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Abstract— We explore the problem of neighbor discovery
in a mobile ad hoc network environment. We describe a
protocol for learning about neighboring nodes in such an
environment. The protocol is used for establishing and tearing
down communication links with neighboring nodes as they
move from one region of the network to another. The protocol
is implemented on top of the abstract MAC layer service
presented in [4], which provides reliable message delivery within
the local neighborhood and also provides the sender with an
acknowledgment when all neighboring nodes have received a
message. There is an upper bound, guaranteed by the abstract
MAC layer service, on the worst case delay that a message can
experience before it is received or acknowledged. We determine
the time complexity of the neighbor discovery protocol in terms
of the bounded delays provided by the underlying abstract
MAC layer.

I. INTRODUCTION

Neighbor discovery is an important aspect of many al-
gorithms in mobile wireless ad hoc networks (cf. [9], [8],
[1]). For example, knowledge about neighboring nodes can
be used to route, cluster and broadcast in an efficient manner.

Neighborhood knowledge is assumed in many routing
protocols used in wireless sensor networks. For example
in [9] the authors assume that nodes know the location of
one- and two-hop neighbors. This information is used to
implement a coordinate based routing algorithm. In [8] nodes
are assumed to maintain information about their one-hop
neighbors in order to perform routing in multi-hop wireless
networks. In [1] the authors assume that each node knows its
own location and its neighbors’ locations, in order to develop
a locality-aware location service.

We wish to take advantage of the reliability of the abstract
MAC layer described in [4] to design an efficient neighbor
discovery protocol. The abstract MAC layer hides the lower
level details of collision detection and contention while
providing bounds on the amount of delay incurred in the
reception of a message and the receipt of an acknowledg-
ment.

We assume that the network is divided into static regions
and this division is known to all the nodes. If a node that
enters a particular region of the network and remains there
for sufficiently long, it should learn about and establish
communication links with nodes in the same region. If a
node leaves a particular region, other nodes that no longer

lie within its neighborhood should be notified and should be
able to take down their communication links with the leaving
node.

We also assume that each node knows its trajectory infor-
mation for all time, however it only uses this information for
some limited time horizon. Based on this information, and
the bounds provided by the abstract MAC layer, we give a
protocol in which nodes exchange notification messages at
appropriate times, before exiting a particular region or upon
entering a new region of the network. The protocol allows
nodes to gain information about neighbors and exchange
application messages reliably with neighbors. We also give
a proof of correctness for our protocol.

II. RELATED WORK

A deterministic distributed algorithm for neighbor dis-
covery is suggested in [2] and uses TDMA slots. It has
a running time of MN/r + O(max(M,N) log r). It is
assumed that there are n nodes and each node is assigned a
unique identifier from the range [1, N ]. M is the maximum
number of channels available for communication, or possible
channels all the nodes are capable of operating on, and r is
the number of receivers at a node. It is suggested that the
running time is so large because of the oblivious nature of the
algorithm (which means that a node transmits based solely on
its label and the time slot number). Our neighbor discovery
protocol is different from the one given above since it is built
on top of an underlying reliable MAC layer.

A protocol for secure neighbor discovery in the presence
of compromised nodes is given in [5]. The protocol achieves
secure discovery of the local neighborhood by taking ad-
vantage of the sensor deployment phase. It is assumed that
sensor nodes can be trusted for a short time after deployment.
This period of time is used to ensure that neighborhood
information is not compromised. The protocol also takes
advantage of the fact that usually neighboring nodes have a
large number of common neighbors. Although the protocol
tries to handle malicious nodes, it assumes that nodes remain
static and do not change their location after they have been
deployed. Our neighbor discovery protocol deals with mobile
nodes which can move from region to region.

In [10] the authors give a neighbor discovery algorithm
which is similar to ALOHA. The algorithm works without a
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collision detection mechanism. An extension of the algorithm
is given which works in the absence of clock synchroniza-
tion. Nodes are allowed to wake up at different times. The
authors show that each node is able to find out about all
its neighbors in expected time ne(log n + c) where c is
constant. However, it is assumed that all n nodes form a
clique throughout the execution of the algorithm, whereas
in our algorithm the neighborhood topology need not be a
complete graph and in fact can change over time.

III. SYSTEM MODEL

The timed I/O Automata modeling framework [11] is used
in order to model the mobile ad hoc network. There are six
components in the system: the network layer automaton, the
abstract MAC layer automaton, the queue layer automaton,
the neighbor discovery layer automaton, the point-to-point
layer automaton, and the user automaton (see Figure III-C).
We give a description here of these components.

A. The Network Layer Automaton

The network layer automaton models the real world in
terms of time, location, physical layer behavior and it also
encapsulates mobility of nodes. It is assumed that location
and time are accurately provided by the network layer.

For every network automaton there is a function fG that
maps from states to directed node interaction graphs. Fix an
execution α of the MANET system. Suppose s gives the
state of the network at some point in α. Gcomm = fG(s) is
the dynamic directed communication graph which captures
nodes in communication range in network state s. Assume
that the position of node i in state s is given by pos(i). Then
there is an edge (i, j) between nodes i and j in Gcomm if and
only if the Euclidean distance between pos(i) and pos(j) in
state s is less than or equal to the broadcast radius of node
i. At any point in α, E is the edge set corresponding to
Gcomm = fG(s) where s is the network state at that point.
Note that two nodes may have different broadcast ranges. Let
rmin be the minimum broadcast range among all the nodes.

Fix R to be a closed, bounded and connected subset of
R2. R models the physical space in which the nodes reside;
we call it the deployment space. Let U be the index set for
regions in R used by the participating agents. We now define
a region partitioning scheme.

Definition 1: A region partitioning scheme divides R into
a set of regions {Ru}u∈U such that: (i) each u ∈ U , Ru is
a connected subset of R, (ii) for any u, v ∈ U , Ru and Rv

are disjoint, (iii) the deployment space is equal to the union
of all regions, R =

⋃
u∈U Ru.

For any u, v ∈ U , Ru and Rv are neighboring regions if
there exists a closed linear trajectory that starts at Ru and
ends in Rv and does not pass through any other regions.

We refer to the graph induced by the neighborhood relation
of the region partition scheme as the region graph. Since we
want to establish links between nodes in the same region we
assume that the maximum diameter of any region is bounded
by rmin

B. The Abstract MAC Layer Automaton

The MAC layer automaton provides reliable message
delivery to all recipients as well as feedback to the sender
in the form of an acknowledgment which indicates that
the message has been delivered to all intended receivers.
It provides guaranteed time bounds on message delivery as
well as the receipt of acknowledgments. These time bounds
are functions of the current level of contention. The cost of
implementing this abstract MAC layer exactly as described
might be prohibitively large. However, it is possible to
provide similar guarantees with a high probability.

The MAC layer provides the following interface actions
bcast(m)i, abort(m)i, rcv(m)i, ack(m)i. The first two are
input actions and the other two are output actions. In addition
it imposes upper bounds on the time elapsing between
bcast(m)i and corresponding ack(m)i and deliver(m)j .
These bounds depend on the contention involving the sending
node, denoted above by i, and the receiver node, denoted
above by j, during the broadcast interval. These time bounds
can be summarized as follows:
• F+

rcv : upper bound on a specific message being deliv-
ered.

• F+
ack : upper bound on an acknowledgment being re-

ceived.
These functions are monotonically non-decreasing with the
level of contention present at the receiver or both the sender
and receivers (for F+

ack).
We assume that the values of the time bounds F+

rcv and
F+

ack (described in [4]) are constant and available to algo-
rithms implemented on top of the abstract MAC layer. Thus
a node can use these bounds to determine when to transmit
notification messages when entering or leaving a geographic
region. This implies that the dynamic communication graph
(Gcomm) induced by the motion of the nodes has a constant
upper bound on the maximum degree.

The MAC layer assumes some well-formedness conditions
for upper layers. In particular, it assumes that a user process
does not submit a bcast until after its previous bcast has
had a matching ack returned. There are constraints on
message behavior. In particular, if a bcast(m)i event causes
a rcv(m)j event, then at some point between these events
nodes i and j have to be within interference range. If a
bcast(m)i event causes an ack(m)i event and for every
point in between these two event nodes i and j are in
communication range, then a rcv(m)j caused by the bcast
is guaranteed to precede the ack.

C. The Queue Layer Automaton

The queue layer automaton has inputs
bcast msg ndp(m)i, bcast msg app(m)i, ack(m)i,
and output bcast(m)i.

The queue layer automaton provides a message queue at
each node which ensures that a node does not submit a bcast
request to the abstract MAC layer until after its previous
bcast has ended with a matching ack being returned. This is
part of the well-formedness constraints placed on the upper
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Fig. 1. The MANET system.

layers using the abstract MAC layer service. The queue layer
automaton actually provides two queues for each node. The
application queue buffers messages from applications and
the ndp queue buffers messages from the neighbor discovery
layer. Preference is given to messages received from the
neighbor discovery layer, which are broadcast first, even
if there are pending application messages. The maximum
size of the queues is fixed (given by k). It is assumed that
messages are received from the application layer at a rate
such that the queues do not overflow. Both the neighbor
discovery layer and the user layer should be such that the
number of messages they send does not overflow the queue,
which is emptied at a rate of one element per F+

ack time
units.

D. The Neighbor Discovery Layer Automaton

The neighbor discovery layer automaton for node i de-
fines three output actions, bcast(m)i, LinkUp(j)i and
LinkDown(j)i where j 6= i; in the following discus-
sion we ignore bcast(m)i and focus on LinkUp(j)i and
LinkDown(j)i. The LinkUp(j)i action signals that a re-
liable communication link has been established between
node i and j from the perspective of node i. Similarly the
LinkDown(j)i action signals that a previously established
communication link between node i and j is no longer
available from the perspective of node i.

Consider any execution α, and let αi be the projection
of α onto the actions of node i, we impose the following
restrictions on the executions.

Well-Formedness:
• For all i and j the LinkUp(j)i and LinkDown(j)i

actions alternate in αi.
The LinkUp and LinkDown events induce a directed

neighbor graph Gneigh with vertex set equal to the node
set. For any two nodes i and j, the directed edge (i, j) is
in Gneigh if and only if the most recent link event at node

i for node j is a LinkUp. If directed edge (i, j) is present
in Gneigh we say its in the Up state, otherwise we say it
is in the Dn state. We now define some synchronization
conditions.

Synchronization:
1) While edge (i, j) is Up the edge (j, i) cannot go

through the states Up→ Dn→ Up.
2) While edge (i, j) is Dn the edge (j, i) cannot go

through the states Dn→ Up→ Dn.
To avoid the trivial solution where all edges remain

Dn independent of the environment we define a progress
condition.

Progress:
• There exist constants a, b ∈ R+, such that for all times

times t1 and t2 where t2 ≥ t1+a+b, and for any nodes i
and j: if i and j are in region R throughout [t1, t2] then
directed edges (i, j) and (j, i) are in Gneigh (that is they
are in state Up) during the time interval [t1 +a, t2− b].
Also if (i, j) transitions from Up to Dn at time t then
node i remains in the same region throughout [t, t+ b].

Similarly we now need a validity condition to avoid solu-
tions where all edges are kept in the Up state independent
of the environment.

Validity:
• If (i, j) is present in Gneigh (that is it is in state Up)

then nodes i and j are in the same region.

E. The Point-to-Point Layer Automaton

The point-to-point layer automaton has interface actions
Send(j,m)i, and Deliver(j,m)i, which allow higher layers
to broadcast and receive point-to-point messages. It connects
to the underlying neighbor discovery layer by receiving the
neighbor discovery layer’s LinkUp(j)i and LinkDown(j)i

outputs as inputs.
Thus we have the following output action:
• Deliver(j,m)i (node i receives message m from node
j), for all i and j, i 6= j.

We have one input action:
• Send(j,m)i (node i sends message m to node j), for

all i and j, i 6= j.
Fix an execution α of the MANET system. We as-

sume the existence of a caused-by function mapping every
Deliver(i,m)j event to a preceding Send(j,m)i event,
i 6= j. Below are additional constraints on the nature of
the caused-by function.

Constraints on Message Behavior:
1) No duplicate receives: The caused-by function is one-

to-one. That is, each Send event causes at most one
Deliver event.

2) Termination: The caused-by function is onto. That is,
each Send event causes at least one Deliver event.
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F. The User Automaton

The user automaton is a composition of separate (and
non-interacting) automata for the users {1, . . . , n}. User i
connects to the underlying neighbor discovery layer using
the given interface.

Fix an execution α of a MANET system. The following
properties define well-formedness:

1) α contains at most one Send event for each message
m.

2) If Send(j,m)i occurs then (i, j) ∈ Gneigh and there-
fore the link (i, j) is Up.

Fig. 2. The maximum time required for setting up a link.

IV. THE NEIGHBOR DISCOVERY PROTOCOL

The neighbor discovery protocol is based on nodes sending
notification messages to each other when they move from one
region to another. For simplicity we assume that nodes are
neighbors only if they are in the same region of the network.
There are three types of messages:
• leave
• join
• join reply.
When a node is about to move into a new region, it

broadcasts a leave message some time before leaving. This
message indicates to its neighboring nodes that they should
begin tearing down the corresponding link. When a node
enters a new region and determines that it is going to remain
there for sufficiently long, it broadcasts a join message.
This message indicates to the neighbors that they should
start setting up the corresponding link. It also serves as a
request to learn the ids of neighbors. Nodes that receive a
join message send a join reply message in response so
that the original node can learn their ids. The timing of
these messages ensures that the proper semantics of the
corresponding links are maintained. This means that the
overhead for setting up and tearing down links is taken into
account, and reliable message delivery is guaranteed when a
link is in the Up state.

Suppose that the time overhead for setting up a link
between two neighbors is given by δLU , and the time
overhead for tearing down a link is given by δLD. A node
broadcasts a join message upon entering a new region only
if it is going to remain there for at least the amount of time
required to set up a link and to tear it down. Thus a node

broadcasts a join message if it is going to remain in its new
region for at least δLU + δLD + L time in the future where
L ≥ 0 is an application provided parameter.

The exact time overhead for setting up a link (δLU ) can be
determined in terms of the delays provided by the underlying
MAC layer. This is the overhead incurred in sending the join
message and getting back the corresponding join reply.
After this the link has been set up and application messages
can be sent over it. Thus δLU = 3F+

rcv (see Figure 2).
• The first F+

rcv time units are to allow the join message
to get from the sender to the receiver. When the receiver
gets the join message it will perform a LinkUp with
the sender.

• It takes another F+
rcv time units for the receiver to

process the join message. This is because when a node
receives a join message it waits before broadcasting the
corresponding join reply. It does so in order to process
multiple join messages in batches. This prevents the
receiver from being swamped with pending join mes-
sages. Consider the following scenario. Suppose that
node i is present in region X of the network. Now
suppose that n− 1 nodes move into region X and send
join messages. Node i will then have to send n − 1
join replies. This will result in overflow in the ndp
message queue in the Queue layer. Thus i waits for
F+

rcv time and collects the join messages and responds
with one join reply. An interval of F+

rcv is used since
this captures the maximum level of contention.

• The last F+
rcv units of time ensure that the join reply

gets back to the original node which sent the join
message. After getting this join reply the original node
performs a LinkUp with the sender of the join reply.

Fig. 3. The maximum time required for taking down a link.

The overhead for tearing down a link (δLD) can similarly
be determined in terms of the delays provided by the MAC
layer and the size of the application message queue. This
time bound guarantees that all neighbors get the leave
message sent by a node before it leaves so that the neighbors
have accurate information at all times about who their own
neighbors are. The delay of δLD also ensures that the leaving
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node receives messages that were in transit when it sent
the notification. The sender of a leave message performs a
LinkDown with all its neighbors as soon as it send the leave
message. Specifically δLD = 2F+

rcv + kF+
ack (see Figure 3).

• The first F+
rcv time units allow the leave message to

get to the receiver. At this point the receiver performs
a LinkDown with the sending node. After this the
receiver will not send any more messages. However, it
will still receive messages that are already in the queue
at the sender.

• The next kF+
ack time units allow the receiver to empty

out application messages in the queue. Note that the
maximum queue size is given by k and each message
can incur a maximum delay of F+

ack before it is sent.
• The remaining F+

rcv time units allows the last message
in he queue to reach the sender.

When a node i receives a join message it checks if it
is going to remain in its current region long enough to
send a join reply back and then tear down its link with
the initiator of the join message. Hence i checks if it is
going to remain in its current region for at least the next
2F+

rcv + δLD time units (the first F+
rcv time units being

for batch processing). This ensures that if i initiates a
LinkDown later its join reply message will be received
before its leave message.

In Algorithm 1 nodes include their ids and their current
region in notification messages.

Technical Considerations

We describe the algorithms using the TIOA formalism
[11]. The algorithm implementing the neighbor discovery
protocol assumes a TIOA trajectory [11] that stops time on
the first when any precondition is enabled. However since
regions were defined as disjoint, technically there might not
exist a ”first” time when a node enters or leaves a region due
to possible left-open intervals.

Concretely, the enter region requires a trajectory that
stops time when a node first changes regions. To side step
this problem we allow some slack in the stopping conditions;
unfortunately this requires changing the definitions of the
partitioning scheme to allow neighboring regions to overlap
at their boundaries. We define an overlapping partition as
follows:

Definition 2: Fix R to be a closed, bounded and con-
nected subset of R2. R models the physical space in which
the nodes reside; we call it the deployment space. Let U
be the index set for regions in R used by the participating
agents. A region partitioning scheme divides R into a set of
regions {Ru}u∈U such that: (i) each u ∈ U , Ru is a closed
and connected subset of R, (ii) for any u, v ∈ U , Ru and
Rv may overlap only at their boundaries.

For any u, v ∈ U , Ru and Rv are neighboring regions
if they intersect at their boundaries (Ru ∩ Rv 6= ∅). Let
the region graph be the graph induced by the neighborhood
relation on the set of regions.

Algorithm 1 Neighbor Discovery Protocol
automaton NDP(i:N, traj:Traj, F+

rcv :R, F+
ack:R, L:R, k:N, δLU :R, δLD :R)

states
active:Bool := false;
sendbuffer:Seq[M] := ∅;
recvbuffer:Seq[M] := ∅;
eventqueue:Seq[Ev] := ∅;
S:Set[N] := ∅;
region:Null[Region] := nil;
sendtrigger:R := −1;
now:R := 0;

transitions
output bcast(m, i)

pre m = head(sendbuffer)
eff

sendbuffer := tail(sendbuffer);

input rcv(m, i)
eff

recvbuffer := recvbuffer ` m;

internal enter region(i)
pre eventqueue = ∅ ∧ getregion(trajnow) 6= val(region)
eff

region := embed(getregion(trajnow));
if ∃t : R(t ≥ now ∧ t ≤ now + δLU + L+ δLD ⇒
getregion(trajt) = val(region)) then

sendbuffer := sendbuffer ` [join, i, val(region)];
active := true;

internal leave region(i)
pre eventqueue = ∅ ∧ active∧

getregion(trajnow+δLD
) 6= val(region)

eff
sendbuffer := sendbuffer ` [leave, i, val(region)];
active := false;
for j in S

eventqueue := eventqueue ` [down, j];

internal process message(m, i)
pre eventqueue = ∅ ∧m = head(recvbuffer)∧

getregion(trajnow) = val(region)
eff

recvbuffer := tail(recvbuffer);
if m.reg = val(region) ∧ active then

if m.type = join ∧m.sender /∈ S∧
∃t : R(t ≥ now ∧ t ≤ now + 2F+

rcv + δLD ⇒
getregion(trajt) = val(region)) then

if sendtrigger = −1 then
sendtrigger := now + F+

rcv ;
eventqueue := eventqueue ` [up,m.sender];

if m.type = join reply ∧m.sender /∈ S then
eventqueue := eventqueue ` [up,m.sender];

if m.type = leave ∧m.sender ∈ S then
eventqueue := eventqueue ` [down,m.sender];

internal send reply(i)
pre eventqueue = ∅ ∧ sendtrigger = now
eff

sendtrigger := −1;
sendbuffer := sendbuffer ` [join reply, i, val(region)];

output linkDown(j, i)
pre head(eventqueue) = [down, j]
eff

eventqueue := tail(eventqueue);
S := S − {j};

output linkUp(j, i)
pre head(eventqueue) = [up, j]
eff

eventqueue := tail(eventqueue);
S := S ∪ {j};
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Algorithm 2 Queue
automaton Queue(i:N, k:N, M:Type)

states
ptp queue:Seq[M] := ∅;
ndp queue:Seq[M] := ∅;
cts:Bool := true;

transitions
input bcast msg ptp(m, i)

eff
if len(ptp queue) < k then

ptp queue := ptp queue ` m;

input bcast msg ndp(m, i)
eff

if len(ndp queue) < k then
ndp queue := ndp queue ` m;

output bcast(m, i)
pre cts = true ∧m = head(ndp queue)∨

m = head(ptp queue) ∧ ndp queue 6= ∅
eff

cts := false;

if len(ndp queue) > 0 then
ndp queue := tail(ndp queue);

else
ptp queue := tail(ptp queue);

input ack(m, i)
eff

cts := true;

Algorithm 3 Point to Point Algorithm
automaton PTP(i:N, M:Type)

states
sendbuffer:Seq[Packet] := ∅;
recvbuffer:Seq[Packet] := ∅;
S:Set[N] := ∅;

transitions
input LinkDown(j, i)

eff
S := S − {j};

input LinkUp(j, i)
eff

S := S ∪ {j};

input send(j, m, i)
eff

if j ∈ S then
sendbuffer := sendbuffer ` [m, i];

output deliver(j, m, i)
pre [m, j] = head(recvbuffer)
eff

recvbuffer := tail(recvbuffer);

input rcv(p, i)
eff

if p.sender ∈ S then
recvbuffer := recvbuffer ` p;

output bcast msg app(p, i)
pre p = head(sendbuffer)
eff

sendbuffer := tail(sendbuffer);

Observe that the getregion function would now a set
of regions instead of a single region. In particular, when
queried in a region boundary it returns the set of regions
that share the boundary, otherwise it returns a singleton set
with the current region. The algorithm itself would remain
unchanged modulo some simple changes to handle the fact
that getregion returns a set and not a single element which
we omitted for readability. However the stopping condition
in the TIOA trajectory for the enter region action would
become:

∃u : Region (u 6= val(region))∧
curreg /∈ getregion(trajnow) ∧ u ∈ getregion(trajnow)∧

curreg ∈ getregion(trajnow−ε) ∧ u ∈ getregion(trajnow−ε)

Here ε > 0 is a small constant describing the slack, and
it depends on the motion of the agents with respect to the
size of the regions. Observe that the same discussion applies
for the leave region action, and a similar predicate can be
used for its TIOA stopping condition.

V. PROOF OF CORRECTNESS

Lemma 1: The neighbor discovery algorithm satisfies the
well-formedness condition.

Proof: We have to show that for all i and j,
LinkUp(j)i and LinkDown(j)i alternate.

Consider nodes i and j. Suppose that at time t node i
performs a LinkUp(j)i. This means that node j is now in it’s
neighbor set. Node i can now perform another LinkUp(j)i

before a LinkDown(j)i only if it receives a join or a
join reply message. In both cases it first checks if j is
already in the neighbor set, and does not carry out a
LinkUp(j)i if it is.

Now suppose that node i performs a LinkDown(j)i at
time t′. This means that j is removed from the neighbor set.
It can only perform another LinkDown(j)i if it performs
a leave region action or it gets a leave message. For both
cases it checks its neighbor set to see if j is present in it
before doing a LinkDown(j)i.

Proposition 1: A join message is always received before
its corresponding leave message. The same holds for join
and join reply messages.

Proof: If a join message is sent at time t the cor-
responding leave message will be sent at time t + δLU .
The MAC layer guarantees message delivery after F+

rcv , an
since δLU > F+

rcv the leave message will be sent (and thus
delivered) after the join message is delivered.

Similarly after a join message is sent, a joint reply
message cannot be sent before waiting F+

rcv in the send
trigger, and thus by the time the join reply message is sent
the join message would have been delivered.

This property is assumed throughout the rest of the proofs.
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Lemma 2: While (i, j) is Up, (j, i) cannot go through
the states Up→ Dn→ Up.

Proof: Fix nodes i and j where the directed edges
(i, j) and (j, i) are both in the Up state. Suppose the edge
(j, i) switches to the Dn state at time t while the edge (i, j)
remains Up. The state change Up → Dn of edge (j, i)
was caused when node j executed a leave region action
or processed a leave message sent by i. It suffices to show
that in either case the edge (j, i) can’t switch back to Up
before the edge (i, j) switches to the Dn state.
• If node j executed leave region at time t it also sent a
leave message at time t. Node i receives this message
at time t ≤ t′ ≤ t + F+

rcv changing the state of edge
(i, j) to Dn. Moreover the edge (j, i) cannot switch
back to Up before t′′ = t+δLD, and since δLD > F+

rcv

then t′′ > t′ and the statement follows.
• Suppose node j processed a leave message at time t.

This message was sent by node i at time t−F+
rcv ≤ t′ ≤

t, and thus at time t′ the edge (i, j) was Dn. Moreover
the edge (i, j) cannot switch back to the Up state before
time t′+δLD and since δLD > Frcv this contradicts the
assumption that edge (i, j) was up at time t.

The proof of the second synchronization condition follows
the same vein, but with some subtle differences.

Lemma 3: While (i, j) is Dn (j, i) cannot go through
the states Dn→ Up→ Dn.

Proof:
Fix nodes i and j where the directed edges (i, j) and (j, i)

are both in the Dn state. Suppose the edge (j, i) switches to
the Up state at time t while the edge (i, j) remains Dn. The
state change Dn → Up of edge (j, i) was triggered when
node j received a join or a join reply message from node
i. It suffices to show that in either case the edge (j, i) can’t
switch back to Dn before the edge (i, j) switches to the Up
state.
• If node j processed a join message at time t, then node
i will receive the corresponding join reply message at
time t ≤ t′ ≤ t + 2F+

rcv and will switch edge (i, j)
to the Up state. Moreover the edge (j, i) cannot switch
back to a Dn state before t+ 2F+

rcv and the statement
follows.

• Suppose node j processed a join reply message at time
t sent by node i at time t− F+

rcv ≤ t′ ≤ t. Let τi, τj ≤
t be the times at which nodes i and j executed the
enter region action, observe that by construction we
know that node i will not execute the leave region
action until t+ F+

rcv as the earliest.
– If τj ≤ τi then the join message of node i would

reach j before the join reply message and while it
is active, which contradicts the assumption that the
reception of a join reply triggered the Dn→ Up
state change of edge (j, i).

– If τi ≤ τj then the join message of node j would
reach i before τj +F+

rcv ≤ t+F+
rcv and while node

i is active, switching the edge (i, j) to the Up state.

Since the edge (j, i) cannot switch to Dn before
t+ 2F+

rcv, the statement follows.

From the previous two lemmas, the following is a corol-
lary.

Theorem 1: The neighbor discovery algorithm satisfies
the synchronization conditions.

We now prove that the neighbor discovery protocol satis-
fies the progress condition of the neighbor discovery speci-
fication with a = 3F+

rcv = δLU , b = 2F+
rcv + kF+

ack = δLD

and x = δLU + δLD + L.
Theorem 2: The neighbor discovery algorithm satisfies

the progress condition.
Proof: Suppose that a = 3F+

rcv = δLU , b = 2F+
rcv +

kF+
ack = δLD and x = δLU + δLD + L. Consider any two

times t1 and t2, with t2 ≥ t1 + x, such that i and j are
both in region r throughout [t1, t2]. Let t be the earliest time
equal to or before t1, such that i and j are both in region r
throughout [t, t2].

Without loss of generality, suppose i enters region r at
time t. Then i and j participate in the link establishment,
which takes at most a = δLU time, at the end of which
(i, j) and (j, i) are both Up. So starting at time t1 + a, or
earlier, the links are Up.

The link teardown is not initiated by either endpoint until
δLD time before leaving region r, which by assumption, is
no earlier than t2 − b (since b = δLD). So (i, j) and (j, i)
remain up until at least t2 − b.

Lemma 4: The neighbor discovery protocol satisfies the
proximity condition.

Proof: Consider nodes i and j. If (i, j) is in state
Up then i and j are in the same region. By definition
the maximum distance between any two points in the same
region is at most rmin. Hence the Euclidean distance between
pos(i) and pos(j) is at most rmin.

Lemma 5: The point to point algorithm satisfies the con-
dition for no duplicate receives.

Proof: The abstract MAC layer satisfies the no du-
plicate receives property. The point to point algorithm only
invokes one bcast on behalf of any given user-level message.
Hence each Send event will cause at most one Deliver
event.

Theorem 3: The point to point algorithm satisfies the
termination condition.

Proof: We have to show that if a message is sent from
i to j and (i, j) is in state Up, then the message is delivered.

Suppose that (i, j) is Up at time t. This means i and j are
in the same region and will remain there throughout [t, t +
δLD]. Hence, by definition of region, i and j are within each
other’s transmission radius throughout [t, t+ δLD]. Observe
that the underlying MAC Layer guarantees that any message
broadcast by node i at time t will be delivered before time
t+F+

rcv to any node that remains within the communication
radius during this time. The maximum overhead incurred at
the queue layer is kF+

ack. Since δLD = 2F+
rcv + kF+

ack, it is
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guaranteed that any message sent when (i, j) is in state Up
will be delivered.

VI. CONCLUSIONS

We have shown how a reactive neighbor discovery proto-
col can be implemented over a reliable MAC layer. Many
algorithms, such as the token circulation algorithms given
in [6], can use this protocol to keep track of neighborhood
information.

It is of interest to explore the following areas of future
work:
• Lower bounds or impossibility results related to the

neighbor discovery problem in mobile ad hoc network
(based on abstract MAC layer, or a reasonable physical
network model).

• Determining the lower bounds or impossibility results
for the neighbor discovery problem over probabilistic
MAC layer variants.

• A different protocol with a leader based approach,
where each region has a leader node associated with it,
which transmits information on behalf of other nodes.

• Making the service fault-tolerant to message losses in
the MAC layer, and exploring self-stabilization.

• The case where rmin spans two or more regions of the
network.
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