
MIT Open Access Articles

Web GIS in practice VIII: HTML5 and the 
canvas element for interactive online mapping

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: International Journal of Health Geographics. 2010 Mar 03;9(1):14

As Published: http://dx.doi.org/10.1186/1476-072X-9-14

Publisher: BioMed Central Ltd

Persistent URL: http://hdl.handle.net/1721.1/58918

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58918
http://creativecommons.org/licenses/by/2.0


EDITORIAL Open Access

Web GIS in practice VIII: HTML5 and the canvas
element for interactive online mapping
Maged N Kamel Boulos1*, Jeffrey Warren2, Jianya Gong3, Peng Yue3

Abstract

HTML5 is being developed as the next major revision of HTML (Hypertext Markup Language), the core markup lan-
guage of the World Wide Web. It aims at reducing the need for proprietary, plug-in-based rich Internet application
(RIA) technologies such as Adobe Flash. The canvas element is part of HTML5 and is used to draw graphics using
scripting (e.g., JavaScript). This paper introduces Cartagen, an open-source, vector-based, client-side framework for
rendering plug-in-free, offline-capable, interactive maps in native HTML5 on a wide range of Web browsers and
mobile phones. Cartagen was developed at MIT Media Lab’s Design Ecology group. Potential applications of the
technology as an enabler for participatory online mapping include mapping real-time air pollution, citizen report-
ing, and disaster response, among many other possibilities.

Background
HTML5 is being developed as the next major revision of
HTML (Hypertext Markup Language), the core markup
language of the World Wide Web [1,2]. It aims at redu-
cing the need for proprietary plug-in-based rich Internet
application (RIA) technologies such as Adobe Flash,
Microsoft Silverlight [3], and Oracle-Sun JavaFX [4]. For
example, YouTube is planning an HTML5 version of its
service that does not rely on Adobe Flash, but instead
uses HTML5 to play videos in Web browsers [5]. Simi-
larly, Apple has dropped Flash support on its iPad
device [6] in favour of HTML5.
The canvas element is part of HTML5 [7] and is used

to draw graphics using scripting (e.g., JavaScript). It was
first introduced by Apple for use in the Mac OS X
Dashboard and the Safari browser, then later implemen-
ted in Gecko-based browsers, such as Mozilla Firefox, in
Opera [8], as well as in Google Chrome (Chrome is
built around the same WebKit engine used in Safari).
Microsoft Internet Explorer versions 7 and 8 do not yet
support the canvas element out of the box, but Google
Chrome Frame [9], a free plug-in for Internet Explorer,
can be used to render Web pages that use HTML5 and
the canvas element inside Internet Explorer.
Some HTML5 demos are available at [10], including

an interesting HTML5 geolocation demo that runs on

Apple iPhone OS 3, as well as in Firefox 3.5 (and later).
Firefox now supports the W3C (World Wide Web Con-
sortium) Geolocation API without the need to install
any location plug-ins. It will first ask if the user wants
to share her/his location. If the user agrees, it gathers
information about nearby wireless access points and the
user’s computer IP (Internet Protocol) address then
sends this information to the default geolocation service
provider, Google Location Services, to get an estimate of
user’s location. That location estimate is finally shared
with the requesting Web page, which in turn displays
the user’s location using Google Maps [11,12].
HTML5 and the canvas element have serious potential

in many useful applications [13], but the rest of this
paper will just focus on Cartagen [14], a vector-based,
client-side framework for rendering maps in native
HTML5, and its potential applications.

Introduction to vector mapping and Cartagen
As map data become richer and we strive to present
multi-layered data in a variety of projections and map
zoom levels, traditional Web mapping techniques start
to become too inflexible. Most current Web maps make
use of a server-side tile generator and cache system,
where the desired map is rendered ahead of time and
cut into image tiles at a variety of scales depending on
user requests made to the server. While this works well
for a single dataset, for example, terrain contours, as
more data are added, the map becomes a pincushion of

* Correspondence: mnkamelboulos@plymouth.ac.uk
1Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon
PL4 8AA, UK

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

INTERNATIONAL JOURNAL 
OF HEALTH GEOGRAPHICS

© 2010 Boulos et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:mnkamelboulos@plymouth.ac.uk
http://creativecommons.org/licenses/by/2.0


unreadable dots (see Figure 1 - a screenshot from [15])
until a new zoom-in level is selected by the user and
rendered on the server. Using new techniques made
possible by widespread browser support for HTML5 and
specifically the canvas element, we can now create maps
which are not pre-rendered, but generated on-the-fly.
This frees us from a single projection, zoom level or
representation (fetched per single server request), and
enables a more dynamic, interactive, and narrative carto-
graphic style. Discrete vector data (made up of points,
lines, and areas) can be downloaded once, and displayed
at any scale and in any style. Recent increases in Java-
Script execution speed [16] make possible relatively high
frame rates (~15 fps (frames per second) on a typical
notebook), obviate the need for browser plug-ins like
Flash or Java, and make dynamic HTML5 mapping
accessible even on mobile devices such as on the
iPhone, Android (a mobile operating system using a
modified version of the Linux kernel [17]), and Win-
dows Mobile platforms [18].
Instead of sending pre-rendered tiles for every zoom

level, Cartagen draws maps dynamically on the client
side. This means maps can move, adapt and redraw, and
can include as many layers of data/levels of detail as
needed. Vector mapping is done in native HTML5,
which runs on the iPhone (Figure 2) and the Android
platforms, and uses less bandwidth and client processing
resources overall.

Advantages of local rendering
Most current in-browser maps (OpenLayers/TileCache
[19], Google Maps) make use of a powerful server gen-
erating 256 × 256 pixel raster tiles in PNG (Portable
Network Graphics), JPG (Joint Photographic Experts
Group image format) or GIF (Graphics Interchange
Format) formats, paired with a fast caching system to
serve these tiles to a JavaScript or Flash-based browser
display (Figure 3). Users can drag or slide the map
around as if on a giant virtual piece of paper, in what
is known colloquially as a ‘slippy’ map. This suffers
from the necessity of deciding on a single map style, as
tiles cannot be generated in real time without some
kind of a server cluster or cloud system. Furthermore,
tiles, once rendered and sent to the browser, cannot be
changed - making most current Web maps “static” in
this sense.
In this article we discuss the use of Cartagen, an

open-source vector mapping framework developed at
the MIT Media Lab’s Design Ecology group [20]. Since
it draws the map to the screen every frame (on the cli-
ent side - Figure 3), it does not rely on a server to gen-
erate map tiles, nor is it tied to a single representational
style (or server-rendered zoom levels). Multiple map
datasets can be displayed simultaneously, and map

features can have dynamic styles, such as different
appearances on hover, click, and other user events.
Maps can be dynamically labelled, scaled smoothly
instead of in steps, and generally manipulated visually as
desired. This makes Cartagen a much richer and more
flexible map interface than what users – and designers
– have been limited to up until now.
Cartagen was written in JavaScript and uses the new

canvas element to load mapping data from various
sources, including OpenStreetMap (OSM) [21]. A com-
plete API (Application Programming Interface) and doc-
umentation for Cartagen can be found at [22].

GSS and vector data
With our newfound ability to change how a map is dis-
played comes the need for a means to express map
styles, and Cartagen takes as its inspiration a well-
known means of styling on the Web: CSS, or Cascading
Style Sheets. In Cartagem maps are styled with Geo-
graphic Style Sheets (GSS), a cascading stylesheet speci-
fication for geospatial information that leverages CSS to
make map styling more accessible. GSS is also a script-
ing language, making Cartagen an ideal framework for
mapping dynamic data. (The use of CSS-like syntax to
style maps was first demonstrated by Michal Migurski’s
Cascadenik [23], which generated Mapnik style docu-
ments based on a CSS-like input format that was far
easier to write by hand. Following Cartagen’s release,
the OpenStreetMap Potlatch renderer began using a
similar syntax called MapCSS [24].)
Those familiar with the content-style division between

HTML and CSS will find a similar distinction between
Cartagen’s map data format (OSM-JSON or OpenStreet-
Map-JavaScript Object Notation [25]) and its style lan-
guage, Geographic Stylesheets, or GSS.
GSS is a simple way to associate map styles such as

line width, fill colour, font size and family, and a wide
array of other aesthetic factors with either specific map
elements or more commonly with tags such as ‘park’ or
‘highway’. A simple GSS style might look like this:

park: {
strokeStyle: “green”,
lineWidth: 3,

}

This would represent any feature tagged as a ‘park’
with a 3px green border. GSS goes far beyond simple
colours, however, as we will demonstrate here.

Setting up a Cartagen map
Cartagen is available for download at [26]. The standard
download (’cartagen-client-0.6.2.zip’ - filename of the
current version at the time of writing) consists of an

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 2 of 13



‘index.html’ Web page upon which the map is displayed,
and a ‘cartagen.js’ file (240 kilobytes) in the ‘cartagen’
directory which contains all the framework code. It also
contains substantial sample map data (from OpenStreet-
Map; ‘CC By SA’– Creative Commons Attribution-Share
Alike license) for the city of Rome, which will load if
you open the ‘index.html’ file in Firefox, Safari, Chrome,
or Opera. (If you are using Windows or Linux, you may
have to unpack the zip file before opening any of its
contents in a browser; you will not be able to run Carta-
gen from within the zip file itself.)
Cartagen reads map data in (among other formats)

JavaScript Object Notation, or JSON [25], a common
standard for structured data which is similar to XML
(Extensible Markup Language). JSON files, commonly

identifiable by their ‘.json’ file extension, are natively
parse-able by modern JavaScript-enabled browsers and
are more human-readable than XML. A simple map fea-
ture might be represented as:

{"osm":
{"node":
[
{"lat":"42.3608”,

“lon":"-71.08768”,
“visible":"true”,
“display":true,
“img":"image-url.png”

},
{"lat":"42.3608”,

Figure 1 A pincushion of unreadable dots (screenshot from [15]). The only way to negotiate this map is to zoom in, but each time the user
zooms in, a new server request and server-side rendering of new map tiles must be made, which consumes more time, server resources and
bandwidth.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 3 of 13



“lon":"-71.08768”,
“visible":"true”,
“display":true,
“img":"image-url.png”

}
]

}
}

Cartagen follows the OpenStreetMap (OSM) data
model of nodes, ways, and relations, and this ‘OSM-
JSON’ is a fairly literal translation from OpenStreet-
Map’s XML data format. (OSM-JSON exhibits several
important advantages over the GeoJSON standard [27];
by associating nodes and ways by reference, polygons
which share many nodes, such as shared borders

between two countries, need not have redundant node
definitions. Instead they simply reference a set of shared
nodes by their node IDs. In addition, OSM-JSON, like
OSM-XML, can be served from a database with minimal
resources since it mirrors the database structure so clo-
sely, essentially offloading the polygon assembly onto
the client.) We will learn soon how to manipulate and
create your own datasets, but for starters, let us grab
some data from the OpenStreetMap dataset.
In a new browser window, open Cartagen’s main home-

page [14], type any place name into the ‘Go somewhere’
box, e.g., ‘Shanghai’, and press Go. You should see the
desired location load, and if there is a reasonable amount
of data available, a map will be drawn as you watch. To
download this data, press ‘Download data »’ at the lower
left corner of the page, and you will be prompted to select
a region. Unless you have a very powerful computer, just
select some small area (say, a few kilometres wide).
A window will appear with the bounding coordinates of

your selection (Figure 4). Copy these coordinates down in
the format provided; we will need them in a moment.
The data will also begin downloading immediately in a
file called ‘map.json’ behind the current browser window.
Go to your ‘downloads’ folder and move that file into the
‘cartagen-client-0.6.2’ folder we downloaded earlier.
Now, open the ‘index.html’ file in a text editor, like

TextMate on the Mac, Notepad++ on Windows, or
Emacs or Vim on Linux. (Mac users may have trouble
viewing the raw code with TextEdit, and Windows users
may have trouble with carriage returns in Notepad. A
professional text editor is preferable.) You will see, a few
lines down, the following setup code, which initialises
the Cartagen environment:

<script type="text/javascript” charse-
t="utf-8">

Cartagen.setup({
stylesheet: “samples/rome/style.

gss”,
static_map: true,
static_map_layers: [
“samples/rome/park.js”,
“samples/rome/rail.js”,
“samples/rome/waterway.js”,
“samples/rome/primary.js”,
“samples/rome/secondary.js”,
“samples/rome/building.js”,
“samples/rome/area.js”,
//"more.json”

],
lat: 41.891,
lng: 12.4902

})
</script>

Figure 2 Cartagen running on Apple iPhone.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 4 of 13



Go ahead and remove the static_map_layers lines, and
in their place, add a single static_map_layer called ‘map.
json’ - this will load in the new data we just down-
loaded, assuming you placed the file in the Cartagen
root folder correctly. You should be left with:

<script type="text/javascript” charse-
t="utf-8">

Cartagen.setup({
stylesheet: “samples/rome/style.

gss”,
static_map: true,
static_map_layers: [
“map.json”

],
lat: 41.891,
lng: 12.4902

})
</script>

Next, find the last two lines of setup, specifying ‘lat’
and ‘lng’ (latitude and longitude). Replace them with the
code we copied down earlier when we downloaded new
data (Figure 4), so that we may end up with something
like this (new code in bold-italics):

<script type="text/javascript” charse-
t="utf-8">

Cartagen.setup({
stylesheet: “samples/rome/style.

gss”,
static_map: true,
static_map_layers: [
“map.json”

],
lat: 31.236372025076946,
lng: 121.47323055641542,
zoom_level: 1.24
})

</script>

Figure 3 Google Maps/OpenLayers vs. Cartagen.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 5 of 13



In the above example, we downloaded a chunk
centred around parts of Nanjing Road and Jiujiang
Road, Shanghai, China, so this code now ensures that
the map is centred on that selection rather than the
default Rome dataset, and the zoom_level we were
using is also preserved. Reload the ‘index.html’ page
in your browser, and you should see the area you
selected. (If you do not, be sure you have preserved
all the commas, brackets, and other formatting.) This
map is completely local; it is not making any calls to
distant tile servers, and if disconnect from the Inter-
net, it will still work. Put these files on a server, and
without a tile server or caching system, you have
yourself a map.

Now let us get rid of any other stuff we do not want,
such as the big Cartagen overlay with the logo and such.
All we really need on the page are the following lines
inside the <head> tags:

<link rel="stylesheet” href="style.
css” type="text/css” media="screen”
title="no title” charset="utf-8">

<script src="cartagen/cartagen.js”
type="text/javascript” charset="utf-
8"></script>

<script type="text/javascript” charse-
t="utf-8">

Cartagen.setup({

Figure 4 Downloading data from a map of Shanghai, China, in Cartagen. Note the ‘Download data’ link (lower left).

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 6 of 13



// your setup code here
})

</script>
And just one line in the <body> tags:
<canvas id="canvas"></canvas>

Styling the map with GSS
Now we are ready to change the map’s appearance
with our own stylesheet. Let us begin by looking at
the Cartagen.setup() code we have already. The very
first line defines what stylesheet to use with this data:
‘stylesheet: “samples/rome/style.gss"’. To use our own,
we simply need to create a new file called ‘somefile-
name.gss ’ in the root directory of Cartagen and
change the Cartagen.setup() line to point to our new
stylesheet. In ‘ somefilename.gss’, let us start with the
basic styles:

body: {
pattern: “samples/rome/images/brown-

paper.jpg”,
},
way: {
strokeStyle: “#222”,
lineWidth: 3,

},

These define the background colours and the default
style for any ‘way’ or line. You should see a brown
paper background colour with fine dark grey lines on it
(Figure 5a). Notice that we are using hexadecimal colour
codes (’#222’) just as in CSS, though we can also use
words like ‘green’ or ‘rgba(0.1,1,0.8,0.4)’ for full RGB
(Red Green Blue) colour with an additional alpha (A)
channel.
Next let us add a new style for map features tagged as

‘building’:

building: {
fillStyle: “#444”,
opacity: 0.4,

}

Here is a more complex style (Figure 5b):

highway: {
strokeStyle: “white”,
lineWidth: 6,
outlineWidth: 3,
outlineColor: “green”,
fontColor: “#333”,
fontBackground: “white”,
fontScale: “fixed”,
text: function() {

return this.tags.get(’name’)
}

}
A full list of possible styles is available at [28].

Adding new data
Displaying streets and parks is not enough; we need to
be able to display our own data. To do this, we can
add our own Nodes and Ways. (OSM terminology,
which Cartagen follows, uses Nodes and Ways instead
of the more common ‘points’ and ‘polygons’, respec-
tively.) Let us add a set of points with custom icons.
First, we will create a file in the Cartagen root direc-
tory called ‘mine.json’. Let us say we have four geo-
graphic locations and we want to mark each with a
unique icon. In ‘mine.json’, we can add them in the
following format:

{"osm":
{"node":
[
{"lat":"42.3608”,

“lon":"-71.08768”,
“visible":"true”,
“display":true,
“img":"image-url.png”

},
{"lat":"42.3608”,

“lon":"-71.08768”,
“visible":"true”,
“display":true,
“img":"image-url.png”

}
]

}
}

To make finding the latitude and longitude of our
locations easier, there is a service at [29] which, if you
type in an address, like ‘31 Maple Ave, Cambridge, Mas-
sachusetts’, will return a well-formatted OSM-JSON
statement (Figure 6).
To add a polygon, we will need to create a set of

nodes, and then reference them in a ‘way’ feature. Carta-
gen will look for each of the constituent nodes of the
way and connect them into a polygon. This tends to
look a little complicated:

{"osm":
{"node":
[
{"lon": “12.5103451”,

“id": “339420390”,
“lat": “41.8569274"},

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 7 of 13



Figure 5 Experimenting with GSS in Cartagen.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 8 of 13



{"lon": “12.5106756”,
“id": “339420395”,
“lat": “41.8569569"},

{"lon": “12.5107474”,
“id": “339420398”,
“lat": “41.8565097"},

{"lon": “12.5104169”,
“id": “339420392”,
“lat": “41.8564803"}

],
“way":
[
{"visible": “true”,

“nd":
[
{"ref": “339420390"},
{"ref": “339420395"},
{"ref": “339420398"},

{"ref": “339420392"},
],

“tag":
[

{"v": “Fosse Ardeatine”,
“k": “name"},

{"v": “catholic”, “k":
“denomination"},

]
]

}
}

The above polygon outlines a building in Rome, and
was drawn from the OpenStreetMap dataset. To make
things easier, the next version of Cartagen will have a
graphical polygon-drawing tool which will return an
OSM-JSON representation of anything the user can

Figure 6 Cartagen geocoding service returns well-formatted OSM-JSON statements.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 9 of 13



draw. Support for other data formats, such as GeoJSON,
is also in progress.
If one can write JavaScript, one could periodically

update the positions of these data points; they are native
JavaScript objects. A more advanced map example cre-
ated with Cartagen is available at [30] (Figure 7), in
which news stories fetched every minute from Google
News are painted onto an interactive map of the world,
where the user can explore news by topic or region.

Advanced techniques: context menus and scripting
Let us try some more advanced features, including right-
click contextual menus. Cartagen has built-in support
for context menus (Figure 8); to add one to a particular
feature, we have to modify the appropriate GSS style:

building: {
fillStyle: “#444”,
text: function() { return this.tags.

get(’name’) },
hover: {
fillStyle: ‘#222’

},
menu: {
“Show me the name": function() {

alert(this.tags.get(’name’)
},

“Show me the code": function() {
window.open(”http://en.wikipedia.

org/wiki/Special:Search?go=Go&search=“ +
this.tags.get(’name’), “_blank”)

}
}

},

We have done a couple of things here. First, let us
look at the ‘text’ attribute, where instead of a bit of text
like ‘Building’, we have written “function() { return this.
tags.get(’name’) }”. This is a simple JavaScript function
that returns “this.tags.get(’name’)”. The ‘this’ keyword is
used here to access the map feature being displayed. We
then look in that feature’s tags and ‘get’ the tag called
‘name’. The end result is that all map features tagged as
‘building’ are labelled with their name. There are a num-
ber of attributes in the ‘this’ object, such as ‘this.area’
which yields the x, y area of the polygon (if applicable),
‘this.author’- yielding the OpenStreetMap username who
created the feature, ‘this.lat’, ‘this.lon’, and more.
Notice that we have done the same thing with one of

the menu items lower down. There are two menu items,

Figure 7 Screenshot of NEWSFLOW. Built with HTML5 on the dynamic mapping framework of Cartagen, NEWSFLOW is a dynamic, real-time
interactive map of news reporting, which displays both the latest top stories as well as the news organisations/agencies that covered them. Arcs
link the location of the news organisations’ headquarters to the places mentioned in a given news article.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 10 of 13

http://en.wikipedia.org/wiki/Special:Search?go=Go&search=
http://en.wikipedia.org/wiki/Special:Search?go=Go&search=


one called ‘Show me the name’ and one ‘Show me the
code’. Each will pop up a standard JavaScript alert if the
user right clicks on the building and selects them. The
first should be familiar; it just displays the name of the
building (assuming it has one), using the same syntax as
the ‘text’ attribute.
The second menu item is a bit more interesting. It

actually grabs the name of the building and creates a
Wikipedia search for that name in a new browser win-
dow (Figure 8). If there is no name, this will search for
‘null’ or fail, so it is somewhat sloppy code, but still
gives the reader a taste of the kind of scripting one can
achieve with Cartagen, and of the kinds of data that are
available to developers in the map. By contrast, tile-
based maps usually have no metadata on a per-feature
basis, and no means for associating metadata with speci-
fic features.

Discussion
Cartagen is perhaps the first comprehensive dynamic
mapping framework of its kind to leverage HTML5 and
the canvas element for plug-in-free, offline-capable
interactive online mapping. More recently, Google

demoed their first fully HTML5-based version of Google
Maps on a Palm Pre (a multimedia smartphone running
a Linux-based operating system) [31]. The ability to
build applications that run natively in the browser with-
out the need for plug-ins will allow agencies such as the
police, government, and health services, to view data
that are currently restricted due to rules on installing
plug-ins and software on networks. It will also enable
those agencies to avoid single vendor’s proprietary tech-
nologies from Adobe (Flash), Microsoft (Silverlight) and
others [32]. Such technologies are also reportedly
known to consume more processing resources, leading
to significantly shorter battery life on smartphones and
other mobile devices, compared to pure HTML5
content.
Performance wise, JSON [25] is reported to be faster

and more efficient than GML (Geography Markup Lan-
guage, an XML grammar defined by the Open Geospa-
tial Consortium (OGC) to express geographical features
[33]) [34]. (Cartagen uses OSM-JSON, which is sup-
posed to be even more efficient than GeoJSON [27].)
Moreover, compared to SVG (Scalable Vector Graphics)
maps [35], canvas seems to cope better with large

Figure 8 A right-click context menu in Cartagen.

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 11 of 13



numbers of rendered objects [36]. Additional canvas
performance tests are available at [37]. Performance is
expected to further improve with time, as the HTML5
specification gets finalised and Web browser implemen-
tations of it become fully optimised and mature, (though
the road ahead might not be so smooth [38,39]).

Applications potential of HTML5 maps
Live data streams and accessible participatory mapping by
the masses
Cartagen can display maps that change based on live
data streams. For example, Cartagen can show live
OpenStreetMap data whereby viewers see edits occur-
ring in real time, with no rendering load on the server.
Users are enabled and empowered to create their own
maps - not just pushpins and overlays, but completely
designed maps that incorporate rich and dynamic data
and tell unique stories. Instead of a single canonical
map for everyone, individuals and communities can now
much more easily make locally and personally relevant
maps. This is particularly important in today’s era of
participatory GIS (Geographic Information Systems) and
social Web ("Web 2.0”) mapping, to create more
empowered and active communities that are fully
involved in the civil society and in the management of
different aspects of the local and global environments at
ordinary times as well as during times of emergency, e.
g., active citizens’ involvement in disaster reporting and
management, etc.
Cartagen can potentially become an enabler of com-

munity participation by means of SMS (Short Message
Service) mapping and search. String-based geocoding (e.
g., ‘map Bhagalpur, India’) allows users to produce their
own maps from in the field with only a basic cell
phone. This can widen participation to more than four
billion cell phone users worldwide, as well as to rural
regions outside the reach of cable and landline-tele-
phone-based Internet (SMS does not even need a
mobile Internet connection to report a mappable inci-
dent). Geographic mapping with text messages has
applications in incident reporting by citizens, in disaster
response, and in many health and healthcare scenarios
(cf. Depiction [40]).
Business data mapping on the Virtual Globe background
layer
The emergence of Virtual Globe software systems such
as Google Earth, Microsoft Virtual Earth, and NASA
World Wind has revolutionised the traditional way of
using geospatial information, making global geospatial
information easily accessible and readily usable by the
general public instead of only the highly-skilled
domain experts [41]. The wide popularity of these Vir-
tual Globe software systems in the geospatial and gen-
eral communities has opened up many more ways of

exploring and using them in various aspects of every-
day life. One potential scenario in the context of this
paper is to combine the dynamic rendering power of
HTML5 with the excellent high-quality and high-reso-
lution background maps and imagery provided by Vir-
tual Globes. Thus users can overlay their operational
data on the Virtual Globe background layer in their
business context and have a more intuitive experience
to interpret the data. The dynamic, interactive, and
narrative cartographic style enabled by HTML5 is sui-
table for the representation of the dynamic and light-
weight vector data, while Virtual Globe technology is
appropriate for digestion of Web-based, large-scale
geospatial information and raster imagery. Therefore,
HTML5 and Virtual Globe technologies could be com-
plementary, providing comprehensive geospatial data,
which are either dynamic or static, and richer experi-
ences to users.
Spatial analysis based on dynamic data
The primary focus of using HTML5 in the context of
this paper is dynamic cartographic mapping. Such
visualisation functions can be combined with conven-
tional spatial analysis functions, thus allowing users to
investigate geoscientific processes. For example, a geos-
patial buffer analysis function can be used when evalu-
ating the influence of flood hazard, and the analysis
result can then be visualised on-the-fly. The incorpora-
tion of data analysis functions requires exposing con-
ventional spatial analysis functions over the Web. A
service-oriented paradigm can be employed, where tra-
ditional siloed geospatial analysis functions are exposed
as Web Services with interoperable interfaces and pro-
tocols. In the geospatial domain, there is already a
standard focusing on geoprocessing over the Web,
namely OGC Web Processing Service (WPS) specifica-
tion [42]. Standards-based interoperable geoprocessing
services make a large amount of geospatial analysis
functionalities easily accessible to users, much like
their local resources are, and allow for plug-and-play
analysis of geospatial data. Vector data visualised in
Cartagen can be sent to geoprocessing services for on-
demand analysis and the results then fed back to Car-
tagen to be layered over existing data. The introduc-
tion of geospatial analysis functions and Web Service
technologies will significantly extend and expand the
original mapping goals of Cartagen, making it more
powerful and scalable in addressing the analysis
demands of front-end users.

Conclusions
In this paper, we have demonstrated a variety of interac-
tive HTML5 Cartagen map features which would have
been impossible or much more complicated to realise
using conventional tile-based online mapping systems:

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 12 of 13



per-feature hover and click events, per-feature style defi-
nitions, offline generation of Web map imagery, and full
access to map geometry and feature metadata through
the ‘this’ keyword. In addition, the use of map tags via
the CSS ‘class’ convention offers a flexible and easily
editable means to author new styles and generate new
maps. Ultimately, dynamic and scriptable map environ-
ments such as Cartagen/GSS will change how maps are
perceived and used; instead of merely reading maps,
more and more users will be encouraged to interact
with, modify, and remix geographic information, all
without requiring any special browser plug-ins to view
or share their creations, which is of critical importance
in those environments where restrictions are in place on
installing plug-ins and network software. We see Carta-
gen as a first step towards such a participatory carto-
graphic HTML5 medium for communication.

Author details
1Faculty of Health, University of Plymouth, Drake Circus, Plymouth, Devon
PL4 8AA, UK. 2MIT Media Laboratory, Design Ecology Group, Massachusetts
Institute of Technology, 20 Ames Street, Cambridge, MA 02139, USA. 3State
Key Laboratory of Information Engineering in Surveying, Mapping and
Remote Sensing (LIESMARS), Wuhan University, 129 Luoyu Road, Wuhan,
Hubei, 430079, PR China.

Authors’ contributions
MNKB researched the topic background and its strengths and potential
applications, and conceived and drafted the manuscript. JW, the developer
of Cartagen, provided first-hand information and tutorial text (including
sample code) about Cartagen, and also contributed all the figures in this
paper, except Figure 4, which was prepared by MNKB. JG and PY
contributed text about the applications potential of HTML5 maps, as well as
a number of valuable suggestions that helped improve other parts of the
paper. All authors read and approved the final manuscript. Commercial
products and company/brand names mentioned in this paper are
trademarks and/or registered trademarks of their respective owners.

Competing interests
The authors declare that they have no competing interests.

Received: 15 February 2010
Accepted: 3 March 2010 Published: 3 March 2010

References
1. HTML5–A vocabulary and associated APIs for HTML and XHTML. http://

www.w3.org/TR/html5/.
2. HTML5 differences from HTML4. http://www.w3.org/TR/html5-diff/.
3. Microsoft Silverlight. http://www.microsoft.com/silverlight/.
4. JavaFX. http://javafx.com/.
5. YouTube HTML5 Video Player. http://www.youtube.com/html5.
6. Apple iPad. http://www.apple.com/ipad/.
7. The canvas element (Editor’s Draft 6 February 2010). http://dev.w3.org/

html5/spec/Overview.html#the-canvas-element.
8. Canvas support in Opera. http://www.opera.com/docs/specs/opera95/

canvas/.
9. Google Chrome Frame. http://www.google.com/chromeframe.
10. HTML5 Demos and Examples. http://html5demos.com/.
11. Getting the Browsers GeoLocation with HTML5. http://maxheapsize.com/

2009/04/11/getting-the-browsers-geolocation-with-html-5/.
12. Geolocation in Firefox: Location-Aware Browsing. http://en-gb.www.

mozilla.com/en-GB/firefox/geolocation/.
13. How HTML5 Will Change the Way You Use the Web. http://lifehacker.

com/5416100/how-html5-will-change-the-way-you-use-the-web.

14. Cartagen. http://cartagen.org/.
15. Fresno Birds. http://fresnobirds.org/.
16. Resig J: JavaScript Performance Rundown.http://ejohn.org/blog/javascript-

performance-rundown/.
17. Android.com - Experience Nexus One. http://www.android.com/.
18. Windows Mobile. http://microsoft.com/windowsmobile/.
19. OpenLayers. http://openlayers.org/.
20. MIT Media Lab: Design Ecology/Information Ecology. http://eco.media.

mit.edu/.
21. OpenStreetMap. http://www.openstreetmap.org/.
22. Cartagen Wiki. http://wiki.cartagen.org/.
23. Cascadenik: cascading sheets of style for mapnik. http://mike.teczno.com/

notes/cascadenik.html.
24. MapCSS. http://wiki.openstreetmap.org/wiki/MapCSS.
25. JSON. http://www.json.org/.
26. Cartagen - Project Hosting on Google Code. http://code.google.com/p/

cartagen.
27. GeoJSON - JSON Geometry and Feature Description. http://geojson.org/.
28. GSS Usage in Cartagen. http://wiki.cartagen.org/wiki/show/GssUsage.
29. Cartagen Geocoding. http://cartagen.org/utility/geocode.
30. Cartagen: NEWSFLOW. http://newsflow.cartagen.org/.
31. Palm Pre gets HTML5 Google Maps app. http://mypre.com/palm-pre-gets-

html5-google-maps-app-offline-webapps-200918613/.
32. The long road to HTML5: New version will bring the Web into the

modern era–eventually. http://gcn.com/Articles/2009/08/31/HTML-5-long-
road-to-development.aspx.

33. Geography Markup Language - OGC. http://www.opengeospatial.org/
standards/gml.

34. GML versus JSON when providing Geographical Data, speed and size
factors. http://ctuot.twoday.net/stories/4132499.

35. Boulos MN, Russell C, Smith M: Web GIS in practice II: interactive SVG
maps of diagnoses of sexually transmitted diseases by Primary Care
Trust in London, 1997 - 2003. Int J Health Geogr 2005, 4:4.

36. Performance of Canvas versus SVG. http://www.borismus.com/canvas-vs-
svg-performance/.

37. Rendering Polygons with Canvas Experiment. http://www.ernestdelgado.
com/gmaps/canvas/ddemo1.html.

38. Adobe holding back current HTML5 specification. http://www.neowin.
net/news/adobe-holding-back-current-html5-specification.

39. Giz Explains: Why HTML5 Isn’t Going to Save the Internet. http://
gizmodo.com/5461711/giz-explains-why-html5-isnt-going-to-save-the-
internet.

40. Depiction is More than Mapping. http://www.depiction.com/.
41. Boulos MN: Web GIS in practice III: creating a simple interactive map of

England’s Strategic Health Authorities using Google Maps API, Google
Earth KML, and MSN Virtual Earth Map Control. Int J Health Geogr 2005,
4:22.

42. Web Processing Service - OGC. http://www.opengeospatial.org/standards/
wps.

doi:10.1186/1476-072X-9-14
Cite this article as: Boulos et al.: Web GIS in practice VIII: HTML5 and
the canvas element for interactive online mapping. International Journal
of Health Geographics 2010 9:14.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Boulos et al. International Journal of Health Geographics 2010, 9:14
http://www.ij-healthgeographics.com/content/9/1/14

Page 13 of 13

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5-diff/
http://www.microsoft.com/silverlight/
http://javafx.com/
http://www.youtube.com/html5
http://www.apple.com/ipad/
http://dev.w3.org/html5/spec/Overview.html#the-canvas-element
http://dev.w3.org/html5/spec/Overview.html#the-canvas-element
http://www.opera.com/docs/specs/opera95/canvas/
http://www.opera.com/docs/specs/opera95/canvas/
http://www.google.com/chromeframe
http://html5demos.com/
http://maxheapsize.com/2009/04/11/getting-the-browsers-geolocation-with-html-5/
http://maxheapsize.com/2009/04/11/getting-the-browsers-geolocation-with-html-5/
http://en-gb.www.mozilla.com/en-GB/firefox/geolocation/
http://en-gb.www.mozilla.com/en-GB/firefox/geolocation/
http://lifehacker.com/5416100/how-html5-will-change-the-way-you-use-the-web
http://lifehacker.com/5416100/how-html5-will-change-the-way-you-use-the-web
http://cartagen.org/
http://fresnobirds.org/
http://www.ncbi.nlm.nih.gov/pubmed/19405084?dopt=Abstract
http://ejohn.org/blog/javascript-performance-rundown/
http://ejohn.org/blog/javascript-performance-rundown/
http://www.android.com/
http://microsoft.com/windowsmobile/
http://openlayers.org/
http://eco.media.mit.edu/
http://eco.media.mit.edu/
http://www.openstreetmap.org/
http://wiki.cartagen.org/
http://mike.teczno.com/notes/cascadenik.html
http://mike.teczno.com/notes/cascadenik.html
http://wiki.openstreetmap.org/wiki/MapCSS
http://www.json.org/
http://code.google.com/p/cartagen
http://code.google.com/p/cartagen
http://geojson.org/
http://wiki.cartagen.org/wiki/show/GssUsage
http://cartagen.org/utility/geocode
http://newsflow.cartagen.org/
http://mypre.com/palm-pre-gets-html5-google-maps-app-offline-webapps-200918613/
http://mypre.com/palm-pre-gets-html5-google-maps-app-offline-webapps-200918613/
http://gcn.com/Articles/2009/08/31/HTML-5-long-road-to-development.aspx
http://gcn.com/Articles/2009/08/31/HTML-5-long-road-to-development.aspx
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://ctuot.twoday.net/stories/4132499
http://www.ncbi.nlm.nih.gov/pubmed/15655078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15655078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15655078?dopt=Abstract
http://www.borismus.com/canvas-vs-svg-performance/
http://www.borismus.com/canvas-vs-svg-performance/
http://www.ernestdelgado.com/gmaps/canvas/ddemo1.html
http://www.ernestdelgado.com/gmaps/canvas/ddemo1.html
http://www.neowin.net/news/adobe-holding-back-current-html5-specification
http://www.neowin.net/news/adobe-holding-back-current-html5-specification
http://gizmodo.com/5461711/giz-explains-why-html5-isnt-going-to-save-the-internet
http://gizmodo.com/5461711/giz-explains-why-html5-isnt-going-to-save-the-internet
http://gizmodo.com/5461711/giz-explains-why-html5-isnt-going-to-save-the-internet
http://www.depiction.com/
http://www.ncbi.nlm.nih.gov/pubmed/16176577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16176577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16176577?dopt=Abstract
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps

	Abstract
	Background
	Introduction to vector mapping and Cartagen
	Advantages of local rendering
	GSS and vector data

	Setting up a Cartagen map
	Styling the map with GSS
	Adding new data
	Advanced techniques: context menus and scripting

	Discussion
	Applications potential of HTML5 maps
	Live data streams and accessible participatory mapping by the masses
	Business data mapping on the Virtual Globe background layer
	Spatial analysis based on dynamic data


	Conclusions
	Author details
	Authors' contributions
	Competing interests
	References

