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Université Denis Diderot-Paris7, F-75252 Paris, France.

kNow at University of South Alabama, Mobile, Alabama
36688, USA.
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We present a search for the decay Bþ ! ‘þ�‘ð‘ ¼ �;�; or eÞ in ð458:9� 5:1Þ � 106 B �B pairs

recorded with the BABAR detector at the PEP-II B-factory. We search for these B decays in a sample

of BþB� events where one B-meson is reconstructed as B� ! D0‘� ��X. Using the method of Feldman

and Cousins, we obtain BðBþ ! �þ��Þ ¼ ð1:7� 0:8� 0:2Þ � 10�4, which excludes zero at 2:3�. We

interpret the central value in the context of the standard model and find the B meson decay constant to be

f2B ¼ ð62� 31Þ � 103 MeV2. We find no evidence for Bþ ! eþ�e and B
þ ! �þ�� and set upper limits

at the 90% C.L. BðBþ ! eþ�eÞ< 0:8� 10�5 and BðBþ ! �þ��Þ< 1:1� 10�5.

DOI: 10.1103/PhysRevD.81.051101 PACS numbers: 13.20.�v, 12.15.Ji, 13.25.Hw

In the standard model (SM), the purely leptonic decay
Bþ ! ‘þ�‘ [1] proceeds via quark annihilation into aW

þ
boson. This process is related to the Cabibbo-Kobayashi-
Maskawa matrix element Vub and the B meson decay
constant, fB, by BðBþ ! ‘þ�‘Þ / jVubj2f2B. It is also
potentially sensitive to the presence of a charged Higgs
boson [2], as in the minimal supersymmetric extension of
the standard model. Using jVubj ¼ ð3:94� 0:26Þ � 10�3

[3] and fB ¼ 190� 13 MeV [4] and assuming only a SM
contribution to the process, the branching fraction predic-
tions are BðBþ ! �þ��Þ ¼ ð1:0� 0:2Þ � 10�4, BðBþ !
�þ��Þ ¼ ð4:5� 1:0Þ � 10�7, and BðBþ ! eþ�eÞ ¼
ð1:1� 0:2Þ � 10�11. The different branching fractions re-
sult from helicity suppression of the lower-mass charged
leptons. The Belle Collaboration reported evidence for the
decay Bþ ! �þ�� in 2006 [5]. In this paper, we describe a
search for all three final states.

The data used in this analysis were collected with the
BABAR detector at the PEP-II storage ring at the SLAC
National Accelerator Laboratory. We use the full BABAR
data set, corresponding to an integrated luminosity of
417:6 fb�1 with center-of-mass (CM) energy equal to the
�ð4SÞ rest mass. These data contain ð458:9� 5:1Þ � 106

�ð4SÞ ! B �B pairs, and we assume equal production of
B0 �B0 and BþB� from the �ð4SÞ decays. The BABAR
detector is described in detail elsewhere [6]. For the most
recent 203 fb�1 of data, the barrel region of the muon
system was upgraded to limited streamer tubes [7].

Signal and background processes are simulated using
EVTGEN [8]. A GEANT4-based [9] Monte Carlo (MC)
simulation is used to model the detector response and to
estimate the signal efficiency and the physics backgrounds.
Simulation samples equivalent to approximately 3 times
the accumulated data were used to model B �B events, and
samples equivalent to approximately 1.5 times the accu-
mulated data were used to model continuum background
events where eþe� ! u �u, d �d, s�s, c �c, and �þ��. We
independently simulate the signal processes at a rate over
a hundred times that expected in data, using samples where
one Bmeson always decays as Bþ ! ‘þ�‘ and the second
decays into any final state. We normalize these signal
samples to their predicted SM branching fractions.

The strategy adopted for this analysis is similar to that
from our previously published work [10]. Signal B decays,
Bþ ! ‘þ�‘, are selected in the recoil of a semileptonic
decay, B� ! D0‘� ��X, referred to as the ‘‘tag’’ B. The
final states of the �þ decay in Bþ ! �þ�� are identical to
those in Ref. [10]: �þ ! eþ�e ���, �

þ ! �þ�� ���, �
þ !

�þ ���, and �þ ! �þ ���. For the first time, we include
Bþ ! eþ�e and Bþ ! �þ�� in this search. In addition

to using about 20% more data than in Ref. [10], we relax
the constraints on the tag B, improve the definition of the
discriminating variables and use a combination of tag and
signal B variables in a multivariate discriminant that im-
proves signal efficiency and background rejection.
The tag B is reconstructed in the set of semileptonic B

decay modes B� ! D0‘� ��X, through the full hadronic
reconstruction of D0 mesons and identification of the
lepton, ‘�, as either e� or��. Other particles (X) resulting
from a transition from a higher-mass charm state down to
theD0 are not explicitly reconstructed and are not included
in the tag B kinematics. This strategy, and the reconstruc-
tion method (D0 decay modes, D0‘� vertex requirements,
etc.), are the same as in Ref. [10]. One difference in the
present analysis is that we may assign up to one photon
(from X) back to the tag B, based on its consistency with
the decay D�0 ! ð�0; �ÞD0.
The efficiency for tag B reconstruction ("tag) is defined

as the rate at which events in the signal MC are found to
contain at least one reconstructed tag B and a single track
recoiling against that tag. The efficiency for each signal
mode is given in Table III, including corrections for sys-
tematic effects (described below). The efficiency is larger
for Bþ ! �þ�� events due to high-multiplicity �þ decays
faking tag B mesons.
We identify one of the following reconstructed particles

recoiling against the tag B: eþ,�þ,�þ, or �þ. The eþ and
�þ can come from Bþ ! �þ��, with the �þ decaying
leptonically, or directly from Bþ ! �þ�� or Bþ !
eþ�e. The signal track must originate from the interaction
point (IP), with a distance of closest approach to the IP less
than 2.5 cm along the beam axis and less than 1.5 cm
transverse to the beam axis. We reject events that contain
more than one such IP track recoiling against the tag B.
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There may be additional tracks that do not come from the
IP. We reject events where the single IP track is identified
as a kaon. We assign the single-track recoils to categories
based on a hierarchical selection. An event is assigned to
the �þ category if the track passes muon identification or
to the eþ category if it passes electron identification; in the
latter category, we recover up to one bremsstrahlung pho-
ton based on angular separation from the track and add its
four-momentum to the electron’s. We assign the event to
the �þ category if it fails lepton identification and can be
paired with a �0 candidate. The �0 candidates used in the
�þ reconstruction are defined as a pair of photons, each
with laboratory energy >50 MeV, with invariant mass
m�0 ¼ ½0:115; 0:150� GeV=c2. Single-track events that
fail the selections above are assigned to the �þ category.

While the direction of neither B meson can be known
precisely, four-momentum conservation constrains the tag
Bmomentum to lie on a cone around the flight direction of
the reconstructed D0‘� system. The cosine of the opening
angle between the B meson and the D0‘� system in the
CM frame is given by

cos�B;Y ¼ 2EBEY �m2
B �m2

Y

2j ~pBjj ~pYj ; (1)

where Y refers to the reconstructed tag B final state, (EY ,
~pY) and (EB, ~pB) are the four-momenta in the CM frame,
and mY and mB are the masses of the Y system and tag Bþ
meson, respectively. EB and the magnitude of ~pB are
calculated from the beam energy: EB ¼ ECM=2 and j ~pBj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B �m2

B

q
. Decays of the B meson directly to D0‘�� are

largely constrained to the physical region of this cosine,
while decays involving a higher-mass charm state will
yield cosine values below the physical region when the
intermediate decay particles (e.g. �0 or �) are not explic-
itly reconstructed.

The signal B momentum vector is equal in magnitude to
j ~pBj and is opposite to the tag B direction, so that it lies on
the cone of the tag B momentum defined by Eq. (1). To
estimate quantities in the signal B rest frame, such as the
momentum of the signal B daughter(s), we choose the
signal B boost vector on that cone and we compute the
quantity in the corresponding rest frame. We then use the
value of that quantity averaged over all trial rest frames as
an estimate of the true value. We denote the momentum of
the signal particle(s) determined by this method as p0

sig.

This has the largest impact in the Bþ ! eþ�e and Bþ !
�þ�� channels, where the lepton is monoenergetic in the

signal B rest frame. The improved resolution of the lepton
momentum directly improves the separation of signal and
background. If an event has a reconstructed signal muon
(electron) candidate and p0

sig > 2:30ð2:25Þ GeV=c, it is

classified as a Bþ ! �þ�� (Bþ ! eþ�e) candidate; oth-

erwise, it is classified as Bþ ! �þ��, with �
þ ! �þ�� ���

(�þ ! eþ�e ���).

A critical discriminating variable is the extra energy
(Eextra), which is the total energy of charged and neutral
particles that cannot be directly associated with the recon-
structed daughters of the tag B or the signal B. This
variable was not examined (kept ‘‘blind’’) until the analysis
strategy was finalized. We expect the signal to concentrate
near zero Eextra; however, due to collider-induced back-
grounds, detector noise, and unassigned tracks and neutrals
from the tag and signal B mesons, signal events can have
nonzero Eextra. We require a minimum energy in the labo-
ratory frame of 30 MeV for any neutral cluster used in
Eextra. We improve our signal and background separation in
this variable by using an algorithm to assign up to one
photon from the Eextra back to the tag B. Candidate extra
photons must have a CM-frame energy less than 300 MeV,
consistent with having come from a �0 or � from the
D�0 ! D0 transition. If, by adding a candidate photon
back to the tag B kinematics, the value of cos�B;Y becomes

closer to (but not greater than) 1.0, it is retained as a
transition particle candidate. If more than one photon
satisfies these conditions, the one which moves �M �
mD0� �mD0 closest to the nominal value of 142 MeV=c2

[11] is used. This photon is excluded from Eextra. The tag B
kinematic quantities and p0

sig are recomputed, with the

photon added to the tag B final state.
The background consists primarily of BþB� events in

which the tag B meson has been correctly reconstructed
and the recoil contains one reconstructed track and addi-
tional particles that are not reconstructed. Typically these
events contain K0

L mesons and other particles that are not
detected and thus fake the multiple neutrinos in signal
events. Backgrounds from B decays and continuum pro-
cesses have distinctive signatures in a number of discrimi-
nating quantities. We group variables according to those
which are computed from the whole event, the tag B, the
signal B, and other sources. Some variables, such as those
associated with the whole event, are useful for rejecting
continuum background, while others (such as those asso-
ciated with the reconstructed B mesons) are better at
rejecting B background.
The event-level variables are: the ratio of the second and

zeroth Fox-Wolfram moments [12]; the minimum invariant
mass of any two charged tracks in the event; the net charge
of the event; cos�B;Y ; the invariant mass of the two leptons

in the event (m‘‘); and the missing mass vs cosine of the
polar angle (laboratory frame) of the missing three-
momentum, where the sum defining the reconstructed
four-momentum runs over all charged and neutral particles
in the event. The tag B variables are: the D0 decay mode;
the CM momenta of the tag B kaon and lepton; particle
identification quality of the tag B charged kaon (where
applicable). The signal B variables are: the quality of the
particle identification of the signal muon, for muon final
states of the signal B; the quality of the kaon identification
on the signal track (to reject kaons misidentified as leptons
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or pions); for �þ ! �þ�0 ���, the reconstructed mass of the
�þ, and the CM momenta of the �þ daughters; and for
Bþ ! �þ��, cos�

0
�;Y vs p0

sig, where cos�0�;Y is defined in

the signal B meson rest frame using Eq. (1), replacing B
meson quantities with those of the � (E� ¼ mB=2 and p� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B �m2
�

q
) and where Y refers to the reconstructed � final

state (computed using the signal B meson rest frame aver-
aging procedure). Other variables used are: the separation
between the tag B meson decay vertex and the point of
closest approach to the IP by the signal B track; and the
distribution of the cosine of the angle between the signal B
CM momentum and the tag B thrust vs the minimum
invariant mass of any three charged particles in the event
[10].

The shapes of these variables in MC simulation are then
used to define probability density functions (PDFs) for
signal (Ps) and background (Pb). We define for each
variable the ratio Ps=½Pb þ Ps�. We use the product of
these ratios to construct a pair of likelihood ratios
(LHRs) for each signal channel, one for rejecting B back-
grounds (LHRB �B) and the other for rejecting continuum
(LHRcont) backgrounds. The LHR output is bounded be-
tween 0 and 1, with signal accumulating toward 1 and
background toward 0.

We optimize selection criteria on Eextra, LHRB �B, and
LHRcont for all modes. For the Bþ ! eþ�e and Bþ !
�þ�� modes, we additionally optimize the selection on

p0
sig. For the �

þ ! eþ�e ��� mode we additionally optimize

the selection on m‘‘ (to reject poorly modeled photon-
conversion background). For the � decay modes, we
choose the figure-of-merit (FOM) to be

Nsig=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNsig þ NbgÞ

q
, since there is still significant back-

ground left in these channels even after final selection
criteria are applied. For Bþ ! �þ�� and Bþ ! eþ�e

we use Nsig=ð3=2þ
ffiffiffiffiffiffiffiffi
Nbg

p Þ [13] due to the low expected

background. We divide the MC simulation samples for
signal and background into thirds, two for optimization
and one from which to compute unbiased efficiencies and
background predictions. This latter sample has statistics
roughly equivalent to the data. Optimized selection criteria
are given in Table I. The signal efficiency ("sig) is defined

as the rate at which signal events containing a recon-
structed tag B are also found to contain a signal B candi-
date, and it includes the �þ branching fractions. These
efficiencies are given in Table III.
We calibrate our background prediction using sideband

regions of Eextra where the signal contribution is negligible.
We define the sidebands for Bþ ! �þ��, B

þ ! �þ��,

and Bþ ! eþ�e as Eextra � 0:4 GeV,� 0:72 GeV, and�
0:6 GeV, respectively. We predict N data

bg , the number of

background events in data in the Eextra signal region
(Table II), by scaling the yield predicted by the MC simu-
lation (NMC

bg ) by the ratio of yields in data (Ndata
side ) and MC

(NMC
side) in the sideband. This method assumes that the shape

of Eextra is well described but does not rely on the absolute
prediction of the yield. We validate this approach by defin-
ing sidebands in other variables (D0 mass, LHRcont,
LHRB �B, and p0

sig) and studying the data/MC agreement

for the entire Eextra background shape. We find the shape
to be well described. We also studied the effect of varying
the Eextra sideband definition and obtained consistent back-
ground predictions.

TABLE I. Optimized signal selection criteria.

Mode LHRB �B LHRcont Eextra (GeV) p0
sig ðGeV=cÞ m‘‘ ðGeV=c2Þ

Bþ ! �þ��

eþ ��� >0:77 >0:25 <0:20 � � � >0:29
�þ ��� >0:14 >0:72 <0:24 � � � � � �
�þ� >0:97 >0:95 <0:24 � � � � � �
�þ� >0:57 >0:80 <0:35 � � � � � �
Bþ ! ð�þ; eþÞ�
�þ� >0:33 >0:61 <0:72 [2.45, 2.98] � � �
eþ� None >0:01 <0:57 [2.52, 3.02] � � �

TABLE II. Background predictions from the Eextra sideband, as described in the text.

Mode NMC
side Ndata

side NMC
bg N data

bg

�þ ! eþ�e ��� 333� 19 334� 18 81� 10 81� 12
�þ ! �þ�� ��� 1248� 36 1236� 35 136� 12 135� 13
�þ ! �þ ��� 6507� 88 7167� 85 212� 19 234� 19
�þ ! �þ ��� 1841� 48 1734� 42 62� 9 59� 9
Bþ ! �þ�� 12� 5 14� 4 12� 5 13� 8
Bþ ! eþ�e 26� 6 42� 6 15� 5 24� 11
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The branching fraction for any of the decay modes is

B ðBþ ! ‘þ�‘Þ ¼
Nobs �N data

bg

2NBþB�"tag"sig
; (2)

where Nobs is the total number of events observed in the
signal region and NBþB� is the total number of �ð4SÞ !
BþB� decays in the data. The estimation of NBþB� has an
uncertainty of 1.1% [14].

Potential sources of significant systematic uncertainty in
"tag and "sig include the tag reconstruction rate, the model-

ing of Eextra, and signal track and neutral reconstruction.
We use ‘‘double-tagged’’ events to study possible effects.
Double-tagged events contain two fully reconstructed, in-
dependent, oppositely charged semileptonic tag B decays.
These double-tagged events are analogous to signal, in that
every particle that can be assigned to the original B decays
has been assigned.

We use the absolute yields of tagged events to obtain a
systematic uncertainty on "tag. We form a double ratio

from the ratios of double-tagged to single-tagged events
in the data and MC simulation. Single-tagged events are
defined as events containing at least one semileptonic tag B
decay with no constraints on the rest of the event. We
improve the sample purity by requiring that D0 ! K��þ
in at least one of the tags. We measure this double ratio to
be 0:891� 0:021. As a comparison, we perform the same
measurement replacing D0 ! K��þ with D0 !
K��þ���þ and find the double-ratio to be 0:954�
0:011. We use 0.891 as the nominal correction to "tag and

treat the relative difference between the two methods
(7.1%) as the systematic uncertainty.

The Eextra distribution in double-tag events is expected
to contain contributions similar, though not identical, to
those from signal events. We validate Eextra using the

double-tagged events described above, additionally requir-
ing that the second tag contains only D0 ! K��þ and
satisfies cos�B;Y ¼ ½�1:1; 1:1� to reject second tags with

missing neutrals. The resulting Eextra distribution is shown
in Fig. 1. It is well-described by the MC simulation. We
compare the efficiency of selecting events in data and MC
simulation forEextra 	 0:4 GeV and find that the efficiency
needs to be corrected by 0:985� 0:044 to match the data.
The uncertainty on this correction is due to the statistical
uncertainty on the data and MC simulation, and we treat it
as a systematic uncertainty.
The remaining systematic uncertainties on "sig come

from tracking efficiency (0.36% per signal track), �0 re-
construction for the �þ ! �þ ��� mode (0:984� 0:030),
and particle identification. These are evaluated using con-
trol samples of well-characterized particles. The particle
identification efficiency corrections and systematic uncer-
tainties are 0:953� 0:003 (0:97� 0:04) for identified elec-
trons in the Bþ ! �þ�� (Bþ ! eþ�e) analysis and
0:92� 0:05 (1:016� 0:022) for identified muons in the
Bþ ! �þ�� (B

þ ! �þ��) analysis.

The Eextra distributions for each channel are given in
Fig. 2 and results given in Table IV. We use the method of
Feldman and Cousins [15] to interpret the yields in each
channel. When computing the level at which we exclude
the null hypothesis, we include systematic errors as a
Gaussian convolution with the nominal Poisson distribu-
tion. Our results in the Bþ ! �þ�� and Bþ ! eþ�e

channels are consistent with the background expectation
and we obtain only one-sided 90% confidence intervals.
For Bþ ! �þ��, we obtain a two-sided 68% confidence
interval and exclude the null hypothesis at the level of
2:3�. This result supersedes that of the previous work
[10]. The statistical consistency test of the results over
the four Bþ ! �þ�� channels has a 	2 per degree-of-
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FIG. 1. Distribution of Eextra in double-tagged events. The data
(black points) and MC simulated events (gray rectangles) are
normalized to unit area. The rectangles represent the MC simu-
lation uncertainty.

TABLE III. The corrected tag and signal efficiencies. The first
uncertainty is the MC statistical uncertainty, and the second is
the systematic uncertainty from sources described in the text.
Branching fractions are included (e.g. �þ ! eþ� ��). The last
column is the total systematic uncertainty on each efficiency as a
percent of its value.

Channel Efficiency (%) Uncertainty (%)

Tag efficiencies

Bþ ! �þ�� ð1:514� 0:003� 0:107Þ 7.1

Bþ ! �þ�� ð0:937� 0:003� 0:066Þ 7.1

Bþ ! eþ�e ð0:974� 0:003� 0:069Þ 7.1

Signal efficiencies

�þ ! eþ�e ��� ð1:58� 0:04� 0:07Þ 4.5

�þ ! �þ�� ��� ð1:45� 0:03� 0:11Þ 7.4

�þ ! �þ ��� ð2:44� 0:05� 0:11Þ 4.5

�þ ! �þ ��� ð0:83� 0:03� 0:05Þ 5.4

Bþ ! �þ�� ð6:31� 0:07� 0:34Þ 5.4

Bþ ! �þ�� ð28:65� 0:34� 1:75Þ 6.1

Bþ ! eþ�e ð37:01� 0:38� 1:84Þ 5.0
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freedom of 2:02=3, or a probability of 57%, and is per-
formed using branching fractions computed with Eq. (2).
In the context of the SM, we determine that f2B ¼ ð62�
31Þ � 103 MeV2, where the uncertainty arises dominantly
from this measurement and jVubj.

We obtain a single BABAR result for Bþ ! �þ�� by
combining this result with BðBþ ! �þ��Þ ¼ ð1:8þ1:0

�0:9Þ �

10�4, which is derived from a statistically-independent
sample using tag B mesons decaying into fully hadronic
final states [16]. We use a simple error-weighted average,
since the correlated systematics (mainly due to particle
identification, charged particle tracking, and Eextra) have
a negligible impact on the combination. We obtain
BðBþ ! �þ��Þ ¼ ð1:7� 0:6Þ � 10�4, which excludes
zero at the 2:8� level. Both this and the combined results
are consistent with the SM prediction.
In conclusion, we have used the complete BABAR data

sample to search for the purely leptonic B meson decay
Bþ ! ‘þ� using a semileptonic B decay tagging tech-
nique. We measure BðBþ ! �þ��Þ ¼ ð1:7� 0:8�
0:2Þ � 10�4 and exclude the null hypothesis at the level
of 2:3�. We find results consistent with the background
predictions for the decays Bþ ! �þ�� and Bþ ! eþ�e.
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FIG. 2 (color online). Eextra after all selection criteria have
been applied for each final state. Shown are data (black points),
background MC simulation (gray shaded), and signal MC simu-
lation (dotted line) normalized to 10 times the expected branch-
ing fraction (106 times for Bþ ! eþ�e). The background MC
simulation is luminosity normalized and corrected for the data/
MC ratio in the Eextra sideband; the rectangles represent the MC
simulation statistical uncertainty. In (a–d), the vertical dashed
line indicates the signal region boundary. In (f–g) the first bin is
the signal region.
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and branching fraction results, determined as described in the
text.

Mode N data
bg Nobs Branching fraction ð�10�4Þ
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�1:8Þ
�þ ! �þ ��� 234� 19 243 ð0:6þ1:4

�1:2Þ
Bþ ! �þ�� 509� 30 583 ð1:7� 0:8� 0:2Þ
Bþ ! �þ�� 13� 8 12 <0:11 (90% C.L.)

Bþ ! eþ�e 24� 11 17 <0:08 (90% C.L.)
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