasibility. This is achieved
by proving that conventional approaches in robust model
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predictive control (RMPC) [16] perform error propagation
in the same manner as closed-loop RRT.

In Section II it was assumed that wt has a known probabil-
ity distribution wt ∼P(W ). Here, it is further assumed that wt
is constrained within the bounded set W , which contains the
origin. Additionally, assume that (A,B) in (6) is stabilizable
and Xt ≡X is time-invariant.

Suppose that CL-RRT (Algorithm 2) is applied to the
system (6) using reference law (8) and corresponding models
(7),(9), such that A+BK is stable. It is straightforward to
show that the error dynamics are BIBO stable, for exam-
ple using the minimum robust positively invariant (mRPI)
set [17]. This provides a finite bound on the maximum
prediction mismatch, such that the constraints X and U can
be modified within the RRT model to guarantee feasibility
for the actual executed trajectory. As one example, we utilize
the tube MPC technique for robustness [18]. Other RMPC
approaches can also be used, e.g. [19].

The Tube MPC optimization seeks to identify a tube of
feasible trajectories which nominally satisfies the original
constraints [18]. The tube consists of a disturbance-free tra-
jectory centerline and a tube “cross-section” at each timestep,
comprised of the set Z centered on the centerline, both of
which satisfy the nominal constraints. As the actual trajectory
is executed, a state feedback policy using linear feedback
K ensures that the system remains within this tube at all
time steps. Since the tube cross-section Z is the same at
every timestep, identifying a tube which satisfies the original
constraints is equivalent to identifying a trajectory which
satisfies the constraints tightened by Z,

X − = X 	Z, and U − = U 	KZ, (20)

where 	 denotes Pontryagin set subtraction and Z satisfies
the robust invariance constraint

(A+BK)x+w ∈ Z ∀ x ∈ Z, ∀ w ∈W . (21)

Theorem 1. Given the above assumptions, suppose that the
state constraints X and input constraints U are tightened in
lines 5-6 of Algorithm 1 using (20). Then any path followed
using CL-RRT (Algorithm 2) is guaranteed to satisfy these
constraints.

Proof: From Ref. [18], the control law takes the form

ut = ût +K(xt − x̂t); (22)

thus the actual system and model are, respectively,

xt+1 = Axt +Bût +BK(xt − x̂t)+wt . (23)
x̂t+1 = Ax̂t +Bût . (24)

At timestep t, the actual state xt and predicted state x̂t can
be shown to have the explicit representation

xt = Atx0 +
t−1

∑
j=0

At− j−1Bû j +
t−1

∑
j=0

(A+BK)t− j−1w j,(25)

x̂t = Atx0 +
t−1

∑
j=0

At− j−1Bû j. (26)

The error dynamics then take the form et+1 = (A+BK)et +
wt , which is identical to (19) for closed-loop RRT. By
applying (20), the closed-loop RRT path generation process
is identical to the tube MPC path generation process, and
thus yields paths which are robustly feasible [18].

VI. NONLINEAR SYSTEMS

For nonlinear systems in the presence of obstacles, most
analytical techniques fail and combinatorial motion planning
methods apply to only very simple cases, necessitating the
use of sampling-based motion planning [5]. As opposed to
other methods such as probabilistic roadmaps [7]), RRTs do
not assume that an exact local planner exists. This allows
RRTs to handle dynamical systems with nonlinearities such
as nonholonomic constraints [5].

Even though the analysis in this paper focuses on linear
systems, the CL-RRT algorithm is applicable to systems with
various nonlinearities. Given a nonlinear system controlled
with a robust nonlinear controller (see for instance Ref. [20]),
it is expected that the robustness to disturbance in the CL-
RRT planning framework will be better than planning using
open-loop planners. In particular, if the system is linearized
about a given trajectory and the controller prevents large
deviations from this trajectory, similar results to the linear
case might be expected [21]. We are currently exploring
whether theoretical guarantees can be established for certain
classes of nonlinear systems and/or controllers.

Section VII-B considers a nonlinear simulation scenario.
In Refs. [11,22], the CL-RRT algorithm is used for mobile
robots with differential constraints and nonlinear controllers.
Experimental results have yielded prediction errors on the
order of tens of centimeters, over complex trajectories up
to 100 meters in length, for both a full-size robotic fork
truck [22] and a full-size robotic Land Rover LR3 [11].

VII. EXAMPLES

The following simulation examples demonstrate how CL-
RRT achieves superior trajectory tracking, critical for safe
operations, compared to open-loop alternatives. In the linear
example, both the model and system must be in closed-
loop to achieve accurate tracking and likely feasibility. The
nonlinear example provides empirical evidence closed-loop
RRT can achieve accurate tracking for nonlinear systems,
even in cluttered environments with significant uncertainty.

A. Linear Example
Consider the operation of a double integrator (quadrotor)

in a relatively constrained, two-dimensional environment
(Figure 4). The system dynamics are

xt+1
yt+1
vx

t+1
vy

t+1

 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1




xt
yt
vx

t
vy

t



+


dt2

2 0
0 dt2

2
1 0
0 1

([ ux
t

uy
t

]
+

[
wx

t
wy

t

])
,
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(a) Open-loop model, open-loop sys-
tem (OL/OL)

(b) Open-loop model, closed-loop
system (OL/CL)

(c) Closed-loop model, open-loop
system (CL/OL)

(d) Closed-loop model, closed-loop
system (CL/CL)

Fig. 4. Typical trajectory snapshot for each case in the linear example. The vehicle (circled blue object) starts at bottom-center and attempts to reach the
goal waypoint (purple, top) while avoiding walls and obstacles (black). The blue path denotes the vehicle’s actual trajectory, while the red path denotes
the vehicle’s predicted trajectory. The current RRT tree is marked in green; the current path chosen in the tree is emphasized with black edges.

where dt = 0.02s, subject to avoidance constraints X ,
input constraints U = {(ux,uy) | |ux| ≤ 1, |uy| ≤ 1}, and
disturbance set W = {(wx,wy) | |wx| ≤ 0.3, |wy| ≤ 0.3}. The
reference rt is moved from the parent node waypoint to the
sample waypoint xsamp at 0.3 m/s, while the controller is

ux
t = −0.3(xt − rx

t )−0.6(vx
t − rvx

t ),

uy
t = −0.3(yt − ry

t )−0.6(vy
t − rvy

t ),

where (rx
t ,r

y
t ) is the reference position and (rvx

t ,rvy
t ) is the

reference velocity (0.3 m/s in the direction of the waypoint).
The vehicle’s objective is to move across the room in
minimum time while avoiding all obstacles. A 10cm buffer
is also placed around the vehicle for safety reasons. Note
that the closed-loop controller is relatively weak compared
to the maximum disturbance magnitude; thus E∞ is too large
for Theorem 1 to be applied here.

Simulations were performed using an implementation of
Algorithm 2 in Java, run on an Intel 2.53 GHz quad-core
laptop with 3.48GB of RAM. In Algorithms 1–2, the tree
capacity was limited to 1000 nodes, M = 5, and ∆t = 0.5s.
Twenty simulations of this planning problem were performed
for each of four cases: whether the RRT model is open-loop
or closed-loop, and whether the system’s path is executed in
open-loop or closed-loop (Section III-C). When an open-loop
model was used, inputs were selected (line 6 of Algorithm 1)
at each timestep by applying 20 random inputs and choosing
the one which brings the system closest (in Euclidean norm)
to the sample. Table I shows the feasibility, prediction error,
and complexity results for these cases; all values are averaged
over 20 trials. A representative trajectory and tree for each
case is shown in Figure 4.

Table I and Figure 4 demonstrate that CL-RRT does a su-
perior job of minimizing prediction error compared to open-
loop alternatives. The CL/CL case achieves both average and
maximum prediction errors an order of magnitude lower than
those cases with open-loop execution (OL/OL and OL/CL).

TABLE I
SIMULATION RESULTS

Model? System? % Avg Max Time per
Feas. Error, m Error, m Node, ms

Open Open 10 0.341 0.997 7.04
Open Closed 45 N/A? N/A? 9.66

Closed Open 0 0.336 0.945 5.22
Closed Closed 100 0.025 0.057 6.77

?Cannot be computed, as the (faster) predicted trajectory enters
non-committed portions of the tree which are not executed.

This is the expected result, given that A is unstable and
A+BK is stable, since the error dynamics have the same
stability properties as the system model (Section IV). All
20 trials for CL/CL feasibly reach the goal, while all but 2
trials collide with an obstacle for the open-loop execution
cases. Comparing CL/CL (Figure 4(d)) with OL/CL (Figure
4(b)), we see that both trajectories are smooth, but the latter
path does not match well the jagged path generated by the
open-loop RRT model, since the model is not aware of the
controller used for execution. Because of this mismatch, only
about half of the OL/CL paths feasibly reach the goal.

B. Nonlinear Example

Now consider the operation of a skid-steered vehicle in
a highly cluttered two-dimensional environment (Figure 5).
The nonlinear system dynamics are

xt+1 = xt +dt(1/2)(vL
t + vR

t )cosθt ,

yt+1 = yt +dt(1/2)(vL
t + vR

t )sinθt ,

θt+1 = θt +dt(vR
t − vL

t ),

vL
t = sat

(
v̄t +0.5∆vt +wL

t ,0.5
)
,

vR
t = sat

(
v̄t −0.5∆vt +wR

t ,0.5
)
,

where (x,y) is the vehicle position, θ is the heading, vL and
vR are the left and right wheel speeds, respectively, sat is the
saturation function and (wL,wR) is a bounded disturbance.
A variation of the pure pursuit controller [13] is applied,
assuming forward direction only. Note that the goal at top
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(a) Uncertain wheel speeds (b) Uncertain+biased wheel speeds

Fig. 5. Typical trajectory for each case in the nonlinear example; in both
cases shown the vehicle successfully reaches the goal at top-center.

is now in a corridor of width only twice the diameter of the
vehicle, requiring precise control to reach.

Figure 5 shows a representative trajectory and tree for each
of two bounded disturbance sets, both using CL-RRT. In
Figure 5(a), W = {(wL,wR) | wL ∈ [−0.1v̄,+0.1v̄], wR ∈
[−0.1v̄,+0.1v̄]}; this might represent uneven terrain or
uncertain wheel actuation. In open-loop, this uncertainty
amounts to a random walk on the wheel speeds. However,
over 20 simulations in closed-loop, a feasible path to the goal
is still identified and executed in 14 trials (70%). In Figure
5(b), W = {(wL,wR) | wL ∈ [−0.2v̄,0], wR ∈ [0,+0.2v̄]},
representing a significant bias in the steering map in addition
to previous uncertainty. In open-loop, the resulting heading
drift would almost certainly result in infeasibility. By closing
the loop, CL-RRT reduces this very poor mapping into a
bounded offset between the predicted and actual paths, such
that a feasible path is still found in 50% of trials.

VIII. CONCLUSIONS

This paper has shown that closed-loop RRT can be used to
robustly track predicted trajectories in the presence of uncer-
tainty. With accurate trajectory tracking, the likelihood that
the system remains feasible improves significantly compared
to open-loop alternatives, as demonstrated by the simulation
results. Through appropriate choice of reference and con-
troller, bounds can be designed on the maximum prediction
error. For the case of a linear system subject to bounded
disturbances, results show that by tightening the constraints
for the error bounds, this likelihood of feasibility can be
converted into a guarantee of robust feasibility. Future work
will consider the effects of correcting for known prediction
errors on system stability, as well as space-parametrized
trajectory tracking.
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tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, pp. 219–224, 2005.

[19] Y. Kuwata, A. Richards, and J. How, “Robust receding horizon control
using generalized constraint tightening,” in Proceedings of the IEEE
American Control Conference, New York City, NY, July 2007, pp.
4482–4487.

[20] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design:
State-space and Lyapunov Techniques. Boston, MA: Birkhäuser,
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