
MIT Open Access Articles

Run-time mapping for dynamically-added
applications in reconfigurable embedded systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Beretta, I. et al. “Run-Time mapping for dynamically-added applications in
reconfigurable embedded systems.” Microelectronics (ICM), 2009 International Conference on.
2009. 157-160. © 2010 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/ICM.2009.5418666

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58896

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58896

Run-Time Mapping for Dynamically-Added
Applications in Reconfigurable Embedded Systems

Ivan Beretta†, Vincenzo Rana‖†, David Atienza†, Marco D. Santambrogio§‖, Donatella Sciuto‖
†Ecole Polytechnique Federale de Lausanne, ESL, Lausanne, 1015, Switzerland, {ivan.beretta, david.atienza}@epfl.ch

‖Politecnico di Milano, DEI, Milano, 20133, Italy, {rana, sciuto}@elet.polimi.it
§Massachusetts Institute of Technology, CSAIL, Cambridge, MA 02139, USA, santambr@mit.edu

Abstract— The increasing popularity of multi-core System-on-
Chip platforms introduces new challenges, both in terms of
hardware platforms and design methodologies. Dynamic reconfig-
uration can be exploited to increase the flexibility of the system
and to implement multiple applications, since it is possible to
easily switch between them by reconfiguring part of the device
at run-time. Additionally, new applications may be included in
the system after the design time synthesis has been completed.

This paper addresses the problem of mapping new applications
on the device area at run-time, by reusing existing components
of the system. We propose an heuristic technique that is able to
determine how the new application should be mapped in a short
time and, thanks to the reuse policy, to immediately deploy the
solution on the device. The proposed algorithm also takes into
consideration two conflicting performance metrics, in order to
generate a good quality result.

I. INTRODUCTION

Recent developments in System-on-Chip (SoC) industry

point toward multi-core products for highly specialized tasks.

Their increasing complexity, as well as their time-to-market

and quality requirements, reinforces the need of flexibility both

in terms of hardware devices and of methodologies to exploit

resource sharing [1]. Field programmable gate arrays (FPGAs)

have shown promising results as deployment platforms for

large-scale multi-core systems ([2], [3]), providing the required

flexibility thanks to their reconfiguration capabilities. Novel

FPGA families also support dynamic reconfiguration, which

allows the device to be partially reprogrammed at run-time,

thus adding another degree of freedom in the design of com-

plex SoC. The hardware resources provided by an FPGA can

be used to concurrently execute multiple applications, each one

composed by a set of soft cores, such as instruction set pro-

cessors and highly-optimized special-purpose units. Dynamic

reconfiguration allows soft cores to be mapped on the device

area when they are required by the currently active application,

thus allowing the system to easily switch between applications

at run-time. As dynamic reconfiguration introduces a relevant

timing overhead (tens of milliseconds)[4], it is necessary to

reduce the amount of area that is reconfigured (thus reducing

the time required by the reconfiguration process) while loading

a new application on the device.

The main contribution of this work is the definition of

an algorithm for the run-time mapping of new applications

(not known at design-time) on reconfigurable devices. These

applications have to be deployed trying to reuse the parts of

the system already synthesized at design-time, since a new

synthesis process may require a very long time (in the order

of several minutes) and forces the interruption of the system.

The problem of combining the already synthesized parts of

the system in order to allow the execution of the upcoming

application is hard, thus we propose a fast greedy approach

which aims at finding a feasible solution in a short time. The

algorithm considers several performance metrics, such as the

minimization of the number of reconfigurations to deploy the

application and of the communication latencies among the

cores, in order to generate a good solution that satisfies the

execution and area constraints of the new application.

II. RELATED WORK

The problem of mapping cores on a reconfigurable device

has been explored in literature, even though most of the related

works aim at finding the mapping at design time. Moreover,

dynamic reconfigurations is rarely taken into account, and

it is not considered as a mean to switch among different

applications. In [5], the authors propose an algorithm to reduce

the number of reconfigurations required to switch among

different parts of an application. However, they only map a

single application, that must satisfy a strict set of assumptions.

In [6], the authors propose a design time mapper to optimize

the communication overhead. The work is tailored for a mesh

grid Network-on-Chip (NoC) communication infrastructure,

and the algorithm uses traffic information in order to generate

a mapping that minimizes the communication latency between

cores. Since the algorithm is designed for a generic NoC-based

system, it does not specifically consider dynamic reconfigura-

tion. The same shortcoming can be found in other mappers

for NoC architectures, which aim at minimizing other on-chip

performance metrics. For instance, the algorithm proposed

in [7] minimizes area requirements and power consumption,

while the approach in [8] applies a unified mapping and

routing algorithm to reduce the network complexity.

A mapper that exploits dynamic reconfiguration to map

multiple applications has been proposed in [9]. The aim of

the algorithm is to map application cores into fixed-size slots,

which are interconnected by a NoC infrastructure. The mapper

is divided into two phases, the first one being in charge of

finding similarities among the applications, and the second

one mapping the specific cores. The heuristic algorithm is

designed to reduce both the number of reconfigurations and the

2009 International Conference on Microelectronics

978-1-4244-5816-5/09/$26.00 ©2009 IEEE 157

communication overhead, but its complexity makes it suitable

only for design time scenarios.
Also a few works related to run-time mapping can be

found in literature. In [10], the authors propose a technique

to generate FPGA configurations at run-time using a low

amount of resources. A mapping algorithm that incrementally

adds new applications to the final solution is proposed in

[11]. The mapper takes the incoming application and finds a

mapping for it in an incremental way, i.e. without modifying

the existing layout. Again, the algorithm does not actively

support dynamic reconfiguration for application switching,

since all the applications can be concurrently mapped on the

device area.

III. PROBLEM DEFINITION

A. Reference hardware architecture
The proposed tun-time mapper can be applied to generic dy-

namically reconfigurable devices, even though it is particularly

tailored for modern FPGA families. In particular, the target

device should support a fine-grained dynamic reconfiguration,

and it should provide a sufficient amount of resources to host

complex multi-core applications, such as Xilinx Virtex 4 and

Virtex 5 devices.
In order to support complex applications, the communica-

tion among the soft cores can be assumed to be implemented

using a Network-on-Chip with a mesh topology, which satis-

fies the flexibility and scalability requirements of the system,

even though other communication infrastructures can be used.

The reference hardware architecture is shown in Figure 1.

The device area is divided into two logical parts: a static

communication layer, which implements the backbone of the

communication infrastructure and cannot be reconfigured, and

a reconfigurable computation layer, which contains all the soft

cores. The computation layer can be further divided into fixed-

size reconfigurable regions or slots, which lay on a regular

grid. The slot is an elementary unit of reconfiguration, i.e. the

entire slot is reconfigured at once. Each reconfigurable region

can contain an islands of one or more soft cores – whose

internal communication is resolved inside the slot, without

accessing the external backbone – or it may be unused by

the active application.

Fig. 1. An example of a reconfigurable target architecture based on a 2x2
mesh

B. Input applications

An application is a set of cores whose concurrent and

coordinated execution solves a complex task. An application

can be formally modeled as an undirected graph called com-
munication graph [9], whose nodes represent the soft cores,

and the edges represent a communication between two cores.

A weight can be associated to each edge to specify the

communication bandwidth: cores which shares large commu-

nication bandwidths should be mapped in the same slot (so

the communication is resolved locally) or within a few hops

of distance.

C. Design time mapping

The design time algorithm proposed in [9] maps the soft

cores of a certain set of input applications onto the recon-

figurable regions, minimizing both the average number of

reconfigurations and the overall communication overhead. The

first metric can be calculated by evaluating the average amount

of slots to be reconfigured while switching from an application

to another one. On the other side, the communication overhead

is evaluated by adding, for each edge of the communication

graphs, a value obtained by multiplying the bandwidth with

the number of hops that separate the two cores.

The structure of the design time solution is illustrated in

Figure 2. The static solution can be divided into two parts:

the base mapping and the specific configurations. The base

mapping primarily contains shared cores, and it is deployed as

the initial configuration of the device. Then, each application is

associated to a set of specific configurations, which are loaded

on the device when the application has to be executed.

Fig. 2. Base mapping and specific configurations

D. Run-time mapping with configuration reuse

The run-time mapping problem consists in finding a suitable

mapping for a new application, without modifying the design

time solution, and without introducing new synthesis phases. A

brand new execution of the static mapper cannot be performed,

since the cores introduced by the new application may force

the algorithm to generate a completely different solution, both

in terms of base mapping and specific configurations. The new

solution would require a time-expensive synthesis process, and

moreover a complete reconfiguration would be required to load

the new base mapping.

Run-time mapping must be handled by an ad-hoc algorithm,

which does not modify the base mapping, but simply generates

158

a set of specific configurations for the new application. Con-

figurations belonging to existing applications can also be used

to complete the solution, even though they may contain some

redundant cores. Existing configurations are the only mean to

deploy the new application without performing a new synthesis

process, but it is not always feasible to find a complete solution

relying on configuration reuse. A necessary condition for the

proposed run-time approach is that the new application does

not introduce any core that was not known at design time, so

every core of the application can be retrieved in at least one

existing configuration. This condition is not sufficient, since

it is possible to imagine a scenario in which two cores are

synthesized in two different islands targeted to the same slot;

in this case, the reuse of one of them precludes the reuse of

the other, thus making it impossible to find a feasible solution

to the problem. The aim of the run-time mapper proposed

in this paper is to estimate (in a very short time) whether a

solution exists or not and, if multiple feasible solutions exist,

to evaluate which one is the best in terms of minimal number

of reconfigurations and communication overhead.

IV. THE PROPOSED APPROACH

The run-time mapping problem based on configuration reuse

is a combinatorial optimization problem, which primarily aims

at finding a feasible solution and, whenever it is possible,

tries to optimize two objective functions – minimizing the

communication overhead and the average number of recon-

figurations. A solution is defined as a combination of existing

configurations, and it is feasible if all the cores of the new

application can be mapped on the device at the same time.

An exhaustive search among all the possible combinations

is not sustainable, since the number of candidate solutions

is exponential in the number of slots and also depends on the

number of applications mapped at design time. Let us consider

a relatively small system with 16 slots and 5 applications

mapped statically. In the worst-case scenario, each slot cor-

responds to one configuration for each application (including

the base mapping), and therefore 516 possible solutions should

be explored. Then, a heuristic technique is necessary and,

given the timing requirements of the run-time scenario, a

greedy approach has been chosen. The greedy algorithm can

generate a solution in polynomial time with respect to both

the number of applications and the number of slots, and it has

been designed to minimize the two objective functions.

A. Operation of the greedy algorithm

The pseudocode of the greedy algorithm is shown in Al-

gorithm 1. The rationale is to select a configuration at each

iteration of the outermost loop, and therefore the number of

iterations is bounded by the number of slots of the device.

The choice is performed according to a score associated to

each configuration, which include communication and area

information, and it is updated at each iteration.

The scores of all the configurations i are computed by func-

tion Compute Scores according to the following equation:

Algorithm 1 Run-time mapper with configuration reuse

Unmapped← New application cores
Conf ← Design time configurations
Solution← ∅
repeat

Scores← Compute Scores(Conf, Unmapped)
Scores← Force Scores Correction(Scores)
Candidate← Get Higher Score(Scores)
Solution← Solution ∪ Candidate
Conf ← Conf \ Candidate
Unmapped← Unmapped \ Cores In(Candidate)

until Solution is complete

Scorei = α · Useful Area

Slot Size
+ β · Internal Comm

Max Comm
(1)

Two normalized terms appear in the linear combination. The

Useful Area term is defined as the amount of area of a single

slot occupied by soft cores that are used by the upcoming

application but that are still unmapped. The Internal Comm
is an index that represents the level of the communication

inside a single slot, i.e. the total bandwidth among the cores

of a slot.

The number of reconfigurations in the system are indirectly

reduced by the computation of the useful area. In fact, the

algorithm privileges configurations with a high percentage

of occupied area, and therefore it is able to find a compact

solution that uses a low number of slots. The algorithm also

reduces the number of reconfigurations in a direct way, by

favoring the configurations belonging to the base mapping

when two or more configurations achieve the same score. The

communication overhead is also minimized by the algorithm,

which privileges the configurations that resolve large amounts

of communication within the slot. The influence of each of

the two objective functions on the final solution can be tuned

by modifying the values of parameters α and β.

The pseudo code shown in Algorithm 1 includes a statement

named Force Scores Correction. This step is used to neu-

tralize the scores related to slots that are already used, since

each slot cannot contain multiple configurations. The statement

also performs the correction discussed in the following section.

B. Handling single instances

Figure 3 shows a particular scenario that has to be correctly

handled in order to find a feasible solution. Core 4 is only

included in configuration B, but the greedy algorithm would

prefer configuration A for slot 1 because it is better in terms of

area usage and internal communication. The algorithm would

then realize that no feasible solution can be generated, since

core 4 cannot be mapped. However, a solution exists, and it

contains configurations B, C and D. This side effect can be

easily corrected in the Force Scores Correction statement:

at each iteration, the algorithm checks whether a core has a

single instance, and in this case the score associated to its

configuration is set to an arbitrary high value.

159

Fig. 3. Example of a particular scenario that must be specifically handled

The example of the single instance is only a special case of

a more complex problem (the single instance chains problem).

Let us assume two cores i and j belongs to two configurations

each, called Ai, Bi, Aj and Bj , and let Ai targets the same

slot as Aj and Bi the same slot of Bj . Then, the only way

to map both i and j is to correct the scores of both Ai and

Bj – or equivalently Aj and Bi – because if one of the two

configurations is not used, then a feasible solution will not

be found. The complexity of detecting these situations rapidly

increases with the number of cores involved in the chain. The

current implementation of the proposed mapper only detects

single instances, in order to keep the overall complexity low.

V. EXPERIMENTAL RESULTS

This section presents a set of experimental results to eval-

uate the quality of the solutions that can be obtained with the

proposed approach. The design time approach presented in [9]

– which also generates the static mapping used as the starting

point of the proposed approach – is employed as a reference.

The quality of the solution is evaluated in terms of com-

munication overhead and average number of reconfigurations.

Figure 4 illustrates how the two objective functions are af-

fected by the number of cores in the new application, and

it also shows the gap between the static and the run-time

mapping. The experiment has been performed by taking 5

applications mapped at design time, with a number of cores

between 10 and 35 of different sizes. Each application shares

75% of its cores with at least another application, and this

percentage brings an additional advantage to the static mapper,

which can exploit the similarities to optimize the result. The

results indeed show that the static mapper finds a better

solution, since it saves up to two reconfigurations, but it only

achieves a 4.8% gain in terms of communication overhead.

Conversely, the run-time mapper can generate the solution

in a lower time. Figure 5 shows how the run-time mapper is

two orders of magnitude faster than the design time approach.

Moreover, the time required to generate a mapping of n
applications at design time is higher than the time required

to statically map n − x applications, and then complete the

solution by adding the remaining x applications at run-time.

The gap becomes more relevant as x increases, thus showing

that the proposed algorithm scales well with the number of

applications to be mapped at run-time. Finally, the data only

reflects the time required to compute the mapping, and it does

not include the synthesis phase that is always required at the

end the static algorithm, whereas the run-time mapper can

deploy the solution without performing any synthesis.

Fig. 4. Quality of the solution computed by the static and the run-time
mappers versus the number of cores in the new application

Fig. 5. Execution time of the static and the run-time mappers

VI. CONCLUSION AND FUTURE WORKS

This paper addressed the problem of mapping applications

on a reconfigurable device at run-time, focusing on a scenario

in which existing configurations can be reused to completely

deploy the new applications. We proposed a fast heuristic

algorithm to find a feasible mapping in a short time, which also

avoid the most common traps that prevent it from finding a

solution. The algorithm also exploits area and communication-

related metrics to improve the quality of the final mapping.

REFERENCES

[1] E. Flamand, “Strategic directions towards multicore application specific
computing,” in Proc. of DATE, April 2009.

[2] U. Ogras, et al., “Challenges and promising results in noc prototyping
using fpgas,” Micro, IEEE, October 2007.

[3] M. Hubner, et al., “Run-time reconfigurable adaptive multilayer network-
on-chip for fpga-based systems,” in Proc. of IPDPS, April 2008.

[4] V. Rana, et al., “A Reconfigurable Network-on-Chip Architecture for
Optimal Multi-Processor SoC Communication,” in VLSI-SoC, 2009.

[5] S. Ghiasi, et al., “An optimal algorithm for minimizing run-time recon-
figuration delay,” ACM Trans. Embed. Comput. Syst., 2004.

[6] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in Proc. of DATE, February 2004.

[7] S. Murali, et al., “A methodology for mapping multiple use-cases onto
networks on chips,” in Proc. of DATE, March 2006.

[8] A. Hansson, et al., “A unified approach to mapping and routing on
a network-on-chip for both best-effort and guaranteed service traffic,”
VLSI Design, 2007.

[9] V. Rana, et al., “Minimization of the reconfiguration latency for the
mapping of applications on FPGA-based systems,” in Proc. of CODES-
ISSS, 2009.

[10] K. Bruneel, et al., “Automatically mapping applications to a self-
reconfiguring platform,” in Proc. of DATE, April 2009.

[11] C.-L. Chou, et al., “Energy- and performance-aware incremental map-
ping for networks on chip with multiple voltage levels,” in Computer-
Aided Design of Integrated Circuits and Systems, October 2008.

160

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

