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Abstract 

From its inception in 2004, the DETER testbed 

facility has provided effective, dedicated experimental 

resources and expertise to a broad range of academic, 

industrial and government researchers. Now, building 

on knowledge gained, the DETER developers and 

community are moving beyond the classic “testbed” 

model and towards the creation and deployment of 

fundamentally transformational cybersecurity research 

methodologies. This paper discusses underlying 

rationale, together with initial design and 

implementation, of key technical concepts that drive 

these transformations. 

1. Introduction 

The DETER cybersecurity testbed [3] is a dedicated 

network testbed facility customized for cybersecurity 

research. Initally deployed in 2004, DETER’s first 

accomplishment was to provide effective, 

professionally managed research infrastructure and a 

shared user community for leading academic and 

industrial cybersecurity researchers. With this first 

objective largely met, and building on knowledge 

gained, the DETER team now aims to identify, 

understand, and enable new, fundamentally 

transformative, rigorous and scientific methodologies 

for cybersecurity research and development. This paper 

describes key technical contributions of our current and 

ongoing work in support of these goals. 

Effective cybersecurity experiments are challenging to 

today’s network testbeds for a number of reasons. 

Among these are  

• Scale. Experiments that involve complicated 

composite behaviors, rare event detection or 

emergent effects may need to be quite large and 

complex to be accurate or indicative.  

• Multi-party nature. Most interesting cybersecurity 

experiments involve more than one logical or 

physical party, due to the adversarial nature of the 

problem as well as the distributed, decentralized 

nature of the networked systems environment.  

• Risk. Cybersecurity experiments by their 

fundamental nature may involve significant risk if 

not properly contained and controlled. At the same 

time, these experiments may well require some 

degree of interaction with the larger world to be 

useful.  

Meeting these challenges requires both 

transformational advance in capability and 

transformational advance in usability of the underlying 

research infrastructure. A truly large experiment cannot 

be carried out unless the researcher has access to a 

truly large facility, but is also unlikely to be successful 

if the researcher has to create a twenty thousand node 

experiment description by hand. A potentially risky 

experiment is likely to take place only if the 

experimental platform can control the risk and all 

concerned can be sure it is doing so. A multi-party 

experiment will best be supported if the experiment 

control framework explicitly accommodates multiple 

parties and their concerns.  

This paper describes a suite of significant advances to 

today’s state of the testbed art, which taken together 

move the concept of “testbed” from simple hardware 

infrastructure to powerful and effective user-oriented 

research support facility. Central to the paper is our 

work in three synergistic areas:  

First, our unique model for risky experiment 

management enables researchers to carry out 
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experiments that interact with their larger environment 

while retaining both control and safety. The key benefit 

of this model is that both experimenter and testbed 

operator can proceed with assurance in carrying out a 

wide and interesting range of heretofore unsupportable 

experiments.  

Second, our model and structure for experiment health 

monitoring ensures that the underlying conditions and 

invariants required for an experiment to be valid do in 

fact hold. The key benefit of this structure is that 

experiments receive active support from the facility to 

ensure that they are proceeding as the designer 

intended.  

Third, our model and mechanism for dynamic 

federation allows different testbed facilities to come 

together on demand to support large-scale, complex, 

heterogeneous, multi-party experiments. The key 

benefit of this work is that experimenters ranging from 

lone individuals to large institutions can bring together 

rich coalitions of otherwise unavailable resources and 

unconnected communities, all within our larger context 

of complex, yet safely and reliably executed, risky 

experiments.  

When considered together, these capabilities allow the 

cybersecurity researcher to carry out experiments that 

are, simultaneously, more useful, more reliable, and 

more complex, scalable, and realistic than anything 

possible in today’s testbed environment.  

To integrate these capabilities into a coherent and 

easily accessible facility, we develop new abstractions 

and functions for our experiment control toolkit, 

known as SEER [1]. With these new capabilities in 

place SEER will allow users of widely varying 

sophistication to easily and effectively make use of the 

next-generation experimental facilities we describe, for 

purposes ranging from structured undergraduate 

education to research experiments with order-of-

magnitude increases in complexity over those possible 

today.  

Our work is embodied in extensions to the DETER 

testbed, a large Emulab[2]-derived facility sited at ISI 

and UC Berkeley and targeted to support cyber-

security research. DETER’s existing, successful 

capabilities and community, together with our long 

involvement in its design, operation, and ongoing 

development, provide crucial starting points and create 

unique insights for the work described here.  

2. Risky Experiment Management  

Experimental cybersecurity research is often inherently 

risky. An experiment may involve releasing live 

malware code, operating a real botnet, or creating other 

highly disruptive network conditions. Realistic 

replication of such attacks is necessary to thoroughly 

test detection and defense mechanisms.  

The common response to this risk is to implement 

strict isolation capabilities within a testbed, in an 

attempt to ensure that no actual damage will be caused 

by an experiment. Depending on the testbed, 

containment mechanisms may range from complete 

disconnection from the outside world to allowing 

narrowly controlled console access, and include disk 

scrubbing before and after each experiment. 

But such containment itself is highly limiting. A fully 

contained experiment is hard to observe, hard to 

establish, and hard to control, because it must be 

completely isolated from its environment. Similarly, 

full containment is hard to create with any assurance. 

Sneak paths, equipment failures, and design mistakes 

can render containment ineffective in myriad 

unexpected ways. 

Most importantly, full containment is not very useful. 

An interesting and powerful class of experiments is 

those that can interact with the larger environment (i.e., 

touch the Internet), but only in carefully controlled and 

well understood ways. Thus, our work aims to move 

from risky experiment containment to risky experiment 

management as a strategy. 

2.1 Risky Experiment Management: Concepts 

Our approach to risky experiment management is 

based on a very simple line of reasoning:  

• If the behavior of an experiment is completely 

unconstrained, the behavior of the host testbed 

must be completely constraining, because it can 

assume nothing about the experiment. 

• But, if the behavior of the experiment is 

constrained in some particular and well-chosen 

way or ways, the behavior of the testbed can be 

less constraining, because the combination of 

experiment and testbed constraints together can 

provide the required overall assurance of safe 

behavior. 

We call constraints on experiment behavior “T1 

constraints”, while the corresponding constraints on 

testbed behavior are called “T2 constraints”. 

The composition of T1 and T2 constraints determines 

the overall safety goal for the testbed. This testbed 

safety goal is a fixed property, defined by the 

operational and administrative parameters of a 

particular testbed. While the safety goals of each 
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testbed will have a common flavor of “no harm to 

other users, the testbed or the Internet,” each testbed 

may define notions of harm differently. Unacceptable 

behaviors may depend on the testbed’s mission and the 

policies at the hosting institutions. Testbed goals must 

thus be explicitly defined in detail. 

Three points should be noted. First, the separate 

expression of T1 and T2 constraints in this model 

represents a separation of concerns. This separation 

allows experiment and testbed constraints to be framed 

and expressed independently and in terms directly 

meaningful to their audiences, experimenters and 

testbed designers, respectively. Explicit experiment 

(T1) constraints will allow an experimenter to reason 

about which constraints are acceptable without 

affecting the validity of the experiment. Similarly, a 

testbed designer can reason about how to offer 

different T2 constraint environments as well-known, 

robust, and documented services, rather than having to 

separately determine an operating procedure for each 

new experiment.  

Second, we note that the semantics of T1 and T2 

constraint composition to obtain a desired overall 

safety goal is interesting and rich. As an oversimplified 

thought example, one might imagine a worm that can 

only propagate by first contacting a “propagation 

service” (T1 constraint), composed with a testbed 

firewall  (T2 constraint) that allows access to this 

service only from within the testbed. The result is to 

limit the worm’s propagation to the defined bounds of 

the experiment.  

Finally, T1 constraints might be enforced by (1) 

explicit modification of malware to constrain its 

behavior,  (2) implicit constraints using encapsulation, 

or (3) simply asserting a constrained behavior that the 

network can verify. 

Constraints are associated with each experiment within 

a project and are continuously active. Because a given 

experimental topology can be used for multiple 

different “runs” [5], ideally constraints would be 

generated and applied for each run. This however 

would increase the burden for users whose runs exhibit 

the same risky behavior, and it is also challenging 

because we lack means to detect different “runs” from 

within the testbed. Instead, we can associate constraints 

with experiments, but will provide mechanisms for 

users to modify these constraints while the experiment 

is active.  

The T1/T2 concept is only useful if we can ensure that 

the selected T1 and T2 constraints are met. We must 

require that all experiment constraints either be shown 

to be “correct by construction” or be auditable by the 

testbed. Our approach to auditing is to use the 

Experiment Health Management infrastructure 

described in Section 3 to implement monitoring tools 

that verify each constraint throughout the experiment’s 

lifetime. When experiment constraints are violated, the 

Experiment Health Management infrastructure will 

take corrective actions that may range from emailing 

the user and testbed operators to terminating the 

experiment.  

2.2 Framework  

Our current objectives are to 1) develop a set of T1/T2 

constraint sets targeting both practical usefulness to the 

community and advancement of our understanding of 

the T1/T2 risk management model; 2) develop and 

deploy necessary mechanisms and tools to implement 

this risky experiment management model in the 

DETER facility; and 3) evaluate the success of our 

work through interactions with current DETER users 

and others in the research and education community.  

To accomplish these objectives we are developing a 

risky experiment management framework. Our 

framework addresses the following top-level concerns: 

the experimenter’s research goals, testbed safety goals, 

and experimenter privacy goals. We identify useful 

points in each of these spaces, and develop candidate 

sets of experiment (T1) and testbed (T2) constraints 

that together provide these useful behaviors. Presently, 

we have deployed implementations of a small number 

of selected constraint sets to our early-adopter users. 

Current testbeds assume one liberal set of user privacy 

goals, but this is not realistic since, for example, 

commercial users may have very different privacy 

expectations than academic users. Some monitoring of 

user actions and traffic by the testbed will be necessary 

for several purposes: (1) to support health management 

described in Section 3, (2) to ensure that user 

constraints are implemented correctly, and (3) to 

reduce testbed liability in case of malicious incidents. 

To successfully support risky but controlled 

experiments, our framework must capture user needs. 

We have developed an initial experiment 

categorization taxonomy based on the type of risky 

behaviors necessary to an experiment, such as self-

propagating malware, high-volume traffic, etc. Our 

initial taxonomy defines a small list of categories, 

based on current experimental uses of DETER. We 

expect this list to grow as work progresses, based on 

user input.  

Users are presently required to specify experiment 

categorization, privacy goals and appropriate 

experiment constraints at the time of experiment 
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creation. Testbed constraints are generated based both 

on the specification input by the user, and the testbed 

safety requirements defined once by the testbed 

operators. These constraints are put into action by the 

testbed and our health management infrastructure 

ensures that they are continuously enforced.  

2.3 Implementation  

Our ultimate goal is to develop a fine-grain model for 

T1 and T2 constraints and a formal structure to reason 

about their composition. In current work we adopt a 

simpler approach, as a first practical step towards 

deploying a useful risky experiment management 

capability and as an assessment of the value of the 

concept. We are developing a small selection of 

matching T1/T2 constraint sets, where a) the T1 

constraints are chosen to be appropriate and useful for 

a particular class of experiment; b) the T2 constraints 

are chosen to be implementable and verifiable in a 

particular testbed environment, and c) the composition 

of the chosen T1 and T2 constraints produces an 

acceptable risk management result. We develop a 

mechanism to allow researcher and testbed operator to 

agree on particular sets, implement and enforce both 

experiment and testbed constraints, and thus obtain the 

level of risk management required for the particular 

testbed environment.  

We are developing a domain-specific language 

language called REALM for specification and 

manipulation of T1/T2 constraints as well as 

operational safety objectives. Although it will be 

possible for users to write REALM specifications 

directly, our intent is that REALM be the output and 

interchange language that a variety of tools use to 

capture and manipulate constraint information. 

REALM will be integrated with the SEER toolkit 

described in Section 5, including guided dialogs for 

users. The current version is also integrated with the 

DETER facility’s “Create an Experiment” Web page. 

User input is recorded through these interfaces and 

translated into REALM specifications associated with 

the experiment.  

We regard each experiment as potentially risky until 

proven otherwise. We initially address three types of 

potentially risky behavior: (1) running malware, (2) 

creating disruptive behavior, and (3) requiring 

connectivity with the outside Internet. The first two 

behaviors are intentionally risky, whereas the third 

behavior may be risky by accident, if experimental 

traffic with the outside is misconfigured and overloads 

resources, provokes an external attack on the testbed or 

creates liability.  

To meet the needs of DETER’s current research 

community, we initially address the following risks 

from experiments: (1) malware traffic may infect 

testbed hardware infrastructure needed for correct 

operation, (2) experimental traffic of any sort may 

overload control plane and shared hardware, (3) 

disruptive actions may affect control plane and shared 

hardware (4) in experiments with the outside 

connectivity, experimental traffic sent to remote 

machines may infect, overload or disrupt these 

machines and remote networks, (5) in experiments 

with the outside connectivity, experimental traffic may 

provoke retribution toward the testbed (e.g., from the 

Storm Network [44]) or create liability problems to the 

testbed, (6) malware may stay resident on machines 

after they are reclaimed by the testbed and may affect 

future experiments by other users. Our framework is 

evolvable so new threats will be incorporated as 

research objectives dictate; we expect this list of risks 

to grow as we proceed with our work.  

The above risks are contained via experiment and 

testbed constraints. Our initial list of experiment (T1) 

constraints includes: (1) users limit scanning behavior 

of self-propagating malware, (2) users limit targets of 

disruptive actions, such as denial-of-service, to 

addresses within experimental network, (3) users limit 

their malware choice to well-known malware 

contained in the DETER-supplied library, (4) users 

limit experimental connectivity with the outside world 

to a set of machines under their control, and to specific 

protocols, (5) users limit the rate of traffic in their 

experiments, (6) users limit experimental traffic to the 

experimental network, (7) users implement signatures 

or self-terminating behavior in malware they plan to 

use. Our current prototype of risky experiment 

management supports definition of constraints 1-6. 

Our initial list of testbed (T2) constraints includes: (1) 

isolation of experiments on the control plane using a 

separate virtual LAN for each experiment, (2) 

experimental traffic filtering and rate-limiting on the 

control plane using hardware-specific filters at 

switches to prevent disruption and overload of shared 

infrastructure, (3) allowing outside connectivity only 

via specialized nodes (“tunnel nodes”) that connect the 

experimental network to the Internet, (4) controlling 

experimental traffic contents and rate with the outside 

Internet via firewall rules and the Bro intrusion 

detection system [50] for deep packet inspection, both 

installed on all paths to the Internet, (5) recording 

traffic on tunnel nodes, recording of login activity on 

experimental nodes, and association of traffic, logged 

users, and experiment names for potential liability 

reasons. Constraints 1 and 3 are implemented in our 
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current prototype system, with others to be added in 

the near future. 

3. Experiment Health Management  

Experiment health management addresses two broad 

and increasingly important needs within experimental 

cybersecurity research. First is the need to support 

order of magnitude greater complexity in the creation 

of realistic cybersecurity experiments. Second is the 

need to bring greater rigor and scientific discipline to 

the experimental research paradigm. We address these 

needs through a research facility subsystem based on 

two observations: 

• The validity, accuracy, and usefulness of an 

experiment depend critically on some set of 

invariants or expectations identified by the 

experiment’s creator being met.  

• Any given experiment will have a number of other 

behaviors that are not invariants, and cannot be 

predicted by researchers, since experiments are 

done to study unknown effects. 

The rigor and scientific validity of an experiment is 

greatly increased when the expectations and invariants 

on which its validity depends are clearly understood by 

the researcher and by others who wish to utilize or 

build on the results of the experiment.  A system that 

makes these expectations explicit and ensures that they 

are met during an experiment will contribute greatly to 

the rigor of future experimental research. 

This problem is complicated when experimental 

complexity is increased, because the maintenance of 

experimental invariants and expectations becomes 

exponentially more difficult. Managing the complexity 

of experiments that involve more than a handful of 

elements demands system support to assist researchers 

in understanding, documenting, and maintaining the 

health of their experiments – the validity of the 

experiment’s assumptions, expectations, and 

invariants.  

The challenge of experiment health monitoring and 

management is to ensure that the underlying conditions 

and invariants required for an experiment to be valid 

are being met by the facility, and to aid the researcher 

in detecting and modifying errors in experiment 

design. Here “health” refers both to the behavior 

desired by a researcher of his experiment and that 

desired of the underlying testbed. Reasons for reduced 

health include, but are not limited to, mistakes by the 

experimenter, failures or faults of testbed resources, 

misunderstandings the researcher has about the testbed, 

unintended interactions between simultaneous 

experiments, a security constraint being violated, and 

so forth. The initial DETER system, as with many 

similar testbed environments [2][7][12], provided little 

or no support for either determining whether an 

experiment is behaving as expected (its current health) 

or for diagnosing failures and improving the situation 

(improving its health). Our experiment health 

management system addresses this missing function. 

The experiment health problem is characterized by 

three key properties. First, in contrast with the 

“network management” problem of maintaining 

functional behavior in an operating network, our 

domain is the very different problem of supporting 

security-related experimentation on a networking 

testbed. The consequence is that potential range of 

expected behaviors is very broad must be user-

supplied, because many cybersecurity experiments 

require and intentionally create worst-case conditions 

of overload, resource denial, host penetration and 

unreliability. 

Second, expectations of behavior will range from 

extremely low level and concrete “invariants” valuable 

for educational exercises (such as “node A is up”) to 

composite, complex, perhaps statistical, and much 

more abstract expectations (such as “service has been 

denied”). An ideal experiment health system will 

handle this wide range of invariants. 

Finally, usability is critical. It must be possible for 

users to capture desired invariants and health 

enforcement actions with minimal overhead and 

maximum clarity if the system is to meet its objectives. 

Our goal is to support, with these properties, 

experiment health maintenance in testbeds such as 

DETER, and, by extension, to the federation of such 

testbeds as described in Section 4. Our experiment 

health system includes five elements, each with its own 

research and implementation challenges. We outline 

the elements here and expand on each in the following 

sections. The system includes functions to support: 

• Expectation capture. Concerns are the sources and 

expression of data about experiment expectations. 

• Data collection and monitoring. Concerns are 

kinds and sources of data, reasons that the 

information may be incomplete, and how to 

provide controlled sharing between these tools and 

health evaluators . 

• Health evaluators. This includes observation of 

collected data and its comparison against an 

expectation to evaluate if the expectation is being 

met.  
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• Enforcement or repair. In its most basic form, 

enforcement may simply involve repair or 

replacement, but because expectations may be 

quite abstract, there may be several diagnostic 

steps involved in the process, and a selection of 

repair or enforcement options.  

• Support for sharing of information and expectation 

data. This problem has two aspects: an information 

plane to manage the availability and sharing of 

operating information between experiments and 

the underlying testbed, and a library for 

cataloguing and accessing expectation templates, 

resource definitions, data collection tools, current 

performance tools and health evaluators. 

3.1. Expectations  

In operating networks, network management has the 

goal of maintaining connectivity, distributing load, 

setting up network configuration, and in general 

supporting the network mission of delivering traffic 

effectively between end nodes. This common mission 

is well understood and agreed upon by all participants. 

In shared testbeds, management needs to achieve a 

more complex definition of a desired behavior. For a 

particular user, desired behavior may be to deny 

service or disrupt connectivity in the experimental 

network, to test a new worm or to maintain some long-

lived service running reliably. 

Users also have goals related to research privacy and 

the usability they expect from the testbed, and these 

goals differ from person to person. From the testbed 

operator’s perspective, the desired behavior may be to 

provide reliable service to users, to control risky 

experiments, to federate with remote testbeds and to 

protect the privacy of its users. 

Because desired behaviors differ widely across 

different experiments and depend on the nature of 

experimentation and testbed maintenance, it is 

impossible to identify universally appropriate 

behaviors. Instead we require an explicit expression of 

individual experiment expectations. The two key issues 

we address are sources of expectations and the 

language for codifying them.  

Expectations may be identified in a variety of ways. 

First, they could come directly from the experimenter. 

This could be explicit, or inferred from the researcher's 

behavior ("if he keeps fixing the DNS system when it 

breaks, it must mean the DNS system should be 

working"). Ideally a system could simply learn 

invariants by looking at a working experiment, but the 

problem lies in recognizing the non-invariants - things 

that are unimportant or should change from experiment 

to experiment.  

Our initial implementation requires explicit expression 

of expectations by experimenters and testbed system 

managers, with minor automation from the testbed. We 

include design hooks for the system to use additional 

expectation capture methods in the future. We 

implement an expectation capture language that 

specifies a set of conditions under which the 

expectation will be evaluated, a subject for the 

evaluation, a health evaluator, and a set of responses to 

the evaluation. Together these items capture an 

expectation and its enforcement and response methods. 

A simple example is to expect a server to be running, 

verify this by sending a ping once a minute and reboot 

the server if the ping fails. In a more sophisticated 

example, the expectation may be of a certain level of 

traffic among a set of gossiping nodes. The traffic level 

might be checked every minute and if it is below a 

threshold, each node might be told to increment by one 

the number of nodes it contacts during a gossiping 

episode. A security expectation might lead to allowing 

a traffic flow from the Internet into an experiment 

(response), if a particular experiment is running, no 

other experiments are running, and the traffic is all 

addressed to a particular port (conditions). 

We identify a long list of requirements for 

expressiveness in invariant capture, including but not 

limited to: time, location, service quality evaluation; 

verification of particular actions, continuous states, 

privacy; higher-level concepts such as restriction on 

code propagation; dependencies among expectations, 

coupling of expectations to actions; and composition 

into higher level expectations. To create the capture 

language, we build on past work such as Ponder [30] 

and Tcl expect [28], with a domain-specific user-

friendly and higher-level syntax, for easier use.  

We briefly discuss key issues with respect to the 

expectation subjects – things about which an 

expectation may be expressed. These subjects range 

from simple base level instances, such as a link or 

node, to more complex elements such as an entire 

Gnutella-like P2P system. We differentiate between the 

type of the subject (e.g., link), and the instantiation of 

it (e.g., link between A and B). The choice of health 

evaluation tools and repair functions then depends both 

on the type and the instantiation of a given expectation, 

and may lead to decomposition of that expectation 

evaluation into more primitive evaluations. To capture 

these nuances we provide parameterized templates for 

many common expectations in our library, for users to 

instantiate. 
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3.2. Data collection tools  

To implement health evaluation the system provides 

monitoring and data collection about what is happening 

in the testbed as a whole as well as in each particular 

experiment. There are three key sources of such data: 

(1) static data such as node allocation to a particular 

experiment, etc. (2) data collected routinely in all 

experiments and by the facility itself, such as packet 

tracing, node liveness, etc., and (3) explicit data 

collection requested by an experimenter or the testbed 

management, in context of a specific expectation’s 

evaluation. 

There are several challenges to data collection. First, 

because of scale and system unreliability, available 

data may be incomplete. Second, the desired 

information may not be directly measurable, but must 

be inferred from other measurements that can be 

gathered directly. Finally, in light of security 

expectations that relate to privacy, some information 

may not be accessible to a particular experimenter or 

portion of an experiment. Either an experiment or the 

testbed system may withhold information from the 

other. As an initial step towards meeting these 

challenges, we provide a base set of data collection 

tools in our library, which will be extensible by 

researchers.  

3.3. Health evaluation  

The job of health evaluation is to determine whether an 

expectation – in our framing, the static or dynamic 

behavior of a expectation’s subject – meets specified 

health criteria. There are two aspects to evaluating the 

health of a subject. The first is to select the particular 

behaviors of the subject, such as link bandwidth, jitter 

or loss rate, that are to be evaluated. This will in turn 

determine one or more tools for evaluating the 

behavior. The second is to determine the health of that 

subject by comparing observed and expected behavior. 

As a simple example, the experiment health may 

require either a high or a low loss rate, depending on 

the user’s desires.  

In the case of a more complex subject, with a rich set 

of possible behaviors and the potential for a complex 

user definition of health, we break the problem down 

with a composite evaluation. One approach is to define 

the more complex behavior as a composition of a set of 

simpler behaviors. Then when asked to evaluate the 

health of the subject, the target behavior is computed 

as a composition of those simpler behaviors and the 

result is evaluated for its health. In this approach the 

composite behavior is completely synthesized and then 

a single health evaluation is performed.  

In an alternate approach, we define the health 

evaluation of a complex subject as the composition of 

the health evaluations of simpler components. In this 

case, the system evaluates the behavior and health of 

each simpler component and then composes the results 

into a single health evaluation. Because each approach 

is preferable in different circumstances, we define both 

approaches and allow the user to reason about 

tradeoffs.  

3.4. Enforcement and repair  

Enforcement and repair are two sides of the same coin. 

Enforcement provides some level of guarantee that an 

expectation continues to be met. Thus, for example, in 

order to enforce that any reproducing malware does not 

overload resources, the testbed could rate limit the 

traffic from experimental nodes. Enforcement is likely 

to require frequent periodic evaluation of expectations. 

In contrast, repair uses similar mechanisms but aims to 

correct a detected failure. Since failures are not very 

frequent, evaluation of expectations that involve repair 

actions may occur on demand or periodically but 

infrequently. 

A third alternative is to detect an unhealthy situation, 

but take no action to address it other than notifying the 

user. This may be necessary in cases when there is no 

specified repair action, or the repair itself has failed. 

For example if an experiment expects 50 nodes, is 

assigned the only 50 nodes available and one fails, the 

only option is to halt the experiment. On the other 

hand, if some nodes were optional and some critical, 

the experiment might continue as long as a critical 

node did not fail. 

We allow the user to specify each of these cases, and 

the desired enforcement or repair action, using our 

expectation language. We provide tools for common 

enforcement and repair operations in our library for 

easy use. Additional language constructs support 

sophisticated users that wish to provide enforcement or 

repair actions that are specialized to the nature of their 

experiment.  

3.5. Sharing  

To monitor and enforce expectations, a health system 

must depend on significant amounts of information 

about  experiment performance. Because DETER and 

similar testbeds utilize reusable and shared resources, 

this information must be collected and accessible from 

several contexts simultaneously. Conversely, the same 

information may be valuable to more than one 

monitoring tool either simultaneously or at different 
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times. Each of these situations leads to information 

sharing. 

For example, it may be important to collect packet 

traces in an experiment for a variety of different uses. 

Monitoring tools used on behalf of the experimenter 

may depend on these traces to verify correct 

experiment behavior, while the underlying testbed 

system may simultaneously use such traffic 

information to determine the health of the complete set 

of resources it is managing. At the same time, these 

traffic traces can provide an audit trail if an experiment 

creates a security risk for the testbed, e.g., by running a 

worm that escapes into the Internet. Other contexts for 

reuse of the same information are possible. 

Thus information should be collected once and 

managed effectively to allow for multiple uses. This 

requires a common information substrate or 

information plane, with well-defined access rules and 

contexts. Information collection and access must be 

designed to reflect the security and privacy 

expectations that are critical for the whole experiment 

health management. In this area our development effort 

draws on and is synergistic with other efforts with this 

specific focus, particularly the Knowledge Plane 

activity described in [18]. 

4. Dynamic Federation  

Federation is the task of creating, on demand, a multi-

testbed structure to support a single large experiment. 

The goal of federation is to subdivide and embed a 

single experiment across multiple testbeds, in a way 

that meets the objectives, requirements and constraints 

of both the researcher and the testbed operators. 

Reasons to federate experiments include scale and 

realism, access to heterogeneous testbed capabilities, 

integration of multiple research communities, and 

information hiding. Of particular interest for large 

cybersecurity experiments is simultaneously creating 

federated environments while addressing risky 

experiment management and health management goals 

based on the mechanisms of Sections 2 and 3. 

The DETER federation architecture (DFA) 

implements federation over Emulab-style testbeds. The 

architecture breaks the federation task into three steps: 

1) decomposing the experiment to be federated into 

sub-experiments to be assigned to individual testbeds; 

2) embedding the sub-experiments into individual 

testbeds and building the necessary connections 

between testbeds, and 3) operating and supporting the 

federated experiment. 

The architecture recognizes that within the three tasks 

some functions are dependent on the requirements and 

characteristics of the particular experiment to be 

federated, and thus require domain-specific knowledge. 

Other functions are common across experiments, and 

can be modularized and generalized. The DFA 

accommodates this by including 1) elements and 

interfaces to support common functions; 2) system 

interfaces and framework for a “plug-in” extensible 

implementation of domain-specific functions; and 3) 

an ontology and language to express information used 

to drive the federation process. Figure 1 gives an 

overview of the architecture. Key elements are 

described in the following text. 

 

4.1. Sub-Experiment Decomposition 

Intelligent decomposition of a single large experiment 

into per-testbed sub-experiments must of necessity 

consider two factors: heterogeneity within the 

experiment in one or more dimensions, and testbed 

capabilities along one or more axes. Examples of 

experiment heterogeneity that may influence 

decomposition include  

• Topology and bandwidth requirements – e.g. 

embedding densely connected regions of the 

experiment within a single testbed.  

• Specific hardware or software requirements within 

some portion of the experiment graph.  

• Security constraints – in our model, specific T1 

constraints that can be offered over some portion 

of an experiment, and/or specific T2 constraints 

required from the testbed hosting some portion of 

the experiment.  

• Information hiding – particularly in a composite 

experiment, such as a red-team/blue-team 

scenario.  

Because the factors that should influence the 

decomposition of a particular experiment are known 

only to the experimenter, decomposition is a domain 

specific function. Thus, the DFA provides for an 

extensible set of decompositors, together with a well-

Figure 1:  DETER Federation Architecture 
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defined environment for their implementation. DFA 

provides common information to decompositors using 

the ontology described in Section 4.3. Inputs or 

knowledge specific to a single decompositor may be 

provided by a custom interface, or simply programmed 

into the decompositor’s implementation. As a 

particularly simple case, the decomposition function 

can be performed without involvement of higher level 

software by a human writing directly in the CEDL 

language described below.  

4.2. Canonical Experiment Description 

Language and Federator  

Canonical experiment description language (CEDL) is 

the output language for all decompositors in the DFA. 

It can be thought of as an “assembly language” for 

federated experiments – a common, low-level format 

that many different tools can generate. CEDL is an 

extension of Emulab’s current NS2-based experiment 

description language. CEDL describes an experiment 

as an interconnected topology of nodes, together with a 

number of annotations that guide the embedding of an 

experiment into its federation of testbeds. Annotations 

include such information as the target testbed for 

placing a particular node, and whether a node is critical 

to the experiment or can be ignored if it cannot be 

embedded successfully.  

An experiment’s CEDL description forms the input to 

the federator. The federator is responsible for 

embedding the sub-experiments within each federated 

testbed, after creating the additional hidden nodes and 

links necessary to interconnect regions of the 

experiment. This task is essentially mechanical, but 

requires parsing and understanding the CEDL 

description sufficiently to forward experiment 

information, security configuration, and user 

credentials to testbeds, establish the shared experiment 

support environment of Section 4.4, handle error 

conditions that may arise, and similar functions.  

4.3. Federation Resource Description 

Ontology  

Elements of the DETER federation architecture are 

bound together by an ontology of information needed 

to carry out the federation task. This ontology, and its 

expression in a concrete format, allow the different 

principals to communicate requirements, needs, and 

constraints to each other. Statements and requests 

expressed in this ontology are communicated between 

testbeds, the DFA federator, and decompositors acting 

on behalf of potential users, to implement 

decomposition and embedding functions. We briefly 

outline the structure and scope of the proposed 

ontology.  

The form of expression is attribute/value assertions 

potentially attested to by principals or outsiders: (X 

asserts that Y is/has Z). Some example attributes, 

values, and meanings are shown in the table. 

Attribute Value  Meaning  

User: PGP_Key  
(keyid, 
server)  

User PGP ID  

Testbed: 
Access_Policy  

X.509, 
Kerberos  

Acceptable user 
authentications  

Sub_Experiment: 
T1_Imposed  String  

T1 constraint set 
for exp. 

Multiple attribute assertions can be assembled into 

descriptions or requests. The operators are grouping, 

conjunction, and inclusive and exclusive disjunction.  

(DETER asserts that its access policy is X.509 

certificate AND 

 (DETER asserts that it has 100 nodes AND DETER 

asserts that it has 1Gb/s cross-connect) XOR 

 (DETER asserts that it has 1000 nodes AND DETER 

asserts that it has 1000Mb/s cross-connect))  

The ontology’s domain of discourse is testbeds, 

experimenters, resources, sub-experiments, and 

attesters. Examples of representable concepts within 

the ontology are given below, for flavor. Of particular 

interest is the ontology’s ability and requirement to 

represent our T1/T2 risky experiment management 

constraints. It follows that the ontology will evolve in 

this respect as our work in that area proceeds.  

The simple semantic model of this ontology is intended 

to allow the use of a variety of existing representation 

and constraint matching tools to facilitate reasoning 

about the federation problem. Our research lies in what 

must be said and how to interpret it, not in the form of 

the ontology.  

4.4. Scaling the Experiment Support  

Environment  

Centralized testbeds such as Emulab have historically 

provided a rich experiment support environment of 

functions intended to simplify the job of the researcher 

by providing useful building-block capabilities. 

Emulab’s experiment support environment includes a 

shared filesystem, an event system, a simple error 

management system, and several related functions. 

When moving to a decentralized, federated 

environment, the scalability and appropriateness of 
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these functions must be revisited. Several outcomes are 

possible.  

The function may be fully scalable, perhaps with a new 

implementation, as it is commonly used. The function 

may be scalable as defined, but not as commonly used, 

leading to the need for careful re-thinking. Or, the 

function may not be scalable at all, leading to its 

removal from the federated environment, and possible 

replacement with a more scalable alternative 

capability.  

Different Emulab support functions exhibit each of 

these properties. As examples,  

• The use of a shared filesystem is reasonably 

scalable in concept, if not always in 

implementation. A number of researchers have 

proposed approaches to highly scalable distributed 

filesystems that could be adopted.  

• The Emulab event system is scalable in concept, 

because it does not define either tight real-time 

semantics or assured ordering semantics. 

However, in practice it exhibits both of these 

properties in a local testbed, and they have come 

to be relied on by some experimenters. In a 

federated environment, two separate mechanisms 

may be appropriate: one that provides tight real-

time constraints on single event delivery, to 

coordinate the actions of different elements across 

a highly scaled experiment, and one that provides 

explicit ordering semantics [42][43] to support 

complex dependency graphs in highly structured 

experiments. 

In general, the design of an experiment support 

environment for large federated facilities must 

carefully and explicitly consider tradeoffs between 

scalability, robustness, implementability, and 

usefulness to the experimenter. In our implementation 

of DFA within DETER, each of the existing Emulab 

services is analyzed for suitability to the federated 

environment, and updated or replaced if necessary. 

5. SEER as Integration Platform and 

Usability Framework  

The DETER testbed’s SEER system [1] is an 

extensible framework for experiment support and 

control. We rely on SEER to provide broad 

infrastructural support for our new capabilities of 

experiment health maintenance, risky experiment 

management, and federation.
2
 It is important to 

                                                             

2 We note that it is not necessary to use SEER to access these 

capabilities; each is also accessible through new low-level system 

recognize that without significant advances in this 

regard, the increased experiment complexity enabled 

by our other advances could potentially reduce testbed 

usability. For this reason, our goal is to leapfrog 

existing usability models, creating new experiment 

creation and control interfaces that directly address this 

increased complexity. Further, it is useful to address 

separately the needs of sophisticated experimenters, 

who frequently must operate at low level and shape 

their own tools, and for more casual users, who need 

simple access to complex function.  

SEER is structured as a GUI that communicates with a 

master controller agent (CA) for each experiment. In 

turn, the controller agent communicates with and 

controls a SEER agent running on each experimental 

node. The GUI and CA provide the experimenter with 

access to SEER capabilities through an XML-RPC 

interface, which allows for interaction with the 

controller by other programs. For example, even now 

an experimenter can interact with the controller 

through a command-line interface. The controller agent 

contains logic in the form of execution scripts to 

support potential experimenter requests, as well as the 

event state necessary to monitor and manage those 

requests. The controller agent communicates directly 

with the local node agents with requests or commands 

for local operations and information. This structure 

provides a framework to support the major functional 

developments described in this paper. We briefly 

consider each of these in the context of the SEER agent 

system.  

As described in Section 4, federation of testbeds in 

support of large experiments is achieved by 

decomposition of the experiment into partitions, each 

of which is run on one of the federants under its local 

control. We reflect that same decomposition in the 

SEER experiment control, by splitting and distributed 

the responsibilities of the controller. Under federation, 

we extend SEER to provide a single experiment 

controller, a set of federant controllers, and the 

requisite node agent for each node. In this case, the 

experiment controller provides high-level oversight 

and partitioning of the SEER activities, and is capable 

of partitioning inferior responsibilities to the federant 

controllers, which in turn interact with the local node 

agents. The experiment controller operates using an 

experiment-wide event stream, while the individual 

federant controllers each have their own, partitioned, 

event state and sequence of events. Notice that this is 

an example of a situation in which the invoker of an 

                                                                                              

APIs. It is both possible and expected that additional higher-level 

integration tools will be developed in the future. 
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XML-RPC on a (federant) controller will be another 

controller, not the GUI – a new capability that is 

naturally supported by the modular SEER architecture. 

With further extensions expected in the longer run, we 

plan for other situations in which controllers will be 

invoked by something other than the GUI.  

In the case of risky experiment management the 

challenge is slightly different, but is equally 

accommodated with an extension to the underlying 

agent system. The problem for risky experiments is 

that the interaction with the outside Internet is not 

based in a “node” of the experiment in the same sense 

as the traffic and actions of a completely internal 

experiment. Therefore, in order to manage and monitor 

that interaction, a T2 agent is used to manage the 

testbed’s constraint mechanisms. In terms of overall 

control of the experiment, this agent is a peer of the 

node agents. Concretely, this agent is hosted on the 

same node as the federant’s controller. The job of this 

T2 agent is qualitatively different than that of the node 

agents because it may have less control over what 

actually happens, but may require more control over 

the flow or distribution of information from its “target” 

to the other components of the experiment. By 

isolating that control in a separate agent, we increase 

our ability to make it trustworthy, independently of the 

other components of the SEER environment.  

Our experiment health management architecture maps 

directly onto the appropriate SEER agent infrastructure 

for each experiment. By piggy-backing experiment 

health management monitoring agents onto the existing 

SEER agent structure, we guarantee that the 

appropriate data collection, behavior evaluation, health 

determination, and responses will be managed along 

exactly the same paths of control as those of the 

experiment itself. This also allows for policy controls, 

such as those that may be necessary in the information 

plane component of the health management system, to 

follow the structure cleanly, giving each node agent, 

federant controller, or T2 agent local control over local 

access. Finally, we extend the SEER GUI itself to 

provide access to these new capabilities in intuitive 

ways.  

6. Related Work  

Our experiment health work is an extension and 

customization of knowledge plane [18] ideas to 

network testbeds. Much recent work in this area has 

concentrated on the sub-problem of supporting an 

information plane. Two approaches are seen. With 

Sophia [34] and the work of Loo et al.  [35][36][37], 

the objective is to provide an all-purpose information 

plane, in which all information is shared. From our 

perspective these do not provide the ability to control 

or limit access to information based on security and 

privacy policies. The second is more specialized 

information planes, including iPlane [38], which 

provides path behaviors for managing peer-to-peer 

overlays, the Lord of the Links project [39] which 

provides comprehensive network topology 

information, and the 4D proposal [40] for route 

computation and distribution. In contrast we propose a 

general-purpose information plane for sharing, but one 

that permits control or limitation of access to 

information for policy (proprietary or security) reasons.  

There is vast work in network management; a field that 

is related to our health management effort. The main 

distinction between network management and our 

work is that testbed experiments lack generally agreed-

upon correctness or performance goals. Namely, what 

may be regarded as poor performance in one 

experiment, such as frequent link failures, may be a 

desired effect in another experiment. Another 

difference lies in the granularity at which management 

is done: networks are managed at high granularity of 

network elements and links, while experiments also 

need to be managed at low granularity of user actions. 

Thus, we expect to reuse existing work in network 

management for coarse-granularity management of the 

testbed and the experiments, but we extend this field 

with our fine-granularity management functionalities.  

Network monitoring has received significant attention 

with the advent of grid and cloud computing (to 

mention just a few publications [14][15][16][31]). We 

plan to reuse existing monitoring approaches and tools 

for our health management. The novelty of our work 

lies in interpretation of the outputs of those tools, and 

in orchestration of their activity.  

Ballani and Francis propose Complexity Oblivious 

Network Management [17], in which the management 

interface abstracts much of the underlying 

implementation complexity, facilitating more effective 

high-level management. We expect to leverage and 

extend this work to simplify our management tasks.  

There are a number of tools for distributed application 

management on PlanetLab [12], such as Plush and 

Nebula [4], PlMan [19], Stork [20], pShell [21], 

Planetlab Application Manager [22], parallel open SSH 

tools [23], plDist [24], Nixes [25], PLDeploy [26] and 

vxargs [27]. With the exception of Plush and Nebula, 

these tools are all low-level monitoring or management 

tools that are engaged manually at the setup time of a 

PlanetLab experiment. They enable parallel execution 

of multiple tasks, or monitor nodes for liveness, 

connectivity, and state, and present summarized 

information to a user. Plush [4] is a toolkit for 
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distributed application configuration, management and 

visualization. Plush enables users to specify tasks in 

XML format, then executes them invoking low-level 

process, file and resource monitoring to detect failures. 

Plush also provides synchronization primitives and 

performs resource acquisition and reallocation as 

needed. The primary distinction between Plush and our 

proposed health monitoring is that Plush manages for 

known performance goals (connectivity, process 

liveness, etc.) that are suitable for continuously running 

applications, while we additionally manage for 

customizable performance goals that are suitable for 

widely varying testbed experiments. Our management 

thus includes the notion of “expected performance” 

and covers a wider range of behaviors than Plush.  

Emulab’s Experimenters Workbench [5] contains 

support for experiment versioning, cloning via a 

template, and archiving. These capabilities support pre-

packaged experiments, and are complementary to the 

capabilities provided by SEER. Emulab’s workbench 

does not, however, provide any support for experiment 

creation and correctness checking, which is the main 

focus of our health management infrastructure.  

In the area of expectation or policy specification 

languages, we mention two extremes. XACML [29] is 

declarative and serves as a policy capture framework, 

expecting enforcement through other means. From our 

perspective, policy declarations are only a small part of 

our challenge. In contrast, Ponder [30] [41] is an object 

based language for declaring not only security and 

management policies, but time, state, and composite 

conditions under which the policies should be 

evaluated, sets of subjects to be evaluated, sets of 

targets over which some action might be taken, and the 

actions themselves. All of these can be individuals, 

composites, or abstractions. In fact, Ponder policies are 

also objects and can themselves be the subjects of 

policies. Simpler than Ponder, Tcl Expect [28] is a 

scripting environment whose syntax enables 

specification of control flows that depend on controlled 

program outputs, thus automating system testing. As 

discussed earlier, our expectation language 

incorporates such capabilities, with the specific 

objective of making expectation capture easily 

accessible, usable, and understandable by a broad set 

of differently skilled researchers. We find it useful to 

reuse features of Tcl Expect and Ponder, wrapping 

them in more user-friendly syntax and/or higher level 

language constructs.  

Though there has been much work on federating 

databases or constructing meta-computers, federating 

testbeds is a relatively recent area of research. Emulab-

to-Emulab federation remains a topic of ongoing 

development [51][52][53], though much of this is the 

foundational work of interconnecting the testbeds at 

the operational level. Our work extends this to enable 

experiments that configure the federated environment 

based on policy considerations such as the risk level of 

the experiment, and to include distributed monitoring 

capability. The PlanetLab research community has also 

begun to federate instantiations of PlanetLab [54][55]. 

Much of this work centers on splitting a centralized 

authority between a few entities; our work is more 

focused on federation without a central authority. The 

Grid community provides both tools [56] and standards 

[57][58][59][60] that are useful in addressing several 

aspects of federation. Primarily, Grid tools simplify 

exchange of authentication requirements and trust 

requirements, which are required in a practical 

federation system but are not central to our research. 

Adopting these standards and tools frees us to focus on 

the new aspects of our problem domain.  

Honeynets [32] address a problem related to our risky 

experiment control. Honeynets must allow some 

malware interaction with the outside Internet, but 

control it so that the honeynet does not participate in 

attacks on others [33]. This resembles our goal of 

allowing experiments to communicate safely with the 

Internet. However our problem is more constrained 

since testbed researchers often have some knowledge 

of the malware they want to study and can describe 

some aspects of its behavior, while honeynets must 

support unknown malware and live attackers. Despite 

these distinctions we find it useful to reuse honeynet 

practices for our testbed constraint implementation. 

7. Conclusion 

From its inception in 2004, the DETER testbed facility 

and community have provided effective, dedicated 

experimental resources and expertise to a broad range 

of academic, industrial and government researchers. 

Now, building on knowledge gained, the DETER 

developers and community are moving beyond the 

classic “testbed” model and towards the creation and 

deployment of fundamentally transformational 

cybersecurity research methodologies. The risky 

experiment management, experiment health support, 

and federation technologies described in this paper 

simultaneously enable order of magnitude increases in 

both scientific rigor and realism for such research, 

leading to dramatic increases in researcher productivity 

and quality of results. Further, these DETER advances 

serve as an incubator for similar capabilities in projects 

such as GENI and the proposed National Cyber Range, 

catalyzing dramatic and broad improvement in the 

nation’s cyber research capability.  
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