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Abstract—Stability analysis for a class of switched nonlinear 
systems is addressed in this paper. Two linear matrix 
inequality (LMI) based sufficient conditions for asymptotic 
stability are proposed for switched nonlinear systems. These 
conditions are analogous counterparts for switched linear 
systems which are shown to be easily verifiable and suitable for 
design problems. The results are illustrated by numerical 
examples.  

I. INTRODUCTION 
ybrid and switched dynamical systems received a lot of 
attention over the last decade due to their capability for 

mathematical modeling of physical systems as well as man-
made  systems [1]. There is a growing demand in industry 
for methods to model, analyze, and control hybrid and 
switched dynamical systems. 

Among different problems in this field, a lot of research 
has been devoted to the study of the stability of switched 
and hybrid systems [1][3]. Most of the methods which have 
been proposed so far for stability analysis of hybrid systems 
are devoted to switched linear systems. The stability of 
switched systems under arbitrary switching signal is 
guaranteed by the existence of a common Lyapunov 
function. In the linear case, many approaches have been 
presented to construct common Lyapunov functions. The 
problem is more complicated for switched nonlinear systems 
and relatively fewer results have been reported in this 
context. The existence of a common Lyapunov function is 
only sufficient for the stability of switched systems and can 
be rather conservative. There are examples of systems that 
do not posses a common Lyapunov function, but are stable 
under arbitrary switching signals. Due to the conservatism 
of the methods for stability analysis which are based on the 
common Lyapunov function, some attention has been paid 
to a less conservative class of Lyapunov functions, called 
switched quadratic Lyapunov functions [2],[12]. In this 
paper, we propose sufficient stability conditions based on 
switched quadratic Lyapunov functions for a class of 
switched nonlinear systems. The conditions are similar to 
their counterpart in [2] for switched linear systems. These 
linear matrix inequalities (LMI) conditions are easy to check 
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and suitable for controller synthesis.     
We study the class of discrete-time switched nonlinear 

systems of the form: 

                           ( ) ( )

( ) ( )

( 1) ( ( ))
:

( ) ( ( ))
k k

k k

x k A x k
y k C x k

σ σ

σ σ

+ = Φ⎧⎪∑ ⎨ = Φ⎪⎩
          (1) 

where ( ) nx k ∈ is the state, ( ) py k ∈ is the output and 
0: {1, 2,..., }σ ≥ → Κ = Κ  , is the switching signal that is a 

piecewise constant map of the time index. Κ is the set of 
discrete modes, which is assumed to be finite. For 
each i ∈ Κ , iA , iC  are matrices of appropriate dimensions.  
Furthermore: 
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where: 
{ }: : , , ( ) ( )i OL s t s t s tφ φ φΦ ∈ = → ∀ ∈ + ≤ + . 

It is worth mentioning that subsystems with the above 
description are from the class of so-called Φ -systems [4]. In 
some literature, they have been called  σ -systems[6][7]. It 
is clear from the description that the nonlinearity of this 
class of systems is odd and 1-Lipschitz.  The standard 
saturation and the hyperbolic tangent (popular activation 
function in neural network) are examples of this type of 
nonlinear systems[4][7]-[10]. The discrete-time recurrent 
artificial neural network is a special case of Φ -systems [7]-
[9]. Furthermore, results related to this class of nonlinear 
systems have potential applications in the classical problems 
related to uncertain nonlinearities such as Lur’e systems[11]. 

The notation used in this paper is as follows: *M denotes  
transpose of matrix if n mM ×∈  and complex conjugate 
transpose if n mM ×∈ . The standard notation 

, ( , )> ≥ < ≤ is used to denote the positive (negative) definite 
and semidefinite ordering of matrices. 

II. POSITIVE DIAGONAL DOMINANT MATRICES 
In this section we recall a definition and results which we 

will use in the sequel. 
 
Definition 1: A matrix P is said to be positive diagonally 

dominant  (pdd) if: 
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This definition simply says that a matrix is pdd if it is 
positive definite and row diagonally dominant.  
 
    Lemma 1 [4]: P is pdd if and only if 0P >  and there 
exists a symmetric [ ]ijR r= such that: 
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   Lemma 2 [4]: P is pdd if and only if: 
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Lemma 2 shows the elegant property of the pdd matrices 
which is useful for finding conditions for quadratic stability 
of Φ -systems.    

III. STABILITY OF SWITCHED Φ - SYSTEMS 
Consider the family of the switched Φ -systems described 

in (1). This class of systems can also be represented as: 
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where: 
 

( )i kζ  is the indicator function which is defined as: 
1, when the switched system is described

( )  by the i  mode matrices (A ,C ) and
0, otherwise

th
i i i ikζ

⎧
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⎪
⎩

       (7) 

 
A sufficient condition for stability is the following: 
 
Proposition 1.  The switched system (6) is asymptotically 

stable under an arbitrary switching signal if there exist 
K symmetric pdd matrices, 1 2, ,..., KP P P  satisfying: 
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Proof:  
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On the other hand, since: 
1 2, ,..., KP P P  are all pdd and OLσΦ ∈  we have from 

Lemma 2 that:  
* *( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ) 0x k P k x k x k P k x kσ σζ ζΦ Φ − ≤  

The Schur complement of (8): 
* 1 *( ) ( ) 0i j j j i i i j i iA P P P A P A P A P− − = − > ,  

 shows that:  
* ( ( )) ( ( 1)) ( ( )) ( ( )) 0A k P k A k P kζ ζ ζ ζ+ − <  

Therefore: 
( , ( )) 0V k x kΔ < , 

which proves the stability of the switched system(6). 
 

Note that the switched quadratic Lyapunov function is a 
common Lyapunov function when 1 2 ... KP P P= = = . 

Therefore, the stability condition based on the switched 
quadratic Lyapunov function generalizes the approaches 
based on the common Lyapunov function and is usually less 
conservative.  

The next proposition is similar to Proposition 1. In the 
stability condition of Proposition 2, we have slack variables 
which makes the proposition more suitable for design 
problems.   

Proposition2.  The switched system (6) is asymptotically 
stable under an arbitrary switching signal if there exist 
K symmetric positive diagonal matrices, 1 2, ,..., KS S S  and 

K  matrices, 1 2, ,..., KG G G  ,satisfying: 
* * *
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Proof:  
From (10), we have: * 0i i iG G S+ − > . Since iS is a positive 

diagonal matrix, 1
iS − is also the positive diagonal, which 

implies that: * 1( ) ( ) 0i i i i iG S S G S−− − ≥ . Moreover:  
* 1 * 1 *( ) ( )i i i i i i i i i i iG S S G S G S G G G S− −− − = − − + . 

Hence: 

2518



  

* 1 * *

0 ( , )i i i i i

i i j

G S G G A
i j K K

AG S

−⎡ ⎤
> ∀ ∈ ×⎢ ⎥

⎢ ⎥⎣ ⎦
 

On the other hand: 
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where 1
iS −  and 1

jS − are positive diagonal. 1
iS −  and 1

jS − are 
obviously pdd matrices. From Proposition 1, we conclude 
that the switched system (6) is stable.  

 
 

In Proposition 2, 1 2, ,..., KS S S matrices in general do not 

have to be diagonal. The only restriction is that the inverse 
of these matrices need to be pdd. 

Note that specifying a matrix to be pdd is LMI (Lemma 1) 
and therefore to check the proposed conditions, we need to 
solve an LMI.   

IV. NUMERICAL EXAMPLES 
In this section the proposed method is applied to two 
numerical examples: one is a second order switched Φ -
system and the other one is a third order switched system.  
 

A. Second Order Switched Φ -system: 
Consider a bimodal switched Φ -system with the system 
matrices: 
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A
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The LMI condition (8) is feasible with the solution: 
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34.5791 -0.5189
-0.5189 35.0735

P ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 2

26.3119 0.0760
0.0760 26.2510

P ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

with  
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Therefore, the switched Φ -system is stable. The inverse of a 
two-dimensional pdd matrix is always a pdd matrix. This is 
not always true for higher dimensions. Because of the fact 
that the inverse of a two-dimensional pdd matrix is always a 
pdd, the following 1S and 2S   satisfy (10).  

1

0.0289 0.0004
0.0004 0.0285

S
⎡ ⎤
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⎣ ⎦

2

0.0380 -0.0001
-0.0001 0.0381

S
⎡ ⎤
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⎣ ⎦

. 

Proposition 2 for second order systems is less conservative 
than higher order systems and 1 2, ,..., KS S S  do not have to 
be diagonal matrices.  
 

B. Third  Order Switched Φ -system: 
Consider a third order Φ -system with the system matrices: 
 

1

-0.06515 -0.4744 0.3041
-0.4744 0.4872 0.3732
0.3041 0.3732 -0.1271

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,
2

0.04419 0.3155 -0.04247
0.1451 -0.04931 -0.2805
0.2833 -0.01418 0.1554

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 
The LMI condition (8) is feasible for this example with the 
solution: 

1

16.5100 -0.4733 -1.7526
-0.4733 16.1032 -0.4243
-1.7526 -0.4243 13.3561

P
⎡ ⎤
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⎢ ⎥⎣ ⎦

,
2

14.6794 0.1369 0.1619
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0 2.0286 2.0161
2.0286 0 2.1725
2.0161 2.1725 0
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The switched system is stable under arbitrary switching 
signals.  
LMI condition (10) is also feasible with the solution: 

1

15.4911 0 0
0 13.4929 0
0 0 16.0713

S
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,
2

17.2202 0 0
0 17.2319 0
0 0 17.2063

S
⎡ ⎤
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1

14.7675 0.4846 1.5626
0.4846 12.2697 0.1082
1.5626 0.1082 15.4927

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2

16.9289 -0.0223 -0.0117
-0.0223 16.9435   0.0143
-0.0117   0.0143 16.9115

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Therefore Proposition 2 confirms the stability of the 
switched system under the arbitrary switching signals. 

V. CONCLUSION 
Two LMI-based sufficient conditions for stability analysis 

of a class of switched nonlinear systems are proposed. These 
conditions are extensions of the LMI-based stability 
conditions for switched linear systems to switched Φ -
systems.  The proposed stability results are based on the 
switched quadratic Lyapunov functions which are usually 
less conservative than their counterparts which are based on 
common Lyapunov functions. These results can be used for 
controller design problems as well as model reduction of 
switched nonlinear systems.  
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