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and Close to Linear Update Time
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Abstract— For any fixed 1 > ε > 0 we present a
fully dynamic algorithm for maintaining (2 + ε)-approximate
all-pairs shortest paths in undirected graphs with positive edge
weights. We use a randomized (Las Vegas) update algorithm
(but a deterministic query procedure), so the time given is the
expected amortized update time.

Our query time O(log log logn). The update time is
Õ(mnO(1/

√
logn) log(nR)), where R is the ratio between the

heaviest and the lightest edge weight in the graph (so R = 1
in unweighted graphs). Unfortunately, the update time does
have the drawback of a super-polynomial dependence on ε: it
grows as (3/ε)

√
logn/ log(3/ε) = n

√
log(3/ε)/ logn.

Our algorithm has a significantly faster update time
than any other algorithm with sub-polynomial query time. For
exact distances, the state of the art algorithm has an update
time of Õ(n2). For approximate distances, the best previous
algorithm has a O(kmn1/k) update time and returns (2k−1)
stretch paths. Thus, it needs an update time of O(m

√
n) to

get close to our approximation, and it has to return O(
√

logn)
approximate distances to match our update time.

Keywords-graph algorithms; dynamic algorithms; ap-
proximation algorithms; shortest paths;

1. INTRODUCTION

The goal of a dynamic shortest path algorithm
is to process an online sequence of query and update
operations on an underlying graph. An update operation
inserts or deletes an edge from the graph, while a query
operation asks for the shortest distance (in the current
graph) between two given vertices. An approximate
dynamic algorithm only returns an approximate shortest
distance between the query points. A dynamic algorithm
is said to be incremental if it only handles edge inser-
tions, decremental if it only handles edge deletions, and
fully dynamic if it handles both.

1.1. Existing Algorithms

The efficiency of a dynamic algorithm is primar-
ily judged by two parameters: query time and update
time. Different algorithms achieve various trade-offs
between these two parameters, but we only mention
existing algorithms with a sub-polynomial query time.

The fastest fully dynamic exact algorithm was
developed by Demetrescu and Italiano [1], although
Thorup [5] later improved on this slightly. It works for

general graphs and has an amortized update time of
Õ(n2) 1. For approximate dynamic algorithms, much
work has been done on the incremental and decremental
cases, but it all culminated with extremely efficient
algorithms developed by Roditty and Zwick [4]. They
presented separate incremental and decremental algo-
rithms which return (1 + ε) approximate shortest paths
and have a constant query time and an amortized update
time of Õ(n). Both algorithms have a randomized
update procedure.

However, little progress has been made for
fully dynamic approximate algorithms. For unweighted
graphs, Roditty and Zwick [4] presented a (1+ ε) algo-
rithm with an update time of Õ(mn/t) (1 ≤ t ≤

√
m),

but the query time is O(t). Another approach is to just
build the approximate distance oracle of Thorup and
Zwick [6] from scratch after each update. For any k
with 2 ≤ k ≤ log n this leads to a (2k−1) approximate
algorithm with a query time of O(k) and an update time
of O(kmn1/k). The algorithm works for undirected
graphs with positive weights.

1.2. Our contributions

We present a dynamic approximate shortest path
algorithm that works for undirected graphs with positive
edge weights. Our query algorithm is deterministic,
but our update procedure is randomized (Las Vegas),
so we give the expected update time. For any fixed
ε ∈ (0, 1) we present an algorithm that returns (2 + ε)
shortest distances (it can also return the shortest paths
themselves, although the query time is multiplied by the
number of edges in the output path). Let β = log(3/ε),
and let m refer to the number of edges in the current
graph.

Our query time is O(log log log n). In un-
weighted graphs, the update time is

O(mn
√
β/ logn log1/2 n+ n · n2

√
β/ logn log5/2 n) =

Õ(mnO(1/
√

logn))

1We say that f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n))
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In weighted graphs, it is

O(mn
√
β/ logn log(nR) log n +

n · n2
√
β/ logn log(nR) log3/2 n) =

Õ(mnO(1/
√

logn) log(nR))

Our update time is almost linear, but not quite: there is
this extra nO(1/

√
logn) factor, and the dependence on ε

is somewhat super-polynomial, so we should not set ε
too small. However, we briefly discuss in Section 6.4
why it seems quite plausible that one could improve the
update time to Õ(m) without changing the underlying
structure of the algorithm.

Also, we omit the details, but our algorithm can
be extended to handle updates that touch not just a
single edge, but an arbitrary number of edges that are
all incident on the same common vertex. The update
and query times remain the same.

Note that our update time is significantly better
than that of any previous algorithms with small query
time. Using the approximate distance oracle of Tho-
rup and Zwick [6] would require an update time of
O(m

√
n) to achieve a 3-approximation. To match the

update time of our algorithm, it would have to return
Ω(
√

log n) approximate distances.

1.3. Organization

Section 2 introduces basic preliminaries. Section
3 presents an algorithm Small-Diam that can efficiently
find “short” shortest paths in weighted graphs. That
is, it only guarantees a good approximation if the
actual shortest distance is small. Like many approximate
algorithms, Small-Diam has each vertex store its own
local distance information, with some storing more than
others. But in our case, low information vertices do
not store information about less of the graph: rather,
they store full distance information but in an outdated
version of the graph (i.e a version that has since
been changed by updates). The query algorithm patches
together information from these various versions to find
an approximate shortest path. During updates, we renew
several vertices by updating their local version of the
graph to the current version. The update procedure of
Small-Diam is described in section 3 but generalized in
section 5.2.

Section 4 extends Small-Diam to efficiently find
shortest paths with few edges; in weighted graphs, this
is more powerful than finding short shortest paths. We
do this by modifying the edge weights of our graph in
such a way that algorithm Small-Diam as is runs more
quickly. As long as a path has few edges, these weight
changes do not alter its length by much.

Section 5.1 gives intuition for how to proceed.
We want to run Small-Diam, so we need to ensure that

all shortest paths in our graph have few edges. We do
this by adding heavy edges that do not change shortest
distances, but which ensure that an approximate shortest
path can always be patched together from just a few of
these edges. More formally, we create an emulator H
for our graph: H has the same vertex set and similar
shortest distances but uses different edges.

Sections 6.1 and 6.2 present the emulator H that
we use, while section 6.3 shows how we can efficiently
maintain this emulator during changes to our underlying
graph. The techniques in these sections rely heavily
on those used by the approximate distance oracles of
Thorup and Zwick [6].

2. NOTATION

Let G = (V,E) be our undirected graph with
positive edge weights, and let w(u, v) be the weight of
edge (u, v). For any pair x, y ∈ V let π(x, y) be the
shortest x − y path, and let d(x, y) be the weight of
π(x, y). We assume that the minimum edge weight in
the graph is 1; we can ensure this by multiplying all the
weights by the same number. We let R be the maximum
edge weight in the resulting graph (so R is the ratio of
the heaviest to the lightest edge weight in the original
graph).

Our algorithm can handle updates that insert a
single edge of arbitrary weight, delete a single edge, or
change the weight of an existing edge. For simplicity,
we will not deal with weight changes because they can
always be represented as a deletion followed by an
insertion. A query algorithm takes as input a pair of
vertices x, y and outputs an approximation to d(x, y).

We say that an algorithm outputs an α approxi-
mation if given any query input x, y it outputs a value
in [d(x, y), αd(x, y)]. Throughout the paper, ε refers to
an arbitrary positive constant < 1. Note that for any
constant c we can treat cε as ε and (1 + ε)c as (1 + ε)
because we can just replace ε with ε′ = ε/2c.

2.1. k-algorithms

Given a query x, y, our algorithm runs differently
depending on d(x, y). This may seem circular because
we do not know d(x, y) ahead of time, but our solution
is to just guess several different values for d(x, y). In
particular, for the rest of this paper, we will only focus
on queries x, y for which k ≤ d(x, y) ≤ (1 + ε)k,
where k is an arbitrary parameter. Intuitively, this is
a safe assumption because our interval sizes increase
exponentially by powers of (1 + ε), so there are few
relevant values of k to check.

Thus, the rest of this paper will focus on
showing that for any k we can develop a k-algorithm
which satisfies all of the following properties:
• the query time of the k-algorithm is constant.
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• if d(x, y) ≤ (1 + ε)k then the algorithm returns
δ(x, y) satisfying d(x, y) ≤ δ(x, y) ≤ (2 + ε)(1 + ε)k.
• if d(x, y) > (1 + ε)k then the algorithm returns
δ(x, y) satisfying δ(x, y) ≥ d(x, y).

This definition of a k-algorithm is slightly complicated,
but the basic idea is that the k-algorithm returns a
(2 + ε)(1 + ε) < (2 + 4ε) approximation to d(x, y)
as long as d(x, y) ∈ [k, (1 + ε)k]. Note that additive
errors of εk are allowed in a k-algorithm because they
are equivalent to (1 + ε) multiplicative errors.

During updates, we update every k-algorithm
for k = 1, (1 + ε), (1 + ε)2, (1 + ε)3...nR. Our query
procedure queries in each of these k-algorithms and
then takes the minimum of the results. This yields a
(2 + ε)(1 + ε) approximation because bullets 2 and 3
ensure that all values in the min clause are ≥ d(x, y),
and the second bullet ensures that one of the values is
a good approximation.

There are O(log(nR)) different values of k to
check so that is the query time. We can improve this to
O(log log(nR)) by binary searching for the right value
of k instead of naively checking each one. In fact,
we can further improve to O(log log log n) by using
an O(log n) approximate distance oracle of Thorup
and Zwick [6] to start with a log n approximation,
thus allowing us to narrow our search space (details
omitted). Thus, from now on, we only focus on
presenting a k-algorithm.

3. AN ALGORITHM FOR SMALL DIAMETER GRAPHS

This section describes an algorithm Small-Diam
for efficiently finding “short” shortest paths in integer-
weighted graphs. That is, given some parameter d ≤ n,
the output δ(x, y) is guaranteed to be a (2 + ε)-
approximation to d(x, y) as long as d(x, y) ≤ d
(technical note: G itself may not have integer weights,
but we later modify its edge-weights to change this).
Otherwise, the only guarantee is that δ(x, y) ≥ d(x, y).
The (amortized) update time is O(md), which is good
for small d. Note that Small-Diam serves as a k-
algorithm with update time O(mk), but that it is slightly
more general than a k-algorithm because it only requires
that we bound d(x, y) from above.

3.1. An Existing Technique

We rely on an existing algorithm for decre-
mentally maintaining a single shortest path tree. The
algorithm of Even and Shiloach [2] is restricted to
undirected, unweighted graphs, but King [3] extended
this to weighted, directed graphs.

King’s algorithm (see section 2.1 of [3]) assumes
a graph with integer edge weights in a decremental
setting. Given a source s and a distance d it maintains

a shortest path tree from s up to distance d. The update
time over all deletions is O(md).

The intuition behind King’s algorithm is that
when we delete an edge, we only have to worry about
vertices whose distance from s changed. In particular,
the data structure only explores the edges incident on
a vertex x when the shortest distance from s to x
increases. But we are only maintaining a shortest path
tree up to distance d, so since the graph has integer
edge weights, the distance from s to x can increase
at most d times before x leaves our jurisdiction. Note
that a decremental setting ensures that distances only
increase, never decrease.

Definition 3.1. We refer to the above data structure
from a source s up to distance d as EDS(s, d) (EDS
stands for exact decremental structure).

3.2. Local Information

The algorithm above provides a method for
handling deletions. In particular, since this section only
handles shortest paths of length ≤ d, we construct an
EDS(s, 2d) from each vertex s (we need 2d not d
because we are returning an approximation). We process
deletions in G by updating every EDS. However,
EDS′s cannot handle insertions, so we largely ignore
insertions to G. This means that our vertices will store
shortest path trees in outdated versions of the graph:
they might not know about recently inserted edges.

To handle insertions, we occasionally renew cer-
tain vertices s by building a new EDS(s, 2d). This
ensures that s knows about all edges that existed at the
time of the renewal. The new EDS(s, 2d) now acts as
before: it processes all further deletions to G but ignores
insertions.

To keep track of the various graph versions we
use a notion of time: we start at time 0, and then
increment the time counter with each update to G.

Definition 3.2. Let T (u, v) refer to the time at which
edge (u, v) was most recently inserted. Let T (u), the
time of a vertex, be the maximum of the times of its
incident edges.

Definition 3.3. We renew a vertex s by rebuilding
EDS(s, 2d). Let I(s) be the time at which s was most
recently renewed (I stands for information).

Definition 3.4. G always refers to the current graph.
Let Gs = (V,Es) refer to the version of the graph
used by EDS(s, 2d). In particular, Es = {(u, v) ∈
E | T (u, v) ≤ I(s)}. Let ds(s, v) refer to the shortest
distance between s and v in Gs. Note that we always
have Es ⊆ E and ds(s, v) ≤ d(s, v), which makes
sense because EDS(s, 2d) processes all deletions.
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3.3. Update Procedure

We now present a strategy for renewing vertices.
For the sake of intuition, say that every EDS is fully
updated, and that we insert a new edge (u, v). Then,
for any pair x, y there are two possible cases. If π(x, y)
does not use (u, v) then d(x, y) = dx(x, y) so we are
set. Otherwise, we have d(x, y) = d(x, u) + d(u, y), in
which case it would suffice to know shortest distances
from u.

This suggests a simple update strategy: whenever
we insert an edge (u, v) we renew both u and v. So
overall, we begin by building EDS(s, 2d) for every
vertex s. Then, as the algorithm progresses, we maintain
the EDS′s under deletions, and renew 2 vertices for
every insertion. By Section 3.1, maintaining an EDS
over all future deletions takes a total of O(md) time.
Thus, our amortized update time is O(md) because
every insertion builds 2 EDS structures.

(Note that with this update procedure we always
have I(v) = T (v). This changes in Section 5.2)

3.4. Queries

Intuitively, if we need to find d(x, y), we can
start by looking at dx(x, y). But EDS(x, 2d) might
be outdated so we also need to check the distance
through every edge that was inserted after time I(x).
Unfortunately, checking every edge might take too long.
We overcome this by associating each vertex x with
a nearby high-information vertex w. To find distances
from x we first take the path to w, and then rely on w′s
high information to get to the destination.

A naive approach would be to always route
through the highest information vertex in the graph, but
this vertex might be too far away. Instead, we note that
since our goal is a multiplicative approximation, how
long of a detour we can afford depends on how far
away y is. If d(x, y) is small then we can only afford
a short detour, but the hope is that in this case, since y
is nearby, we do not need the vertex w to have all that
much information.

Thus, each vertex x stores the highest infor-
mation vertex among nearby vertices, among medium
distance vertices, and so on. In particular, each x stores
the following heaps H(x, i):

H(x, i) = {v|min{dx(x, v), dv(v, x)} ≤ (1 + ε)i}

Note that there are only O(log d) = O(log n) heaps
per vertex x (we chose d ≤ n). We make each H(x, i)
a max-heap, where vertex v has key I(v). Thus, we
can efficiently keep track of the highest information
vertex in each heap. Since the heaps only rely on the
information in the EDS′s we can easily maintain them
along with the EDS′s without increasing our update
time by more than a polylog factor.

Query Algorithm: Given input x, y, we try detouring
through the highest information vertex in each H(x, i)
and each H(y, i), and then take the minimum resulting
distance. Letting vi, wi be the highest information
vertices in H(x, i), H(y, i) respectively, we output

δ(x, y) = min
i
{dx(x, y), dy(x, y), dvi

(vi, x) + dvi
(vi, y),

dwi
(wi, y) + dwi

(wi, x)}

There are O(log d) values of i, so the query time is
O(log d). In fact, if all we need is a k-algorithm then
we can reduce the query time to constant because we
only need to check heaps H(x, 1 +

⌈
log(1+ε)(k/2)

⌉
)

and H(y, 1 +
⌈
log(1+ε)(k/2)

⌉
) – details omitted.

Theorem 3.1. In the above algorithm, the output
δ(x, y) is in [d(x, y), (2 + ε)d(x, y)].

Proof: See Figure 1. Every term in the min clause
is ≥ d(x, y), so we need to show that at least one of
the terms is ≤ (2 + ε)d(x, y). Let (u, v) be the most
recently inserted edge on π(x, y), and WLOG, say that
d(x, u) ≤ d(x, y)/2. Note that when u was renewed due
to the insertion of (u, v) all the other edges in π(x, y)
were already in place, so Gu contains all of π(x, y).
Thus, d(x, y) = du(u, x) + du(u, y).

Now, let H(x, i) be the smallest heap (minimum
i) that contains u. If u is the highest information vertex
in H(x, i) then u = vi, so the query algorithm’s min
clause will contain du(u, x) + du(u, y) = d(x, y), as
desired. Otherwise, say that w is the highest informa-
tion vertex in H(x, i). Note that since I(w) ≥ I(u),
Gw ⊇ Gu must also contain all of π(x, y).

We now show that dw(w, x) + dw(w, y) ≤
(2 + ε)d(x, y). For note that since w ∈ H(x, i) and
u /∈ H(x, i − 1) we must have that dw(w, x) ≤
(1 + ε)du(u, x). Moreover, since Gw contains π(x, y)
we have dw(w, y) ≤ dw(w, x) + d(x, y). This yields

dw(w, x) + dw(w, y) ≤ (2 + 2ε)d(u, x) + d(x, y) ≤
(2 + 2ε)(d(x, y)/2) + d(x, y) ≤ (2 + ε)d(x, y)

(Note that dw(w, x) and dw(w, y) are both <
2d(x, y) ≤ 2d, so using EDS(w, 2d) is enough).

4. WEIGHTED VERSUS UNWEIGHTED DIAMETER

For this section, we focus on describing a k-
algorithm for some specific k (see Section 2.1).

The update time of Small-Diam stems from the
fact that it takes O(md) to build and maintain a single
EDS(s, d). But our EDS maintains exact distances
from a source, whereas we are willing to settle for
(1 + ε) approximations. Thus, instead of exploring a
vertex x every time its distance from s changes, we
would like to only explore x when the distance changes
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Figure 1. Proof for query algorithm of Small-Diam. (u, v) is the
most recently inserted edge on π(x, y), so u and v know about all
of π(x, y). However, there might be a higher information vertex w
in the same heap as u, in which case we end up taking the path
π(x,w) ◦ π(w, y)

by a significant factor.
In particular, we will ensure that the distance

always changes by at least some additive factor β. We
can do this by rounding all of our edge weights up to
the nearest multiple of β. Of course, the problem is that
additive factors change the shortest path structure. But
recall that we are focusing on a k-algorithm, so since
we only need a (1+ε) approximation, we can afford an
additive error of kε. Thus, we can set β to be relatively
high as long as the shortest path from s to x contains
few edges, so the additive factor does not have time to
grow much. In fact, it is enough for some approximate
shortest path from s to x to contain few edges.

Definition 4.1. We say that a graph G has an AUDk of
d if for every pair x, y with d(x, y) ≤ 4k there exists a
(1 + ε)-approximate shortest path between x and y that
contains at most d edges (AUD stands for approximate
unweighted diameter, and the k is for k-algorithm).

Theorem 4.1. As long as at all times G has an
AUDk of at most d, algorithm Small-Diam can run
as a k-algorithm with an update time of only O(md)
(as opposed to O(mk)). The new approximation ratio
is (2 + ε)(1 + ε)3, which is within our limits.

Remark. Theorem 4.1 is crucial because it allows
Small-Diam to efficiently handle weighty paths with
few edges. Our goal is now to turn G into a graph
with small AUDk; while there is no way to avoid that
G might have weighty paths, we can try to add some
heavy edges which do not decrease shortest distances,
but which do ensure that an approximate shortest path
can always be patched together from just a few of these
added edges.

Proof: Recall that we are focusing on a specific
k-algorithm. We start by creating a new graph G′k that
has the same edges as G, but with different weights.
In particular, we round every edge weight in G up to
the nearest multiple of bεk/dc. We then run Small-
Diam on G′k instead of G, so given a query (x, y),

our k-algorithm for G returns a value δ′(x, y) with
d′(x, y) ≤ δ′(x, y) ≤ (2 + ε)d′(x, y) (d′(x, y) is the
shortest x − y distance in G′k). We now need to prove
that δ′(x, y) satisfies the requirements of a k-algorithm
for G (see Section 2.1), and that the update time of
Small-Diam in G′k is only O(md) (rather than O(mk)).

(technical note: the naive way to run Small-Diam
on G′k requires running O(log(nR)) k′-algorithms –
this multiplies our overall update time by a factor of
O(log(nR)) and the query time by O(log log log n).
However, a slightly more careful analysis shows that
only the values k′ = k, (1+ε)k, (1+ε)2k, and (1+ε)3k
are relevant, which allows us to avoid this increase
(details omitted)).

Note that δ′(x, y) trivially satisfies property 3 of
k-algorithms (because d(x, y) ≤ d′(x, y) ≤ δ′(x, y)),
so we only need to prove property 2. Thus, we can
assume that d(x, y) ≤ (1+ε)k. By definition of AUDk,
there exists some x − y path P (x, y) in G such that
P (x, y) contains at most d edges and w(P (x, y)) ≤
(1 + ε)d(x, y). Let P ′(x, y) be the corresponding path
in G′k. Now, note that every edge weight in G′k is larger
than the corresponding edge weight in G by an additive
factor of at most bεk/dc. Thus, since P (x, y) contains
at most d edges we have

d′(x, y) ≤ w(P ′(x, y)) ≤ w(P (x, y)) + d bεk/dc ≤
(1 + ε)d(x, y) + εk ≤ (1 + ε)2k + εk ≤ (1 + ε)3k

which implies

δ′(x, y) ≤ (2 + ε)d′(x, y) ≤ (2 + ε)(1 + ε)3k

Thus, bullet 2 of k-algorithms is in fact satisfied for G.
Recall that the update time of Small-Diam in

G′k is simply the amount of time it takes to maintain
an EDS(s, 4k) (in G′k) over all deletions. Now, note
that all edge weights in G′k are multiples of bεk/dc; we
consider the integer-weighted graph G′′k that is obtained
by dividing every edge weight in G′k by bεk/dc. G′′k has
the same shortest path structure as G′k, so maintaining
an EDS(s, 4k) in G′k is equivalent to maintaining an
EDS(s, 4k/ bεk/dc) = EDS(s,O(d/ε)) in G′′k , which
we know takes a total of O(md/ε) time.

(perhaps a more intuitive proof is to recall that
in maintaining EDS(s, 4k), we only explore a vertex
x (and incident edges) when the distance from s to x
changes. But note that distances in G′k can never change
by less than bεk/dc, so the distance from s to x can
change at most 4k/ bεk/dc = O(d/ε) times before x
leaves our jurisdiction.

5. ENSURING A SMALL AUDk

5.1. A Suitable Emulator

Definition 5.1. We say that graph H = (V,E′) is an α-
emulator for our graph G if H has the same vertex set
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as G, and if for any pair of vertices x, y, we have that
d(x, y) ≤ dH(x, y) ≤ αd(x, y) (dH refers to shortest
distances in H).

By Theorem 4.1, we are set if G has a small AUDk.
Of course, this may not be the case, so our solution is
to create a (1 + ε) emulator H that has small AUDk,
and then run Small-Diam on H .

That is, every time we update an edge in G,
we make corresponding changes to H that preserve
its small AUDk and maintain its (1 + ε) emulator
properties. Algorithm Small-Diam runs on H , so it does
all the appropriate steps (renew vertices, update heaps,
etc.) every time an edge in H is updated. By Theorem
3.1, the algorithm returns (2+ ε) approximate distances
in H , which are guaranteed to be (2+ε)(1+ε) < (2+4ε)
approximate distances in G.

The only catch is that although updates in H are
fast (because H has small AUDk), a single update in G
may force us to make many changes to H (to preserve
the emulator properties). Thus, we need to ensure that H
is easily maintainable. Ideally, every update in G would
only lead to a constant number of updates in H , but this
is difficult to ensure. Instead, we rely on the fact that
many emulators are localized: an update to edge (u, v)
in G only affects edges that are “near” u and v in H .
So even though we might have to change many edges
in H , they will all be in a small area.

5.2. Flexible Updates in the Small-Diam Algorithm

Definition 5.2. A bulk update is one in which many
edge changes occur at once. All of the touched edges
are considered to have been updated at the same time.

This notion captures the intuition above: every time we
update G, we must do a bulk update on H to maintain
all the required properties. Our previous approach
would require algorithm Small-Diam to renew all
endpoints of the updated edges, which we cannot
afford to do. Thus, we rely on the intuition that our
bulk updates will typically only affect nearby edges.

Recall that our reason for renewing u and v
when we inserted edge (u, v) was to ensure that if
some shortest path needed (u, v), then u would have
enough information to handle this. But intuitively, if
some vertex w near u is already being renewed, then
there is no need to renew u, as all paths that use edge
(u, v) can just be routed through w. As long as d(u,w)
is small enough, this additional detour will fit within
our approximation limits.

We now describe this more formally as a
property that needs to be maintained at all times.
Recall that we are focusing on a k-algorithm (see
Section 2.1), so we can assume that our shortest
distances are in [k, (1 + ε)k].

Information Property: Given any vertex u, there
must exist a vertex w for which the following 2
properties hold. We refer to w as the hub of u.
1) d(u,w) ≤ εk
2) I(w) ≥ T (u) (recall Definitions 3.2 and 3.3)

Theorem 5.1. As long as property 1 is maintained,
the query algorithm of Small-Diam returns (2 + ε)-
approximate shortest paths.

Remark. This theorem implies that we can be much
more flexible with our renewal strategy for bulk updates.
All we have to do is find a small set of vertices whose
renewal preserves property 1.

Proof: The proof is almost identical to that of
Theorem 3.1. As before, given an input pair x, y, we
look at the edge (u, v) on π(x, y) that was most recently
inserted. Previously, we relied on the fact that u was
renewed after the insertion of (u, v), so u knew about all
of π(x, y). But with property 1, even if u itself does not
have the necessary information, there must be a nearby
hub w that does. Thus, the proof continues exactly as
before, just with w instead of u. The added distance
between u and w is at most εk, which is insignificant
for a k-algorithm (see Section 2.1).

6. THE EMULATOR

We now describe an emulator with small AUDk

(Definition 4.1). The emulator we use is almost identical
to a spanner of Thorup and Zwick [7], although we
use it for very different purposes. It is based upon
techniques of the same authors that were originally
developed for approximate distance oracles [6].

6.1. The Techniques of Thorup and Zwick

In their spanner, Thorup and Zwick let different
vertices have different priorities: high priority vertices
are rarer, but they are also more well connected. To
get from one vertex to another, we take paths to get to
higher and higher priority vertices, which get us closer
and closer to our destination.

Definition 6.1. Let V = A0 ⊇ A1 ⊇ ... ⊇ Ac−1 ⊇
Ac = ∅ be sets of vertices (c is a parameter of our
choosing). We say that a vertex has priority i, or is an
i-vertex if it is in Ai/Ai+1. We define d(v,Ai) to be the
shortest distance from v to some i-vertex: d(v,Ai) =
minw∈Ai/Ai+1 d(v, w).

Definition 6.2. Given an i-vertex v, we define the
cluster of v to be C(v) = {w ∈ V | d(w, v) <
d(w,Ai+1)}

We use the same sets Ai as Thorup and Zwick [6]. In
particular, we start with A0 = V , and every vertex in
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Ai is independently sampled and put into Ai+1 with
probability 1/n1/c. This leads to:

Lemma 6.1. [6] The expected total size of all the
clusters is O(cn1+1/c).

6.2. Our Emulator

In their spanner, Thorup and Zwick [7] con-
nected each vertex v to all the vertices in C(v). But
recall that in order for our emulator to be easily main-
tainable (as G changes), we need it to be “localized”:
vertex v should only be connected to nearby vertices.

Definition 6.3. Given a parameter p, we define the p-
truncated cluster of v to be

Cp(v) = {w | w ∈ C(v) and d(v, w) ≤ p}

To keep our emulator localized, we only connect v to
vertices in the truncated cluster of v. To determine the
appropriate truncation distance, we recall that we are
developing a k-algorithm, so we can afford additive
errors of εk. Thus, for every vertex v and every w ∈
Cεk/2(v) we add an edge (v, w) of weight d(v, w) to our
emulator. We also add all the edges of the original graph
G to our emulator. Let H be the resulting emulator.

Theorem 6.2. [7] In expectation, the above emulator H
has O(m+ cn1+1/c) edges and takes O(cmn1/c) time
to construct. Also, H is a 1-emulator (shortest distances
in H are identical to those in G).

Proof: For the non-truncated version of H , the
bound on the number of edges stems from Lemma 6.1,
and the construction algorithm is described in [6]. It
is easy to check that truncation only decreases these
parameters. H is a 1-emulator because all edges from
G are included in H .

Theorem 6.3. the AUDk (see Definition 4.1) of H
is O((3/ε)c log n), where c is the number of vertex
priorities (the AUDk is actually O([(2 + ε)/ε]c log n),
but we prefer to keep notation simple). See section 7 for
the proof.

6.3. Maintaining the Emulator

All we have left to show is how to maintain the
emulator H . Recall that every update in G leads to a
bulk update in H . In particular, an update in G may
change the clusters around various vertices in H , so
we need to add and delete edges in H to ensure that
we continue to have an edge from every v to every
w ∈ Cεk/2(v) (H must also contain all the edges of
G but this is trivial to maintain, so we only focus on
cluster edges).

We determine the edges that need to be updated
in H by recomputing all the clusters from scratch every
time G is updated: by Theorem 6.2 this only takes

O(cmn1/c) time in expectation. This leads to a bulk
update with all the necessary changes to H . We now
need to determine a renewal strategy for this bulk update
(see Theorem 5.1).

Theorem 6.4. If we insert or delete edge (u, v) in G
and make the corresponding bulk update to H , then
renewing u and v in H maintains the information
property from Section 5.2 (for k-algorithms).

Proof: The theorem relies on the fact that we use
truncated clusters, so all vertices in a single cluster are
near each other. There are two ways the information
property might be broken, so we now show that renew-
ing u and v takes care of both:
1: If some vertex w used edge (u, v) to get to its hub
h, then deleting (u, v) makes this path unavailable. But
note that if (u, v) was on π(w, h) then u is even closer
to w than h was, so we can make u the new hub of w.
2: If some edge (w,w′) is inserted into H (as a result of
edge (u, v) being changed in G) then T (w) and T (w′)
go up so we need to ensure that either u or v serve as
hubs for w and w′. To do this, we explore the reasons
why (w,w′) might have been inserted into H .

The first possibility is that inserting (u, v) de-
creased d(w,w′) (in G), so w′ is now in Cεk/2(w).
But then d(w, u) and d(u,w′) are both smaller than
d(w,w′), which in turn is ≤ εk/2 (by the definition of
truncated clusters). Thus, u is close enough to w and
w′ to become their new hub.

The second possibility is that deleting (u, v)
increased d(w,Ai+1) (where i is the level of w′),
resulting in w becoming part of Cεk/2(w′) (see Defi-
nition 6.1). But in this case, d(w, u) must be smaller
than the distance d(w,Ai+1) was before (u, v) was
deleted. Also, we know that d(w,w′) was greater than
d(w,Ai+1) before the deletion (otherwise, w would
have been part of Cεk/2(w′)). Thus, after the deletion
we have d(w, u) < d(w,w′) ≤ εk/2, so d(u,w′) ≤
d(u,w) + d(w,w′) < εk. Hence, u is close enough to
both w and w′ to become their new hub.

6.4. Putting it All Together

Remark. We have described our approach as running
algorithm Small-Diam on the emulator H . But techni-
cally, we actually run Small-Diam on a slight modifica-
tion of H . For recall from Theorem 4.1 that we make
Small-Diam run quickly on graphs with small AUDk

(see Definition 4.1) by modifying the edge weights of
the graph. Thus, what we actually have is our emulator
H and a modification H ′: H ′ contains the same edges as
H , just with different weights. When we update G, we
compute the necessary changes to H , then we modify
the edge weights of H to get to H ′, and only then
do we run Small-Diam (renew vertices, keep track of
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heaps, etc.) on H ′. Since distances in H ′ are similar to
those in H (see Theorem 4.1), it is easy to check that
Theorem 6.4 guarantees that the information property
is also preserved in H ′ (not just in H).
Update Time Analysis: When we update G, we have
to recompute the cluster structure of G (to maintain
H), and we need to renew two vertices in H . By
Theorems 6.2 and 6.3 it takes O(cmn1/c) to compute
the cluster structures, and H has O(m+cn1+1/c) edges,
and an AUDk of O((3/ε)c log n). Thus, by Theorem
4.1, the amortized update time for a single k-algorithm
(there are O(log(nR)) of them) is Õ(cmn1/c + (m +
n1+1/c)(3/ε)c log n). Setting c =

√
log(n)/ log(3/ε),

we get the update time of Section 1.2.
We can achieve a slightly faster update time in

unweighted graphs by reducing the number of edges
in the emulator to O(n1+1/c). We do this by simply
not including the original edges of G in H . This leads
to some complications as shortest distance in H are no
longer identical to those in G, they are only similar. We
omit the details but we can overcome this by slightly
tweaking our algorithm and analysis; all of the basic
ideas and techniques remain exactly the same. See
Section 1.2 for the resulting update time.
Remark. Perhaps the easiest way to improve the update
time of our algorithm would be to develop an emulator
that works better for our purposes. We need a (1 + ε)
emulator that is sparse, has small AUD, and is easy
to maintain as G changes. The spanner of Thorup and
Zwick [7] serves us relatively well, but it was not
intended to have small AUD, so it seems likely that we
could do better if we developed a new emulator with
this specific problem in mind.

7. PROOF OF THEOREM 6.3

See Section 6.1 for a list of important definitions,
and recall that we are focusing on a k-algorithm. To
recap, our emulator H adds an edge of weight d(v, w)
from every vertex v to every w ∈ Ckε/2(v). We want
to prove the following:

Theorem 7.1. the AUDk (see Definition 4.1) of H
is O((3/ε)c log n), where c is the number of vertex
priorities (the AUDk is actually O([(2 + ε)/ε]c log n),
but we prefer to keep notation simple).

Proof: Let d = (3/ε)c. We first prove the theorem
for non-truncated clusters, and later show that this is
enough. Also, we only prove the bound AUDk =
O(cd log n) (almost as good because c = O(log n)).
Reducing this to O(d log n) requires a slightly more
careful analysis which we omit.

Let us focus on a specific pair of vertices x, y.
We need to show that there exists a (1 + ε) shortest
x − y path that has O(cd log n) edges. If π(x, y) has

fewer than d edges then the statement trivially holds
because H contains all edges in G.

Otherwise, our approach is to show that with
only O(c) edges we can find a (1+ε) approximate path
to some x′ on π(x, y) for which d(x, x′) ≥ bd(x, y)/dc.
We then repeat from x′ (instead of x). At each step,
we get about a 1/d fraction of the way to y, so it is
clear that we will need to take at most O(d log n) such
steps. Each step uses at most O(c) edges, which yields
a bound of O(cd log n) for AUDk.

(a more careful analysis here would allow us to
shave the factor of c off our bound for AUDk. The
basic intuition is that the more edges we use in a step,
the closer we get to y. So if we were to actually use c
edges in a single step then we would get much further
than a 1/d fraction of the way to y, so we would not
have to take as many steps).

Definition 7.1. Let xr refer to the vertex on π(x, y)
that is at distance r from x (so xr only exists for some
values of r). Also, let α = bd(x, y)/dc. For simplicity,
we let xα be the first vertex on π(x, y) that is at distance
at least α from x.

Our goal is to find a (1 + ε) shortest path with O(c)
edges to some vertex past xα. The intuition for our
approach is as follows. Let x′ be the furthest vertex
on π(x, y) that is still in C(x). If x′ is past xα then
we just take the cluster edge (x, x′) and we are done.
Otherwise, by definition of C(x), there must be some
higher priority priority vertex c near x′. Our approach
is to take the relatively short path (x, x′) ◦ (x′, c) and
continue from c; this deviates from the original path
π(x, y) but we can afford small detours. Now, either
we can get past xα from c, or c is relatively near an
even higher priority vertex c2.

Continuing in this fashion, at each step, either we
make a lot of progress toward y or we get to a nearby
higher priority vertex. The higher the vertex priority, the
more information is stored, and so the more progress
we will eventually make toward y. There are c vertex
priorities so the resulting path only uses O(c) edges.

More formally, Let p′(1) be the index such that
xp′(1) (see Definition 7.1) is the furthest vertex on
π(x, y) that is still in C(x). Let xp(1) be the vertex
succeeding xp′(1) on π(x, y). If p(1) ≥ α (see Defini-
tion 7.1 for α) then we just take the path (x, xp′(1)) ◦
(xp′(1), xp(1)) in H and we are done. If p(1) < α then
by definition of C(x) there must be some 1-vertex v1
such that d(xp(1), v1) ≤ d(xp(1), x) = p(1) < α. Thus,
we take the path (x, xp′(1))◦(xp′(1), xp(1))◦(xp(1), v1),
and proceed from the higher priority vertex v1.

Let xp′(2) be the furthest vertex on π(x, y) that
is still in C(v1), let xp(2) be the vertex succeeding it
on π(x, y), and let v2 be the 2-vertex that is closest to
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Figure 2. This figure shows our path from x to xp(i) in H that contains few edges. The dotted path is the actual shortest path from x to
xp(i), while the bold path is the one we use.

xp(2). Let xp′(3) be the vertex furthest on π(x, y) that
is still in C(v2), let xp(3) be the vertex succeeding it
on π(x, y), and let v3 be the nearest 3-vertex to xp(3).
And so on all the way to xp(c−1) and vc−1

Recall that d(xp(1), v1) ≤ p(1). It is not hard to
show by induction that we always have

d(xp(i), vi) ≤ p(i)

We have already proved the base case. Now say that
it is true for i. We know that d(xp(i+1), vi+1) ≤
d(xp(i+1), vi) because otherwise we would have
xp(i+1) ∈ C(vi), which would contradict how we chose
xp(i+1). But by the inductive hypothesis,

d(xp(i+1), vi) ≤ d(xp(i+1), xp(i)) + d(xp(i), vi) ≤
(p(i+ 1)− p(i)) + p(i) = p(i+ 1)

Now, note that we can always take the following path
to any xp(i) (see Figure 2):

(x, xp′(1)) ◦ (xp′(1), xp(1)) ◦ (xp(1), v1) ◦ (v1, xp′(2))◦
(xp′(2), xp(2)) ◦ (xp(2), v2) ◦ ... ◦ (xp′(i), xp(i))

It is easy to see that this path is no longer than the path
that follows π(x, y) but takes detours from xp(1) to v1
and back to xp(1), from xp(2) to v2 and back, and so
on until xp(i−1) to vi−1. Thus, we have a path to xp(i)
of length at most

p(i) + 2[d(xp(1), v1) + ...+ d(xp(i−1), vi−1)]

But recall that d(xp(i), vi) ≤ p(i), so our path to xp(i)
has length at most

p(i) + 2[p(1) + ...+ p(i− 1)]

Thus, intuitively, we want to know when

p(i) + 2[p(1) + ...+ p(i− 1)] ≤ (1 + ε)p(i)

because then we have a good path to xp(i).

Definition 7.2. Define β(i) = (3/ε)iα. Note that
β(0) = α (see Definition 7.1 for α)

It is not hard to check that the following holds: 2

β(i) > (2/ε)(β(0) + β(1) + ...+ β(i− 1))

so if we let j be the first index (1 ≤ j ≤ c − 1) for
which p(j) ≥ β(j− 1) then the above path to p(j) is a
(1 + ε) path. Moreover, we have p(j) ≥ β(j − 1) ≥ α,
so p(j) is far away enough from x to satisfy our needs
(recall that we wanted to get past xα to ensure that we
went at least a 1/d fraction of the way to y). Thus, we
are set if such an index j exists.

If such an index does not exist then we have
p(j) < β(j − 1) for all 1 ≤ j ≤ c − 1. But note that
vc−1 is a (c − 1)-vertex so its cluster contains every

2this stems from the identity that for any C > 1, we have that
C1 + C2 + ...+ Ci−1 = (Ci − 1)/(C − 1) < Ci/(C − 1)
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vertex; in particular, the edge (vc−1, y) is in H . This
means that we can take the following x− y path in H:

(x, xp′(1)) ◦ (xp′(1), xp(1)) ◦ (xp(1), v1) ◦ (v1, xp′(2))◦
(xp′(2), xp(2)) ◦ (xp(2), v2) ◦ ... ◦ (vc−1, y)

The length of this path is at most

d(x, y) + (2p(1) + 2p(2) + ...+ 2p(c− 1))
≤ d(x, y) + 2[β(0) + β(1) + ...+ β(c− 2)]
≤ d(x, y) + εβ(c− 1)

Thus, we simply need to ensure that d(x, y) + εβ(c −
1) ≤ (1 + ε)d(x, y), or equivalently, that β(c − 1) ≤
d(x, y). But recall our initial assumption that π(x, y)
has at least d = (3/ε)c edges, and hence has length at
least d (we assumed that all edges have length at least
1 – see Section 2). This implies that

β(c− 1) = (3/ε)c−1α < dα = d bd(x, y)/dc ≤ d(x, y)

This completes the proof since we have shown that
with only O(c) edges we can find a (1 + ε) path that
either gets us at least a 1/d fraction of the way to y,
or takes us directly to y.

Truncated Clusters: We are almost done, except
that we now need to prove that truncating our clusters
does not affect the proof. Since we only need to prove
a bound on AUDk, we assume that d(x, y) ≤ 4k. We
now notice that at no point in the proof did we ever
use an edge of weight more than 2d(x, y). Thus, if
we truncate our clusters at εk/2 then the proof above
works as long as d(x, y) ≤ εk/4.

This suggests that we should split π(x, y) into
paths of length εk/4. We let y1 be the furthest vertex
on π(x, y) that is at distance at most εk/4 from x.
We let y2 be the furthest vertex at distance at most
εk/4 from y1, and so on up to some yr. Note that
r = O(4k/(εk/4)) = O(1/ε), so we are splitting
π(x, y) into a constant number of paths of length
≤ εk/4. (technical note: it might not be possible
to thus split π(x, y) in weighted graphs – take, for
example, a single heavy edge. We omit the details
but we can trivially overcome this by labeling a
few especially heavy edges as their own subpath of
π(x, y).)

Each of these subpaths is short enough that
using truncated clusters is identical to using regular
ones. Thus, to get from x to y we use the same method
as with non-truncated clusters to get from x to y1, then
from y1 to y2, and so on until we get to y (see Figure
3). Each of the individual paths is a (1 + ε) path, so
the resulting x − y path is too. Note that we might
use O((3/ε)c log n) edges on each subpath from yi to
yi+1, so this technique multiplies our bound on the
AUDk of H by a constant (O(1/ε)) factor.

Figure 3. This figure shows how truncating clusters changes the
paths we take in H . π is the x − y path that we would get if we
used non-truncated clusters. π may not exist in H because we use
truncation, but π1 ◦ π2 ◦ π3 is guaranteed to exist.

8. CONCLUSION

We have presented a fully dynamic algorithm for
(2+ε) approximate all pairs shortest paths that achieves
a close to linear update time and a O(log log log n)
query time. It would be nice if one could polish this
result: reduce the query time to constant, reduce the
update time to Õ(m), remove the super-polynomial
dependence on ε, and if possible, remove the depen-
dence on the ratio between edge weights. An important
related problem is to develop an efficient fully dynamic
algorithm for (1 + ε) shortest paths.
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