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Performance of quantum process estimation is naturally limited by fundamental, random, and systematic
imperfections of preparations and measurements. These imperfections may lead to considerable errors in
the process reconstruction because standard data-analysis techniques usually presume ideal devices. Here,
by utilizing generic auxiliary quantum or classical correlations, we provide a framework for the estimation
of quantum dynamics via a single measurement apparatus. By construction, this approach can be applied to
quantum tomography schemes with calibrated faulty-state generators and analyzers. Specifically, we present a
generalization of the work begun by M. Mohseni and D. A. Lidar [Phys. Rev. Lett. 97, 170501 (2006)] with
an imperfect Bell-state analyzer. We demonstrate that for several physically relevant noisy preparations and
measurements, classical correlations and a small data-processing overhead suffice to accomplish the full system
identification. Furthermore, we provide the optimal input states whereby the error amplification due to inversion
of the measurement data is minimal.

DOI: 10.1103/PhysRevA.81.032102 PACS number(s): 03.65.Wj, 03.67.Pp

I. INTRODUCTION

Quantum measurement theory imposes fundamental limi-
tations on the information extractable from a quantum system.
Although the evolution of quantum systems can be described
deterministically, the measurement operation always leads to
nondeterministic outcomes. In order to obtain the desired
accuracy, measurement of a particular observable needs to
be repeated over an ensemble of identical quantum systems.
In addition, for systems with many degrees of freedom, one
usually needs to measure a set of noncommuting observables
corresponding to independent parameters of the system. Char-
acterization of state or dynamics of a quantum system can be
achieved by a family of methods known as quantum tomogra-
phy [1,2]. In particular, quantum process tomography provides
a general experimental procedure for estimating the dynamics
of a system that has an unknown interaction with its embedding
environment for discrete or continuous degrees of freedom
[2–6]. In these methods, the full information is obtained by a
complete set of experimental settings associated with the set
of required input states and noncommuting measurements. In
recent developments [3,4,7–10], it has been demonstrated that
the minimum number of required experimental settings can be
substantially reduced by using degrees of freedom of auxiliary
quantum systems correlated with the system of interest.

In principle, it is possible to completely characterize a quan-
tum device with a single experimental configuration including
one input state and one measurement setting. This requires
extra degrees of freedom of an auxiliary system in order to pro-
vide enough support in the Hilbert space for extracting relevant
information about all independent parameters. A correlated
input state of the combined system and ancilla is subjected
to the unknown process, and a generalized measurement,
or positive operator-valued measure (POVM), is performed
at the output [11,12]. However, in order to realize such a

generalized measurement, one usually needs to effectively
generate sufficient mixing or many-body interactions [13].
Despite some special cases, these interactions are not naturally
available and/or controllable. Quantum simulation of such
many-body interactions is in principle possible but generally
requires an exponentially large number of single- and two-
body interactions with respect to system’s degrees of freedom
[14]. An alternative method, circumventing the requirement
for many-body interactions but allowing simultaneous non-
commuting observables through a single measurement setting,
is known as direct characterization of quantum dynamics
(DCQD) [4,8]. The construction of the full information about
the dynamical process is then possible via preparation of a set
of mutually unbiased entangled input states over a subspace
of the total Hilbert space of the principal system and an
ancilla [8]. The DCQD approach was originally developed
with the assumptions of ideal (i.e., error-free) quantum state
preparation, measurement, and ancilla channels. However, in
a realistic estimation process, because of decoherence, limited
preparation and measurement accuracies, or other imperfec-
tions, certain errors may occur that hinder the overall process.

In this work, we introduce an experimental procedure
for using generic two-body interactions to perform quantum
process estimation on a subsystem of interest. We employ
this approach to generalize the DCQD scheme to the cases
in which the preparations and measurements are realized
with known systematic faulty operations. We demonstrate
that in some specific but physically motivated noise models,
such as the generalized depolarizing channels, only classical
correlations between system and ancilla suffice. Moreover, for
these situations, the data-processing overhead is fairly small in
comparison to the ideal DCQD. Given a noise model, one can
find the optimal input states by minimizing the errors incurred
through the inversion of experimental data. Thus, we provide
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the optimal input states for reducing the inversion errors in the
noiseless DCQD scheme.

The structure of the article is as follows. In Sec. II, we set the
framework for process tomography schemes where faulty Bell-
state analyzers occur, emphasizing the DCQD approach. Next,
in Sec. III, we demonstrate the applicability of our framework
through some simple yet important examples of noise models.
We conclude with a summary in Sec. IV.

II. CHARACTERIZATION OF QUANTUM PROCESSES
WITH A FAULTY BELL-STATE ANALYZER

Let us consider a given quantum system composed of two
correlated physical subsystems A and B. For a time duration
�t , the two subsystems are decoupled, thus experiencing
different quantum processes, and then they interact with each
other again. The task is to characterize the unknown quantum
process acting on the subsystem of interest, A, assuming we
have prior knowledge about the dynamics of subsystem B plus
their initial and final correlations. Another similar scenario can
also be envisioned. Given two controllable quantum systems
A and B that are made to sufficiently interact before and after a
time duration �t , we wish to estimate the unknown dynamics
acting on system A for such a time interval, assuming the
dynamics of the ancilla system B and the interaction between
two systems are known within certain accuracy.

Much progress has been made in creating and character-
izing two-body correlations in a variety of physical systems
and interactions, including nuclear magnetic resonance (NMR)
systems interacting through an Ising Hamiltonian together
with refocusing or dynamical decoupling techniques [15],
atoms or molecules in cavity quantum electrodynamics (QED)
[16], trapped ions interacting via the Jaynes-Cummings
Hamiltonian driven by laser pulses and vibrational degrees of
freedom [17], and photons correlated in one or many degrees
of freedom, for example, generated by parametric-down
conversion [18] or four-wave mixing [19]. Other approaches
include spin-coupled quantum dots [20], superconducting
qubits [21] controlled by external electric and/or magnetic
fields, and chromophoric complexes coupled through Förster
or Dexter interactions and monitored or controlled via ultrafast
nonlinear spectroscopy [22]. However, in almost all of these
systems, the entangled Bell-state preparations (BSPs) and
Bell-state measurements (BSMs), which generically are the
basic building blocks of quantum information processing,
hardly achieve high fidelities; they will be imperfect at least
at some level, limiting their use for tomography. Our goal is
to determine the optimal states and measurement strategy that
will minimize the deleterious effects of the nonidealities—
assumed known—on process tomography.

We consider the cases in which we can simulate initial or
final two-body correlations in these schemes by performing
an ideal (generalized) BSP (or BSM) followed by a known
faulty completely positive (CP) quantum map acting on all the
systems involved. It should be noted that not all CP maps can
be written as a concatenation of two other CP maps. In other
words, there exist CP maps that are indivisible in the sense
that, for such a map T , there do not exist CP maps T1 and T2

such that T = T2T1, where neither T1 or T2 are unitary [23].

E

E (T)

E (i) E (f)

FIG. 1. (Color online) Schematic of a faulty DCQD, with imper-
fect or noisy BSP and BSM.

Nonetheless, all full-rank CP maps—in the sense of the Kraus
representation [2]—are divisible.

Here, we also include quantum maps acting on system
B during the preparation or measurement. This approach
naturally provides a generalization of the DCQD scheme to
the cases of faulty preparations, measurement, and ancilla
channels where the noise is already known; see Fig. 1. For
simplicity, in this work we concentrate only on one-qubit
systems and the DCQD scheme (summarized in Table I).
However, generalization of the framework is straightforward
for other process estimation schemes and for DCQD on qudit
systems with d being a power of a prime, according to the
construction of Ref. [8].

Let us consider the qubit of interest A and the ancil-
lary qubit B prepared in the maximally entangled state
|�+〉AB = (|00〉 + |11〉)AB/

√
2. We first apply a known quan-

tum error map E (i) to A and B: E (i)(ρ) = ∑
pqrs χ (i)

pqrs

σA
p σB

q ρσB
r σA

s , where ρ = |�+〉〈�+| and {σ0 ≡ 1, σ1, σ2, σ3}
are the identity and Pauli operator for a single qubit.
Next, we apply the unknown quantum map E to
qubit A; this is what we are trying to determine:
E[E (i)(ρ)] = ∑

mn χmnσ
A
m (

∑
pqrs χ (i)

pqrsσ
A
p σB

q ρσB
r σA

s )σA
n . Fi-

nally, we apply a known quantum error map before the BSM.
Note that in this approach any error on the ancilla channel can
be absorbed into either E (f) or E (i). The total map acting on the
combined system AB is then E (T) = E (f)EE (i), given by

E (T)(ρ) =
∑

mnpp′qq ′rr ′ss ′
χmnχ

(i)
pqrsχ

(f)
p′q ′r ′s ′σ

A
p′σ

B
q ′ σ

A
m σA

p σB
q

× ρσB
r σA

s σA
n σB

r ′ σ
A
s ′ ,

TABLE I. Ideal direct characterization of single-qubit χ . Here
|�+

α 〉 = α|00〉 + β|11〉, |�+
α 〉x(y) = α| + +〉x(y) + β| − −〉x(y), where

|α| �= |β| �= 0 and Im(ᾱβ) �= 0 and where {|0〉, |1〉}, {|±〉x}, and
{|±〉y} are the eigenstates of the Pauli operators σz, σx , and σy . P�+

is the projector on the Bell state |�+〉, and similarly for the other
projectors; see Refs. [4,12]. Determination of optimal values of α

and β is discussed in the text.

Input state BSM Output χmn

|�+〉 P�± , P�± χ00, χ11, χ22, χ33

|�+
α 〉 P�+ ± P�− , P�+ ± P�− χ03, χ12

|�+
α 〉x P�+ ± P�+ , P�− ± P�− χ01, χ23

|�+
α 〉y P�+ ± P�− , P�− ± P�+ χ02, χ13
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where the parameters χ (i)
pqrs and χ

(f)
p′q ′r ′s ′ are known (from

calibration of the operational or systematic errors in
the preparation and measurement devices). By defining
ωmnp′s ′ = (−1)(δm0−1)(δp′0−1)δmp′ +(δn0−1)(δs′0−1)δns′ and ρ̃mn =∑

pp′qq ′rr ′ss ′ ωmnp′s ′χ (i)
pqrsχ

(f)
p′q ′r ′s ′σ

A
p′σ

B
q ′ σA

p σB
q ρσB

r σA
s σB

r ′ σ
A
s ′ ,

we have

E (T)(ρ) = ∑
mn χmnσ

A
m ρ̃mnσ

A
n .

By construction, the parameters χ (i)
pqrs and χ

(f)
p′q ′r ′s ′ are all a

priori known, as are the matrices ρ̃mn, which are functions of
χ (i), χ (f), and the initial state ρ. Therefore, in order to develop
a generalized DCQD scheme for the systems with faulty BSP
and BSM, we need to do it for a set of modified (input) states
rather than a pure Bell-state-type input. Expanding ρ̃mn in the
Bell basis yields

ρ̃mn = ∑
kk′ λkk′

mnP
kk′

,

where λkk′
mn = Tr[P kk′

ρ̃mn], P kk′ = |Bk〉〈Bk′ |, and |Bk〉 for k =
0, 1, 2, 3 corresponds to the Bell states |�+〉, |�+〉, |�−〉, and
|�−〉, respectively, where |�±〉 = (|00〉 ± |11〉)/√2, |�±〉 =
(|01〉 ± |10〉)/√2. (Henceforth throughout this manuscript,
superscripts refer to the Bell-state basis and subscripts refer
to the Pauli operator basis.) The λkk′

mns are known functions of
ωmnp′s ′ , χ (f), χ (i), and ρ. Therefore, the overall output state can
be rewritten as follows:

E (T)(ρ) = ∑
kk′mn λkk′

mnχmnσ
A
m P kk′

σA
n .

We now apply the standard DCQD data analysis to
estimate the matrix elements of χ (T) (representing E (T)). After
performing a BSM, that is, measuring {P jj }3

j=0 on this state,
we obtain the Bell state |Bj 〉 with the probability

Tr[P jjE (T)(ρ)] = ∑
kk′mn �

(j )
kk′,mnχmn,

where �
(j )
kk′,mn = λkk′

mnTr[P jjσA
m P kk′

σA
n ]. While this expression

can be made more compact by using Pauli identities, the
current form is convenient for our purposes.

A similar set of equations for the standard DCQD inputs
{ρ(i)}3

i=0 can also be written. We represent all of these equations
in a compact vector form as

|χ (T)) = �|χ ), (1)

where the �(χ (i),χ (f), {ρ(i)}) matrix contains full information
about all faulty experimental conditions. Given χ (i), χ (f), and
the standard DCQD inputs set {ρ(i)}, one can calculate the �

matrix. The standard DCQD experimental data (analysis) will
also determine |χ (T)). Now, if the � matrix is invertible, from
Eq. (1) one can obtain χ by inversion: |χ) = �−1|χ (T)). The
invertibility of the � matrix, namely det � �= 0, depends on the
input states {ρ(i)} and the noise operations χ (i) and χ (f). It may
happen that the � matrix becomes ill-conditioned [24] for a
specific set of input states (for some given noise operations χ (i)

and χ (f)). In such cases, even small errors (whether operational,
stochastic, or round-off) in estimation of χ (T) can be amplified
dramatically after multiplication by �−1. This in turn may
render the estimation of χ (the sought-for unknown map E)
completely unreliable. To minimize the statistical errors, the
input states should be chosen such that det � is as far from
zero as possible. Therefore, the optimal input states {ρi

opt}

[optimal in the sense of minimizing statistical errors] for given
χ (i) and χ (f) are obtained via maximizing det �. A similar
faithfulness measure has already been used in Refs. [7,25]. In
Appendix IV, we derive the optimal input states for the case
of the ideal DCQD scheme.

III. PROCESS ESTIMATION WITH SPECIFIC
NOISY DEVICES

In the following, we describe several examples of widely
used incoherent noise models known as depolarizing channels,
acting either collectively or separately on systems A and B.
In the simplest case of a depolarizing channel Dε acting on a
density matrix σ , we have

Dε(σ ) = εσ + (1 − ε)1/Tr[1]. (2)

That is, with probability ε the state survives the noise;
otherwise it becomes completely random. This indicates
that we have no knowledge about the result of an er-
ror occurring on the state except that it happens with
probability 1 − ε.

The depolarizing channels are an important class of
quantum maps occurring when the coherence in the process
vanishes either naturally or via engineered quantum operations
[26], and they have been extensively used to describe noise
affecting quantum information systems. These channels might
naturally emerge as an approximation to the dynamics when
the system-bath Hamiltonian contains certain forms of symme-
tries and fast, random fluctuations. Moreover, the application
of random unitaries to symmetrize quantum processes also
creates effective depolarizing channels. This method, known as
twirling, has been utilized for selective and efficient quantum
process tomography [10].

It should be noted that here the depolarizing channel
simply serves to illustrate our scheme. The applicability of
our approach is thus not restricted to this specific noise model.

A. Depolarizing channels: correlated noise

An important and practically relevant example is the
situation in which E (i) and E (f) both are two-qubit (hence
correlated) depolarizing channels D[2] [26]

ρ(i) D[2]
ε→ 1 − ε

4
1 ⊗ 1 + ερ(i),

P jj D[2]
ε→ 1 − ε′

4
1 ⊗ 1 + ε′P jj ,

where ε and ε′ could be independent of each other or correlated
(e.g., ε = ε′). These errors result in the following noisy data
processing of the measurement results of DCQD:

Tr[E(ρ(i))P jj ] → (1 − ε)(1 − ε′)
16

Tr[E(1) ⊗ 1]

+ ε′(1 − ε)

4
Tr[E(1) ⊗ 1P jj ] + ε(1 − ε′)

4
× Tr[E(ρ(i))] + εε′Tr[E(ρ(i))P jj ]. (3)

For the Hamiltonian identification task [27,28], E(ρ) =
e−iH tρeiHt (which is unital, E(1) = 1, and trace-preserving,
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Tr[E(ρ)] = 1), we obtain

Tr[E(ρ(i))P jj ] → εε′Tr[E(ρ(i))P jj ] + (1 − εε′)/4. (4)

This relation provides a simple connection between the ideal
and the noisy data-processing rules. Another feature of Eq. (4)
is that it is valid regardless of the values of ε and ε′ ( �=0). This
implies that, regardless of whether ε and ε′ are in the range
that makes the noisy BSP and BSM separable [29,30], the
simplicity and applicability of (the modified) DCQD remain
intact. In other words, entanglement is not an imperative in the
DCQD algorithm.

A generalization of this noise model is the case in which
the preparations are modified based on a generalized two-qubit
depolarizing channel [26]:

ρ(i) D̃[2]
ε→ 1 − ε

4
1 ⊗ 1 + εUρ(i)U †,

in which U is an already known two-qubit unitary operator.
To simplify the following discussion, we assume that BSMs
are noiseless (E (f) = I). Finding the explicit form of χ (i) is
straightforward. We use the form

ρ = 1
4

(
1 ⊗ 1 + ∑′3

m,n=0rmnσm ⊗ σn

)
,

where
∑′ denotes the constrained summation in which the case

(m, n) = (0, 0) has been excluded. Using the identity σkσlσk =
(−1)1−δkl σl , we have 1

4

∑3
ab=0 σa ⊗ σbρσa ⊗ σb = ρ + 3

41 ⊗
1, or equivalently

∑3
ab=0 pabσa ⊗ σbρσa ⊗ σb = 1 ⊗ 1, where

pab = 1/3 except for p00 = −1. In addition, we expand U in
the {σm ⊗ σn}3

mn=0 basis: U = ∑
mn amnσm ⊗ σn. Altogether,

these relations yield

D̃[2]
ε (ρ) = 1 − ε

4

∑
mn

pmnσm ⊗ σnρσm ⊗ σn

+ ε
∑

mn,m′n′
amnām′n′σm ⊗ σnρσm′ ⊗ σn′ .

Hence, we obtain χ (i)
mnmn = pmn(1 − ε)/4 + ε|amn|2 (the diag-

onal elements) and χ
(i)
mnm′n′ = εamnām′n′ for (m, n) �= (m′, n′)

(the off-diagonal elements). In a compact form, the effect of
this noise channel can be expressed as follows:

Tr[E(ρ(i))P jj ]

→ (1 − ε)(1 − ε′)
16

Tr[E(1) ⊗ 1] + ε′(1 − ε)

4
Tr[E(1)

⊗ 1P jj ] + ε(1 − ε′)
4

Tr[E(Uρ(i)U †)]

+ εε′Tr[E(Uρ(i)U †)P jj ]. (5)

Under trace-preserving and unitality conditions, the final data
processing is thus modified as follows:

Tr[E(ρ(i))P jj ] → εε′Tr[E(Uρ(i)U †)P jj ] + 1 − εε′

4
. (6)

Although this is not as simple as Eq. (4), it retains a
considerable simplicity.

B. Depolarizing channels: uncorrelated noise

We assume that the input states and our measurements are
diluted by depolarizing channels [29,30] acting separately on

the principal and ancilla qubits, that is, D ⊗ D, where D acts
on a general single-qubit state ρ as follows: Dε(ρ) = [(1 −
ε)/2]1 + ερ, or equivalently Dε(ρ) = ∑3

j=0 pjσjρσj , where
p0 = (1 + 3ε)/4, p1 = p2 = p3 = (1 − ε)/4, and positivity
and complete positivity of Dε require −1/3 � ε � 1 [31].

As an important case, we specialize the characterization of
the diagonal elements χkk . This is particularly important in
Hamiltonian identification tasks [27,28]. It can be easily seen
that for Bell states P kk we obtain

P kk Dε⊗Dε−→ 1 − ε2

4
1 ⊗ 1 + ε2P kk.

Thus, to estimate χkk , the necessary data processing is modified
as in Eqs. (3) and (4) by replacing εε′ → (εε′)2 and i → 0
(recall that ρ(0) = |�+〉〈�+|). Here, we have assumed that
the input (measurement) depolarizing parameter is ε (ε′).
This result implies that to estimate the diagonal elements
χkk , whether under correlated noise or uncorrelated noise,
the DCQD scheme is robust and classical data processing is
modified in a simple fashion. This has immediate applications
to the task of Hamiltonian identification [27].

C. Generalized depolarizing channels

Here, we assume that the input states and/or measurements
are diluted such that they effectively lead to (known) Bell-
diagonal input states and/or Bell-diagonal measurements.
Thus, we obtain

ρ(i) Bε→ ∑3
i ′=0 εii ′ρ

(i ′),

P jj
B′

ε→ ∑3
j ′=0 ε′

jj ′P j ′j ′
.

This noise results in the following noisy data processing of the
measurement results of DCQD:

Tr[E(ρ(i))P jj ] →
∑
i ′j ′

εii ′ε
′
jj ′Tr[E(ρ(i ′))P j ′j ′

]. (7)

That is, every measurement result of the new setting is a linear
combination of the ideal results. If we define the vector |p) =
(pij )T , where pij = Tr[E(ρ(i))P jj ], namely

|p) = (Tr[E(ρ(0))P 00], Tr[E(ρ(0))P 11], . . . , Tr[E(ρ(3))P 33])T

and the matrix Aij,i ′j ′ = εii ′ε
′
jj ′ , then Eq. (7) can be written as

the following linear matrix transformation (see Appendix A):

|p) → A|p). (8)

If we arrange the output elements as in Table I, we have

|̃p) = C|p), (9)

where C is the (constant) coefficient matrix; hence |̃p) →
AC−1 |̃p).

IV. SUMMARY

We have provided a scheme for utilizing auxiliary quantum
correlations to perform process estimation tasks with faulty
quantum operations. We have demonstrated our approach via
generalizing the ideal scheme of DCQD, where the required
preparations and measurements could be noisy. It has been
shown that when the systematic faulty operations are of the
form of depolarizing channels, the overhead data processing is
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fairly simple. Moreover, these examples have revealed that for
the DCQD scheme, entanglement is secondary. This, in turn,
broadens the range of applicability of our scheme to quantum
systems with certain controllable classical correlations of their
subsystems. Therefore, our proposed method may have near-
term applications to a variety of realistic quantum systems and
devices with the current state of technology, such as trapped
ions, liquid-state NMR, optical lattices, and entangled pairs of
photons.

ACKNOWLEDGMENTS

We acknowledge financial support from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), Faculty of Arts and Sciences of Harvard Univer-
sity, Army Research Office (ARO) [Project W911NF-07-1-

0304], Mathematics of Information Technology and Com-
plex Systems (MITACS), Pacific Institute for Mathematical
Sciences (PIMS), University of Soutern California Center
for Quantum Information Science and Technology, IARPA-
funded Quantum Computing Concept Maturation Optical
Quantum Computing Project (Project W911NF-05-0397), and
the Office of the Director of National Intelligence/Intelligence
Advanced Research Projects Activity (ODNI/IARPA) project
Hyperentanglement-Enhanced Advanced Quantum Commu-
nication (Project NBCHC070006).

APPENDIX A: EXPLICIT FORM OF EQ. (9)

Table I suggests that if, instead of the conventional BSMs,
we consider the expression

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tr[P 00E(ρ(0))]
Tr[P 11E(ρ(0))]
Tr[P 22E(ρ(0))]
Tr[P 33E(ρ(0))]

Tr[P 00E(ρ(1))] + Tr[P 33E(ρ(1))]
Tr[P 11E(ρ(1))] + Tr[P 22E(ρ(1))]
Tr[P 00E(ρ(1))] − Tr[P 33E(ρ(1))]
Tr[P 11E(ρ(1))] − Tr[P 22E(ρ(1))]
Tr[P 00E(ρ(2))] + Tr[P 11E(ρ(2))]
Tr[P 22E(ρ(2))] + Tr[P 33E(ρ(2))]
Tr[P 00E(ρ(2))] − Tr[P 11E(ρ(2))]
Tr[P 33E(ρ(2))] − Tr[P 22E(ρ(2))]
Tr[P 00E(ρ(3))] + Tr[P 22E(ρ(3))]
Tr[P 11E(ρ(3))] + Tr[P 33E(ρ(3))]
Tr[P 00E(ρ(3))] − Tr[P 22E(ρ(3))]
Tr[P 33E(ρ(3))] − Tr[P 11E(ρ(3))]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1 1
1 1

1 −1
1 −1

1 1
1 1

1 −1
−1 1

1 1
1 1

1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tr[P 00E(ρ(0))]
Tr[P 11E(ρ(0))]
Tr[P 22E(ρ(0))]
Tr[P 33E(ρ(0))]
Tr[P 00E(ρ(1))]
Tr[P 11E(ρ(1))]
Tr[P 22E(ρ(1))]
Tr[P 33E(ρ(1))]
Tr[P 00E(ρ(2))]
Tr[P 11E(ρ(2))]
Tr[P 22E(ρ(2))]
Tr[P 33E(ρ(2))]
Tr[P 00E(ρ(3))]
Tr[P 11E(ρ(3))]
Tr[P 22E(ρ(3))]
Tr[P 33E(ρ(3))]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)
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FIG. 2. (Color online) Value of |det �| vs θ and ϕ. Here, the
coefficient matrix �(θ, ϕ) relates the experimental outcomes to the
unknown elements of the superoperator |χ (T)) = �|χ). The input
states for the standard DCQD, as defined in Table I, for example,
|�+

α 〉 = α|00〉 + β|11〉, are parameterized as α = cos θ and β =
eiϕ sin θ (ϕ �= kπ , k ∈ Z). The optimal input states are associated to
those parameters for which |det �| has its maximal value 1, leading
to a minimal statistical error.

the results of the measurements can be related to the
χmn elements in a more straightforward fashion. Here,
the constant coefficient matrix (C) relates the results of
the new BSMs (̃p) to those of the conventional BSMs
(p).

APPENDIX B: OPTIMAL INPUT STATES FOR THE
IDEAL (NOISELESS) DCQD

Here, we find the optimal input states for the ideal
DCQD. The idea is to choose the input states such that
the (linear) inversion on the experimental data (to read
out χ matrix elements) can be performed reliably. That is,
the goal should be to make the coefficient matrix as far
from singular matrices as possible. Maximizing the deter-
minant of this matrix is a sufficient condition to guarantee
its reliable invertibility and hence in turn minimal error
propagation.

The data obtained from the measurements (BSMs)
are Tr[E(ρ(i))P jj ], where {ρ(i)} corresponds to the first
column of Table I, respectively, for i = 0, 1, 2, 3. We
parameterize the input states as α = cos θ and β =
eiϕ sin θ (ϕ �= kπ , k ∈ Z). Using Eq. (10), one can ex-
press Eq. (1), for the standard DCQD [4], as the
following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tr[P 00E(ρ(1))]
Tr[P 11E(ρ(1))]

Tr[P 22E(ρ(1))]

Tr[P 33E(ρ(1))]

Tr[P 00E(ρ(2))] + Tr[P 33E(ρ(2))]

Tr[P 11E(ρ(2))] + Tr[P 22E(ρ(2))]

Tr[P 00E(ρ(2))] − Tr[P 33E(ρ(2))]

Tr[P 11E(ρ(2))] − Tr[P 22E(ρ(2))]

Tr[P 00E(ρ(3))] + Tr[P 11E(ρ(3))]

Tr[P 22E(ρ(3))] + Tr[P 33E(ρ(3))]

Tr[P 00E(ρ(3))] − Tr[P 11E(ρ(3))]

Tr[P 33E(ρ(3))] − Tr[P 22E(ρ(3))]

Tr[P 00E(ρ(4))] + Tr[P 22E(ρ(4))]

Tr[P 11E(ρ(4))] + Tr[P 33E(ρ(4))]

Tr[P 00E(ρ(4))] − Tr[P 22E(ρ(4))]

Tr[P 33E(ρ(4))] − Tr[P 11E(ρ(4))]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 x 0 0 0 0 0 0 0 0 x 0 0 1
0 0 0 0 0 1 −ix 0 0 ix 1 0 0 0 0 0
z 0 0 iy 0 0 0 0 0 0 0 0 −iy 0 0 −z

0 0 0 0 0 z y 0 0 y −z 0 0 0 0 0
1 x 0 0 x 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −ix 0 0 ix 1
z iy 0 0 −iy −z 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 z y 0 0 y −z

0 0 0 0 0 1 0 −ix 0 0 0 0 0 ix 0 1
1 0 −x 0 0 0 0 0 −x 0 1 0 0 0 0 0
0 0 0 0 0 −z 0 −y 0 0 0 0 0 −y 0 z

−z 0 iy 0 0 0 0 0 −iy 0 z 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ00

χ01

χ02

χ03

χ10

χ11

χ12

χ13

χ20

χ21

χ22

χ23

χ30

χ31

χ32

χ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where in the coefficient matrix �(θ, ϕ) we have x = cos 2θ ,
y = sin 2θ sin ϕ, and z = sin 2θ cos ϕ. The determinant of this
matrix is obtained as

|det �| = sin6 4θ sin6 ϕ,

which attains its maximum value 1 at (θ = π/8 + kπ/4, ϕ =
π/2 + k′π ), ∀k, k′ ∈ Z (Fig. 2). Therefore, the optimal input

states {ρ(i)} for the standard DCQD are as in Table I, in which µ

and ν are either of the pairs calculated from the maximal set of
θ and ϕ. A simple calculation shows that the amount of entan-
glement (exactly speaking, concurrence [32]) of the optimal
nonmaximally entangled input states is 1/

√
2 (independent

of ϕ).
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