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Abstract
Background: Knowledge of the geographical locations of individuals is fundamental to the practice
of spatial epidemiology. One approach to preserving the privacy of individual-level addresses in a
data set is to de-identify the data using a non-deterministic blurring algorithm that shifts the
geocoded values. We investigate a vulnerability in this approach which enables an adversary to re-
identify individuals using multiple anonymized versions of the original data set. If several such
versions are available, each can be used to incrementally refine estimates of the original geocoded
location.

Results: We produce multiple anonymized data sets using a single set of addresses and then
progressively average the anonymized results related to each address, characterizing the steep
decline in distance from the re-identified point to the original location, (and the reduction in
privacy). With ten anonymized copies of an original data set, we find a substantial decrease in
average distance from 0.7 km to 0.2 km between the estimated, re-identified address and the
original address. With fifty anonymized copies of an original data set, we find a decrease in average
distance from 0.7 km to 0.1 km.

Conclusion: We demonstrate that multiple versions of the same data, each anonymized by non-
deterministic Gaussian skew, can be used to ascertain original geographic locations. We explore
solutions to this problem that include infrastructure to support the safe disclosure of anonymized
medical data to prevent inference or re-identification of original address data, and the use of a
Markov-process based algorithm to mitigate this risk.

Background
To develop broadly integrated national healthcare infor-
mation infrastructure, the utility of sharing personally
identifiable data for clinical care, public health and
research must always be weighed against privacy con-

cerns. For example, automated outbreak detection sys-
tems for surveillance of influenza and bioterrorism, use
data from a variety of sources (hospitals, clinics, laborato-
ries) for aggregation, analysis and investigation [1-3]. For
the detection of spatial clustering among disease cases,
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these aggregation systems achieve optimal detection sen-
sitivity and specificity when using the most complete,
accurate patient location data [4].

We have previously described a spatial de-identification
algorithm that blurs precise point locations for patients,
moving them a randomized distance according to a 2-
dimensional Gaussian distribution with variance
inversely proportional to the square of the underlying
population density [5]. Other spatial anonymization
approaches that have been employed include random
skews, affine transformations, data aggregation tech-
niques, and the use of software agents to preserve confi-
dentiality [6,7]. Anonymization of patient address data by
reassignment of geographic coordinates allows privacy
preservation while sharing data for disease surveillance or
biomedical research [5]. As the volume of personally-
identifiable health data that is electronically transmitted
and published has consistently increased [8], so has the
magnitude of the threat to privacy. Geographical informa-
tion is particularly identifying; we have demonstrated that
it is possible to correctly identify most home addresses
even from low resolution point-maps commonly pub-
lished in journal articles [9].

We specifically explore whether de-identification algo-
rithms that use spatial blurring – a non-deterministic
process – may be susceptible to weakening when an
adversary can access multiple anonymized versions of the
same original data set [10]. For example, if data ano-
nymized by a Gaussian blurring function were available
upon request from a data source, the adversary could
request anonymized patient data repeatedly. Since the
data are non-deterministically anonymized, the results
vary each time they are requested. By averaging the geoco-
ded values for each visit, the anonymity afforded by the
blurring algorithm may be reduced (Figure 1 illustrates
the effect of averaging locations across the repeated ano-
nymization passes to increase resolution for re-identifica-
tion).

Here, we quantitatively demonstrate this vulnerability in
two common anonymization approaches. We produce
multiple anonymized data sets using a single set of
addresses and then progressively average the anonymized
results related to each address, characterizing the steep
decline in distance of the re-identified point to the origi-
nal location, (and the reduction in privacy) at each stage.
Next, we propose and discuss two solutions to this specific
class of vulnerabilities. The first tightly couples anonymi-
zation to a distributed health infrastructure that
exchanges the data, so that it can control the number of
copies distributed to any one party. The second is an
extension to the spatial anonymization process employ-

ing a Markov process for increasing the anonymity of a 2-
dimensional data set anonymized by Gaussian skew.

Results
Re-Identification of points anonymized using Gaussian and 
randomized skew
Additional information was ascertained from multiple
anonymized copies of one original set of point locations,
significantly weakening the anonymization used. The
average distance to the original addresses after one ano-
nymization pass, which represents the previously
described [5] use of an anonymizing algorithm, was 0.69
km. After each point was inferred using the average of fifty
Gaussian skew anonymization passes, the mean distance
from the average of all of the anonymized points to the
original point in the data set was reduced to 0.1 km.

Similarly, when the anonymizing algorithm is a uniform
skew (a random skew that involves moving a point ran-
domly within a square), re-identification attempts using
the average of several anonymized data sets also reduced
data set privacy markedly. The average distance to the
original addresses after one anonymization pass, the tra-
ditional use of such algorithms, was set at 0.69 km, to
match the level of skew used in the 2-dimensional Gaus-
sian data sets. As in the case of the 2-dimensional Gaus-
sian skew, the average distance to the original point was
also reduced to just under 0.1 km after averaging 50 ano-
nymized data sets.

The average distance to the original address is plotted as a
function of the number of separate anonymization passes
used in the re-identification inference, for both anonymi-
zation methods in Figure 2. Attempts at inferring the orig-
inal addresses using multiple anonymization passes,
show that the average distance inversely varies with the
square root of the number of anonymized data sets used
in the inference. There is a sharp decrease in the average
distance to the original address with 10 anonymization
passes and thus a sharp decrease in data set anonymity.

Discussion
Re-identification of data anonymized with Gaussian and 
randomized skew

Re-anonymizing a single patient located at n differ-

ent times using Gaussian skew is equivalent to observing
a sequence L1, L2, ..., Ln of independent, identically distrib-

uted two-dimensional Gaussian random variables (all
having the same probability density function). The aver-
age of these n observations
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is itself a two-dimensional Gaussian random variable

with mean  and covariance matrix In other words, the x- and y-coordinates are independent
Gaussian random variables, each having a standard devi-

ation of σ/ . Hence, by taking the average of the ano-

Li
i

n

n
=
∑

1 ,
(2)

x

y
o

o

⎛

⎝
⎜

⎞

⎠
⎟

σ

σ

2
0

0
2

n

n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

n

Example of anonymized points that have been averagedFigure 1
Example of anonymized points that have been averaged. An original data point (red) was anonymized using a popula-
tion-density adjusted Gaussian skew algorithm five times (light blue points). Those points were averaged and the average coor-
dinate value is plotted (green). The average of the anonymized points is nearer to the original point than each of the 
anonymized points.
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nymization passes, one can obtain the equivalent of a
single anonymization pass under a less stringent Gaussian

skew anonymization strategy with standard deviation σ/

; for 100 passes, reducing the skewing standard devia-

tion along each axis by a factor of 10.

In the uniform skew anonymization procedure, a patient

at  is moved with equal probability to any position

in the square [x0 - λ, x0 + λ]·[y0 - λ, y0 + λ]. The new posi-

tion is thus a two-dimensional uniform random variable,

with mean  and covariance

By the central limit theorem,

is approximately normally distributed with mean ,

and covariance matrix
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Average distance to original point vs. number of anonymization versionsFigure 2
Average distance to original point vs. number of anonymization versions. The average distance to original point 
[km] vs. number of anonymization versions used in averaging is plotted for both Gaussian and uniform skew.
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Hence as the number of observations increases, the aver-
age of the observations tends to fall nearer to the original
point.

It is important to note that while the difference in change
to the covariance matrices would appear to make the
Gaussian and uniform anonymization skews similar in
their ability to protect privacy, this is not necessarily the
case. The quantifiable estimate of anonymity, k-anonym-
ity (a metric for data set privacy where k is the number of
people among whom a specific individual cannot be dis-
tinguished [11]), that is achieved by each method is differ-
ent – the Gaussian skew yields higher levels of k-
anonymity than the randomized skew does with respect
to the average distance moved for each case in a data set.
We previously described a method for estimating spatial
k-anonymity [5].

One might fear that an adversary could do even better,
devising a novel strategy that uses the sequence L1, L2, ...,

Ln to get even closer to the original point  than a

Gaussian with this reduced variance; however, this is not
possible without additional data. Stein showed that given
n observations of a two-dimensional Gaussian random
variable, the most efficient estimator of the mean of the
Gaussian is simply the average of the points [12].
Although this seems intuitive for two dimensions, it is sur-
prisingly not the case for three and higher dimensions
[12,13].

Anonymizing within a distributed network or health 
information exchange
We believe that these results make a compelling case for
infrastructure to control disclosure of anonymized data,
so that the risk of this vulnerability is reduced. In Figure 3,
we show an infrastructural solution for integrating ano-
nymization into a distributed network that transmits
health data. Ideally, data sources – and even patients –
would be able to set a preferred level of data disclosure for
a number of different purposes including research studies
that integrate their clinical data, outcomes and public
health surveillance. A data provisioning system could
then distribute data to consumers at a variety of ano-
nymized levels, under a clear set of policies and authori-
zation requirements.

Removing other identifying information from data sets to 
avoid re-linking
The vulnerability described in this paper relies on the abil-
ity to link anonymized data sets together using additional
identifiers, or other demographic or clinical data. One
possible solution is to swap the addresses in a given data
set so that they are effectively unlinked with any unique
clinical fields or identifiers, such as a medical record
number. This unlinking of spatial data from unique iden-
tifiers, however, poses additional challenges: unlinking
from any demographic identifiers could reduce the ability
to conduct informative disease surveillance, or worse,
could make it difficult to actually uncover the addresses of
clustered cases when necessary, which is certainly a prior-
ity for a public health investigation.

This can be mitigated through the use of randomly gener-
ated identifiers for each anonymized instance of a specific
record, stored for use in re-linking anonymized data with
original data. Additionally, when attempting to determine
correlates or predictors of disease, these additional fields
may prove important for group stratification. With knowl-
edge of the specific anonymization algorithm and back-
ground knowledge such as regional demographic data, it
may be possible to further weaken some anonymization
algorithms even without repeated attempts.

When considering only two dimensional geographical
data, the best way to estimate original locations from sev-
eral anonymized versions of the same original data set is
to average the anonymized longitudes and latitudes.
However, there are even more advanced re-identification
techniques that can be used to improve the resolution of
cases in practice, using data sets with three or more
dimensions. If additional fields or identifiers are included
in the data set, and those fields are in any way not ran-
domly distributed (anything other than a randomly gen-
erated identifier), their presence has the potential to help
achieve a higher resolution on the spatial coordinates,
even if they do not contain geographical information.
This is because there may be additional implicit informa-
tion linked with spatial addresses in the other dimensions
(or fields) that can lend intuition about the distribution of
the anonymized spatial coordinates, using approaches
that are more advanced than averaging of the fields to esti-
mate the original location [13].

Increasing anonymity using an algorithm based on a 
Markov process
As shown in Figure 3, one possible anonymization sce-
nario is the sharing of data at a variety of privacy levels
with different data consumers. To prevent privacy degra-
dation by averaging when sharing data at multiple levels
of k-anonymity [11], a Markov state process can be used
to successively generate increasingly anonymized versions
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of the data set. The Markov property guarantees that sev-
eral versions anonymized this way cannot be used to infer
additional information about a patient's location. One
example might be the need to provide multiple versions at
two anonymized levels, one at k = 50 and another at k =
100. If the anonymization process is restricted to increas-
ing the anonymization level to k = 100 by increasing the
skew level from the k = 50 data set, and not from the orig-
inal data set, there will be no way to decrease the privacy
below the k = 50 level, simply by averaging the two data
sets. This is illustrated in a Markov process model in Fig-
ure 4.

While infrastructure for controlled exchange of ano-
nymized health data protects against some vulnerabilities,
there are still other methods that could reduce the privacy
level of a data set. For example, it is still possible to gain

insight into the actual distribution of cases anonymized
with knowledge of physical boundaries, highly con-
strained patient distributions, or other clinical or demo-
graphic information about cases. Further study is needed
to adequately constrain the anonymized geographical dis-
tributions of cases such that this risk is minimized.

Conclusion
In order to protect privacy when using spatial skew algo-
rithms, the number of distinct anonymization results or
passes that represent the same data must be controlled.
Limiting the generation or disclosure of more than one
version will avoid re-identification through averaging.
Alternative approaches include integration of anonymiza-
tion into data provisioning systems to achieve such a
restricted data release, or the use of a Markov process to
generate multiple anonymized data sets of the same

Integration of anonymization within distributed EMR infrastructureFigure 3
Integration of anonymization within distributed EMR infrastructure. Integration with a distributed electronic medical 
record infrastructure: a distributed data provisioning system provides anonymized spatial address data to three data consum-
ers at three distinct k-anonymity privacy levels.
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records. These approaches avoid running the algorithm
anew with each request, reducing the variation that is at
the root of the vulnerability.

Methods
Geographical test data sets
A data set containing artificially-generated geocoded val-
ues for 10,000 sample patients was created using a spatial
cluster creation tool [14,15]. All points were uniformly

Markov anonymization process to increase data set anonymityFigure 4
Markov anonymization process to increase data set anonymity. Markov processes to increase the anonymity level in 
a data set: an increase in the anonymity level of a data set, for example, increasing from k = 50 to k = 100, could be achieved by 
increasing the skew level of the k = 50 data set without knowledge of the authentic data. If increases are done in this way, the 
risk of a reverse identification attempt using averaging can be avoided.

Anonymization algorithm translation probability density functionsFigure 5
Anonymization algorithm translation probability density functions. Probability distribution functions for the two 
anonymization methods, 2-dimensional Gaussian skew (left) and uniform skew (right).
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distributed within a circle of radius 800 m centered in
Boston, MA, and assigned a unique numeric identifier for
tracking. Each of the geocoded addresses was then ano-
nymized using a Gaussian 2-dimensional spatial blur
skew that was adjusted for population density [5], fifty
separate times. A second anonymization approach, a uni-
form skew, was used to create a second group of 50 ano-
nymized data sets. Each geocode that was anonymized
using the uniform skew method was moved a distance, in
meters, ranging from [-λ, λ], independently in each
dimension. Figure 5 describes the 2-dimensional proba-
bility distribution function for both of these anonymiza-
tion algorithms.

Population-adjusted 2-dimensional Gaussian skew

In the simplest case, the Gaussian skew anonymization
procedure is a probabilistic strategy that reassigns an orig-

inal point, with coordinates , to a new location

based on two Gaussian probability density functions

These are simply 1-dimensional Gaussians with means
equal to the original coordinates x0 and y0, respectively,

and standard deviations σx and σy. The parameters σx and

σy are proportional to the desired level of anonymity k,

and are inversely proportional to the population density

at . In other words, the greater the anonymity

desired, or the lower the underlying population density,
the farther points are moved on average.

Re-identification through averaging
With each subsequent anonymized version, the geocoded
points that referred to the same individual address were
averaged to estimate the original address. For re-identifi-
cation inference number n, the anonymized versions of
the same address were averaged from data sets [1, n], as
shown in Figure 6. For example, the second re-identifica-
tion inference data set included the averages of addresses
from anonymized data sets 1 and 2, the third inference
data set included anonymized data from data sets 1, 2,
and 3, and so on. After each pass, the distance between the
average anonymized point and the original address was
calculated.
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Experimental methods designFigure 6
Experimental methods design. One data set of 10,000 artificially generated case locations and unique identifiers were cre-
ated. The data set was anonymized 50 times using a 2-dimensional Gaussian-based skew, and 50 times using a 2-dimensional 
uniform skew.
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