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Assessment of Baroreflex Control of Heart Rate During General
Anesthesia Using a Point Process Method

Zhe Chen, Patrick L. Purdon, Eric T. Pierce, Grace Harrell, Emery N. Brown, and Riccardo Barbieri

Abstract— Evaluation of baroreflex control of heart rate (HR)
has important implications in clinical practice of anesthesia
and postoperative care. In this paper, we present a point
process method to assess the dynamic baroreflex gain using
a closed-loop model of the cardiovascular system. Specifically,
the inverse Gaussian probability distribution is used to model
the heartbeat interval, whereas the instantaneous mean is
identified by a linear or bilinear bivariate regression on the
previous R-R intervals and blood pressure (BP) measures. The
instantaneous baroreflex gain is estimated in the feedback loop
with a point process filter, while the RR→BP feedforward
frequency response is estimated by a Kalman filter. In addition,
the instantaneous cross-spectrum and cross-bispectrum (as well
as their ratio) can also be estimated. All statistical indices
provide a valuable quantitative assessment of the interaction
between heartbeat dynamics and hemodynamics during general
anesthesia.

Index Terms— point processes, adaptive filters, Volterra se-
ries, bilinear systems, baroreflex control.

I. INTRODUCTION

A change of heart rate (HR), in response to an inverse

change in arterial blood pressure (BP), is a measure of

of the gain or sensitivity of the baroreceptor-cardiac reflex

(baroreflex), which is essential in characterizing cardiovas-

cular control and explaining both heartbeat dynamics and

hemodynamics [9]. Evaluation of baroreflex control of heart

rate during or after anesthesia has important implications for

clinical practice (e.g., [5], [15]) and has attracted research

attention to determine how anesthetic drugs alter cardiovas-

cular control, and to develop quantitative measures that can

be used to monitor patients under general anesthesia [12].

In previous work [3,4,6,7], we have successfully applied

probabilistic point process models for estimating instanta-
neous indices of HR, HR variability (HRV), as well as

respiratory sinus arrhythmia. The point process framework

enabled us to estimate these physiological indices in a

dynamic fashion with milliseconds timescale. Since the car-

diovascular system has a closed-loop interactions between

many variables including R-R interval and BP, research

efforts have been devoted to estimating the baroreflex gain

with a closed-loop system identification approach [1], [2]. In

this paper, we extend the point process method to model the

heartbeat interval, allowing for a dynamical assessment of the
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baroreflex gain in the feedback BP→RR loop. At the same

time, a Kalman filter is used to track the parameters for es-

timating the RR→BP frequency response in the feedforward

cardiovascular loop. To characterize a potential nonlinear

interaction, we also model the heartbeat interval mean with

a bilinear system, which allows us to estimate the dynamic

cross-bispectrum between the R-R and BP measurements.

We apply our point process model to real physiological

recordings of two subjects during general anesthesia and

conduct statistical assessment of the results.

II. HEARTBEAT INTERVAL POINT PROCESS MODEL

Given a set of R-wave events {uj}J
j=1 detected from

the electrocardiogram (ECG), let RRj = uj − uj−1 > 0
denote the jth R-R interval. By treating the R-waves as

discrete events, we may develop a probabilistic point process

model in the continuous-time domain. Assuming history

dependence, the waiting time t−uj (as a continuous random

variable) until the next R-wave event can be modeled by an

inverse Gaussian model [3], [4], [6]:

p(t) =
( θ

2πt3

) 1
2

exp
(
− θ(t− uj − μt)2

2μ2
t (t− uj)

)
(t > uj),

where uj denotes the previous R-wave event occurred before

time t, θ > 0 denotes the shape parameter, and μt ≡ μRR(t)
denotes the instantaneous R-R mean. Note that when the

mean μt is much greater than the variance, the inverse

Gaussian can be well approximated by a Gaussian model

with a variance equal to μ3
t /θ. In point process theory,

the inter-event probability p(t) is related to the conditional

intensity function (CIF) λ(t) by a one-to-one transformation:

λ(t) = p(t)

1−R t
uj

p(τ)dτ
. The estimated CIF can be used to

evaluate the goodness-of-fit of the probabilistic heartbeat

model.

A. Instantaneous Indices of HR and HRV

Heart rate is defined as the reciprocal of the R-R intervals.

For time t measured in seconds, the new variable r =
c(t − uj)−1 (where c = 60 s/min) can be defined in beats

per minute (bpm). By the change-of-variables formula, the

HR probability p(r) = p(c(t − uj)−1) is given by p(r) =∣∣ dt
dr

∣∣p(t), and the mean and the standard deviation of HR r
can be derived [3]:

μHR = μ̃−1 + θ̃−1, σHR =
√

(2μ̃ + θ̃)/μ̃θ̃2, (1)

where μ̃ = c−1μRR and θ̃ = c−1θ. Essentially, the instanta-

neous indices of HR and HRV are characterized by the mean

μHR and standard deviation σHR, respectively.
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B. Modeling of Instantaneous Heartbeat Interval’s Mean
In general, let us consider a causal, continuous-time non-

linear mapping F between an output variable y(t) and two
input variables x(t) and u(t). Expanding the Wiener-Volterra
series of function F (up to the second order) with respect to
inputs x(t) and u(t) yields [13] :

y(t) = F
`
x(t), u(t)

´

=

Z t

0

a(τ)x(t − τ)dτ +

Z t

0

b(τ)u(t − τ)dτ

+

Z t

0

Z t

0

h1(τ1, τ2)x(t − τ1)u(t − τ2)dτ1dτ2

+

Z t

0

Z t

0

h2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

+

Z t

0

Z t

0

h3(τ1, τ2)u(t − τ1)u(t − τ2)dτ1dτ2

where F (·) : R
2 �→ R, and a(·), b(·), h1(·, ·), h2(·, ·), and

h3(·, ·) are Volterra kernels with appropriate orders. In our

case, y(t) will be replaced by μRR(t), x(t) will be replaced

by previous R-R intervals, u(t) will be replaced by BP, and

the continuous-time integral will be approximated by a finite

and discrete approximation.

Case 1: Dropping off all of second-order terms in the

Volterra series expansion, we obtain a bivariate discrete-time

linear system:

μt = a0(t) +
p∑

i=1

ai(t)RRt−i +
p∑

j=1

bj(t)BPt−j (2)

where the first two terms represent a linear autoregressive

(AR) model of the past R-R intervals, a0 compensates the

nonzero mean effect of the R-R measurements, and BPt−j

denotes the previous jth BP value prior to time t. The BP

in (2) can be either the systolic or the diastolic value.

Case 2: Dropping off the last two quadratic terms in the

Volterra series expansion, we obtain

μt = a0(t) +
p∑

i=1

ai(t)RRt−i +
p∑

j=1

bj(t)BPt−j

+
r∑

i=1

r∑
j=1

hij(t)(RRt−i −
〈
RR

〉
)BPt−j (3)

which yields a bivariate bilinear system (here the BP mea-

surements are assumed to have a zero mean value) [16].

C. Adaptive Point Process Filtering

Let ξ = [{ai}p
i=0, {bj}p

j=1, {hij}, θ]T denote the vector

that contains all unknown parameters in the probabilistic

model, we can recursively estimate them via adaptive point

process filtering [4]:

ξk|k−1 = ξk−1|k−1

Pk|k−1 = Pk−1|k−1 + W

ξk|k = ξk|k−1 + Pk|k−1(∇ log λk)[nk − λkΔ]

Pk|k =
[
P−1

k|k−1 +∇λk∇λT
k

Δ
λk
−∇2 log λk[nk − λkΔ]

]−1

where P and W denote the parameter and noise covariance

matrices, respectively; and Δ=5 ms denotes the time bin

size. Diagonal noise covariance matrix W that determines

the level of parameter fluctuation at the timescale of Δ
can be initialized either empirically from a random-walk

theory or from a maximum likelihood estimate. Symbols

∇λk = ∂λk

∂ξk
and ∇2λk = ∂2λk

∂ξk∂ξT
k

denote the first- and

second-order partial derivatives of the CIF w.r.t. ξ at time

t = kΔ, respectively. The indicator variable nk = 1 if a

heart beat occurs in time ((k − 1)Δ, kΔ] and 0 otherwise.

D. Closed-loop Cardiovascular Control

a) Modeling Baroreflex Gain (BP→RR Loop): First,

we aim to assess the BP→RR feedback loop, which is

directly related to the HR baroreflex. Unlike traditional

methods (e.g. [8], in which the baroreflex gain was estimated

based on the coherence between HR and BP), the baroreflex

is estimated through a closed-loop bivariate AR model [2].

Moreover, our point process model is adaptive and sidesteps

the local stationarity assumption, therefore it is capable of

capturing the non-stationary nature of the physiological sig-

nals due to the drastic cardiovascular control compensatory

changes. Specifically, in light of (2) we can compute the

frequency response for the baroreflex (BP→RR loop)

H12(f) =

∑q
j=1 bj(k)z−j

∣∣
z=ej2πf2

1−∑p
i=1 ai(k)z−i

∣∣
z=ej2πf1

, (4)

where f1 and f2 denote the rate for the R-R and BP-BP

intervals, respectively; here we assume f1 ≈ f2 ≡ f .

With the estimated time-varying AR coefficients {ai(k)} and

{bj(k)} at time t = kΔ, we may evaluate the dynamic
frequency response of (4) at different ranges (LF, 0.04-0.15

Hz; HF, 0.15-0.5 Hz). The baroreflex gain, characterized by

|H12(f)|, represents the effect of BP on heartbeat, mediated

by the neural autonomic reflex. Given the baroreflex gain,

we can estimate the cross-spectrum (between BP and RR)

as Cuy(f) = H12(f)QBP(f). When the coefficients {ai(t)}
and {bj(t)} are iteratively updated, the point process filter

produces an assessment of instantaneous (parametric) barore-

flex gain as well as cross-spectrum at a very fine temporal

resolution without using the window technique.
b) Modeling RR→BP Feedforward Loop: Simultane-

ous to baroreflex assessment, we aim to model the RR→BP

feedforward loop, which enables us to evaluate the impact

of heartbeat on the hemodynamics. Similar to (2), BP is also

modeled by a bivariate linear AR model:

BPk = c0 +
p∑

i=1

ciBPk−i +
p∑

i=1

diμRR(k − i), (5)

where μRR(k − i) represents the estimated instantaneous

R-R mean value at the time when BP-events occur. The

coefficients {ci}p
i=0 and {di}p

i=1 will be dynamically tracked

by a Kalman filter or recursive least-squares (RLS) filter.

Unlike the point process filter, the update occurs only at

the time of BP-events. Similarly, we can also estimate the

frequency response of the RR→BP cardiovascular loop:

H21(f) =

∑p
i=1 di(k)z−i

∣∣
z=ej2πf

1−∑p
i=1 ci(k)z−i

∣∣
z=ej2πf

, (6)
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where f denotes the sampling rate (beat/sample) for BP-

BP intervals. Likewise, we can estimate the dynamic gain

and phase of H21(f) at each single BP-event. Similarly, we

can estimate the cross-spectrum: Cuy(f) = H21(f)QRR(f),
where the time-varying autospectrum of R-R series is given

by a parametric form:

QRR(f, t) =
σ2

RR(t)
|1−∑p

i=1 ai(t)z−i
∣∣
z=ej2πf

. (7)

Furthermore, the instantaneous normalized cross-spectrum

(i.e., coherence) can be further computed as Coh(f, t) =
| Cuy(f)√
|QBP(f,t)|·|QRR(f,t)| |.

c) Estimating Dynamic Cross-Bispectrum: If μt is

identified by a bilinear system as in (3), we can further esti-

mate the higher-order statistics. For simplicity of derivation,

we further assume that the R-R and BP measurements are all

Gaussian (such that their own third-order cumulant statistics

are zeros), and the cross-bispectrum between BP (input u)

and R-R (output y) is given by:

Cuuy(f1, f2) = 2H(−f1,−f2)H21(f1)QRR(f1)QRR(f2)
= 2H(−f1,−f2)H12(f1)QBP(f1)QRR(f2) (8)

where H(f1, f2) =
∑q

k=1

∑q
l=1 hkle

−j2kπf1e−j2lπf2 de-

notes the Fourier transform of the 2nd-order kernel coef-

ficients {hkl}, and QBP(f) and QRR(f) denote the power

spectra of the BP and R-R series, respectively.

Proof: We only sketch the basic steps here, the details of

derivation are omitted due to space limit. For clarity of proof,

we assume that two inputs u(t) and x(t) have zero means.

Similar to [11], we first decompose the output y(t) into three

(two linear and one bilinear) terms and derive that E[y(t)] =∑
i

∑
j hijE[x(t − i)u(t − j)] =

∑
i

∑
j hijCux(i − j) =

1
2π

∫ H(f,−f)H12(f)QBP(f)df . Second, we compute the

cross third-order cumulant between u(t) and y(t) (viz. cross

bicovariance): Cuuy(τ1, τ2) = E{u(t + τ1)u(t + τ2)[y(t) −
E[y(t)]]}. Third, we compute the two-dimensional Fourier

transform of Cuuy(τ1, τ2), which finally yields (8). �
Let h(t) denote a vector that contains all of 2nd-order

coefficients {hkl(t)}; in light of (8), we may compute an

instantaneous index that quantifies the fractional contribution

between the cross-spectrum and the cross-bispectrum:

ρt =
|Cuy(f, t)|

|Cuy(f, t)|+ |Cuuy(f1, f2, t)| ≈
1

1 + 2|h(t)| · |QRR(f, t)| ,

where | · | denotes either the norm of a vector or the modulus

of a complex variable. The “≈” is due to the approximation

of a Gaussian assumption used in (8). A small value of ρ
implies a presence of significant (nonzero) values in {hkl}
(i.e. nonlinearity), whereas a perfect linear Gaussian model

would imply ρ = 1.

III. EXPERIMENTAL DATA AND RESULTS

Two healthy volunteer subjects, ages 20 and 32, gave

written consent to participate in this study approved by

the Massachusetts General Hospital (MGH). Any subject

whose medical evaluation did not allow him or her to be
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Fig. 1. Summarized estimated mean statistics for two subjects.
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Fig. 2. A snapshot of estimated dynamic statistical indices ranging from the
baseline to level-1 (subject 1). The dashed line marks the start of anesthesia
at level-1, and the blank region represents the transient period after the
baseline (where SBP measures are corrupted by artifact). We used the
parameter estimate from the end of baseline as the initial value for the
time where the blank region ends.

classified as American Society of Anesthesiologists Physical

Status I was excluded from the study. Intravenous and

arterial lines were placed in each subject. Propofol was

infused intravenously using a previously validated computer-

controlled delivery system running STANPUMP [14] con-

nected to a Harvard 22 syringe pump (Harvard Apparatus,

Holliston, MA). Five effect-site target concentrations (0-4

mcg/ml) were each maintained for 15 minutes respectively.

In subject 2, an additional effect-site target concentration of

5 mcg/ml was administered. Capnography, pulse oximetry,

ECG, and arterial BP (P1) were recorded and (sampling rate

1 kHz) and monitored continuously by an anesthesiologist

throughout the study. Bag-mask ventilation with 30% oxygen

was administered as needed in the event of propofol-induced

apnea. Because propofol is a potent peripheral vasodilator,

phenylephrine was administered intravenously to maintain

mean arterial BP within 20% of the baseline value [12].

In the present experiment, systolic BP (SBP) value was

used for baroreflex evaluation. For the linear model (2),

the bivariate orders p and q were fitted from 2 to 8 and

the optimal order was chosen according to the Akaike in-
formation criterion (AIC). For the bilinear model (3), the

order r = 2 was chosen empirically to avoid demanding

computation burden, and the initial hij was estimated by

fitting the residual error via least-squares. Upon estimating

the CIF, the goodness-of-fit of the probabilistic heartbeat

model is evaluated with the Kolmogorov-Smirnov (KS) test

[3]. For all of data fitted here, our model achieves fairly

satisfactory goodness-of-fit: among a total of 11 epochs (5

in subject 1 plus 6 in subject 2), the linear model is able to

reach 95% confidence bounds in KS test for 8 epochs.
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TABLE I

COMPARISON OF MEAN HR, SBP, COHERENCE, AND ρ-VALUE.

sub. 1, baseline sub.1, level 1 sub. 2, baseline sub. 2, level 1

μHR (bpm) 58.64 63.01 51.16 46.08

SBP (mmHg) 115.7 118.5 146.5 112.1

Coh (LF) 0.8597 0.7462 0.8491 0.6430

Coh (HF) 0.7541 0.7006 0.6928 0.6735

ρ ( LF) 0.7057 0.4976 0.8467 0.5408

ρ ( HF) 0.4695 0.3018 0.6455 0.3296

For each subject, we first examine the mean statistics of

baroreflex gain (LF and HF) during each epoch (15 min

each, upon reaching the steady state). Specifically, during

the steady state we observed a clear reduction of baroreflex

gain at HF from control baseline to the start of anesthesia

(level 1), and it continued to decrease as the level of the drug

concentration increased. This observation is also consistent

with some published results in the literature [5], [15]. For

HR and HRV, upon the induction of general anesthesia, we

observed an opposite trend between two subjects (for subject

1, HR increased and HRV slightly decreased). Results from

two subjects across all 11 epochs are summarized in Fig. 1.

Furthermore, to evaluate the tracking performance of point

process filter, we also examine its performance during tran-

sient dynamics. We use subject 1 to illustrate this point in

Fig. 2. As seen, the baroreflex responses were triggered by

injections of drug around 1890 s, which is accompanied by

a drop in the baroreflex gain (about 55%), and the point

process filter quickly captures the change. Meanwhile, the

instantaneous cross-spectrum (or coherence) between SBP

and RR shows that these two series are strongly correlated

at the HF range, first staying around 0.3 Hz at the conscious

baseline and then shifting around 0.25 Hz at level-1 of drug

concentration (now shown here).

Next, we also investigate the role of nonlinearity that

is played by the bilinear model before and during general

anesthesia. Specifically, we compare the mean ratio statis-

tic between the conscious baseline and the level-1 drug

concentration, and the result is listed in Table I. For both

subjects, the ρ value (LF and HF) is significantly greater in

the conscious baseline condition (P < 0.01, Mann-Whitney

test), which suggests that the bilinear interaction between BP

and RR became more active during general anesthesia, where

the parasympathetic activity is suppressed or attenuated [10]

(this phenomenon is also consistent with our observations in

another experimental protocol [7]). Meanwhile, the reduction

of mean coherence (see Table I) during anesthesia also

suggests that the BP-RR relation might have either nonlinear

components, or two signals are (relatively) less linearly

correlated.

IV. CONCLUSION

We have developed a point process method for assessing

the baroreflex control of heart rate during general anesthe-

sia using clinical recordings. The proposed point process

method enables us to estimate instantaneous HR, HRV, cross-

spectrum, and cross-bispectrum, all of which may serve

as useful indicators in ambulatory monitoring for clinical

practice. The empirical results have demonstrated that the

baroreflex responses were reset during general anesthesia to

allow faster HR at lower BP than during consciousness and

that the quantitative baroreflex gain (esp. at HF) decreased

dramatically after administration of anesthesia. The change

in HR/BP set point can be attributed to propofol’s systemic

vasodilatory effect, whereas the reduction in baroreflex gain

is most likely the result of disruption of areas within the

central nervous system responsible for cardiac control. These

preliminary results encourage future effort to collect more

data and evaluate the proposed method in a group study for

testing the significance of the result.
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