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Event-triggered Control for Multi-Agent Systems

Dimos V. Dimarogonas and Karl H. Johansson

Abstract— Event-driven strategies for multi-agent systems
are motivated by the future use of embedded microprocessors
with limited resources that will gather information and actuate
the individual agent controller updates. The control actuation
updates considered in this paper are event-driven, depending
on the ratio of a certain measurement error with respect
to the norm of a function of the state, and are applied to
a first order agreement problem. A centralized formulation
of the problem is considered first and then the results are
extended to the decentralized counterpart, in which agents
require knowledge only of the states of their neighbors for
the controller implementation.

I. INTRODUCTION

Decentralized control of large scale multi-agent systems

is currently facilitated by recent technological advances on

computing and communication resources. Several results

concerning multi-agent cooperative control have appeared in

recent literature involving agreement or consensus algorithms

[17], [11],[20], formation control [5], [4], [7], [2] and dis-

tributed estimation [18],[23].

One of the most important aspects in the implementation

of distributed algorithms is the communication and controller

actuation schemes. A probable future design may equip each

agent with a small embedded micro-processor, who will

be responsible for collecting information from neighboring

nodes and actuating the controller updates according to some

ruling. The scheduling of the actuation updates can be done

in a time-driven or an event-driven fashion. The first case

involves the traditional approach of sampling at pre-specified

time instances, usually separated by a specific period. In real

applications, the embedded processors are resource-limited,

and thus an event-triggered approach seems more favorable.

In addition, a proper design can also preserve desired prop-

erties of the ideal continuous state-feedback system, such as

stability and convergence. A comparison of time-driven and

event-driven control for stochastic systems favoring the latter

can be found in [3]. Stochastic event-driven strategies have

appeared in [19],[12]. In this paper, we use the deterministic

event-triggered strategy introduced by P. Tabuada in [24].

Similar results on deterministic event-triggered feedback

control have appeared in [26],[25],[10],[16],[1].
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In [24], the control actuation is triggered whenever a

certain error becomes large enough with respect to the norm

of the state. It is assumed that the nominal system is Input-

to-State stable [21],[22] with respect to measurement errors.

Motivated by this, in [6] we provided event-triggered control

strategies for a class of cooperative control algorithms,

namely those that can be reduced to a first order agreement

problem [17], which has been proven to be ISS [14]. In [6],

knowledge of the initial average of the states was required

by the agents in order to implement the control strategy. The

motivation of the current paper is to relax this assumption.

In particular, no knowledge of the initial average is required.

We consider both the cases of centralized and decentralized

event-triggered multi-agent control. In the first case, we

show that there exists a strictly positive lower bound on

the time between two consecutive actuation updates. In the

decentralized case, each agent is equipped with its own

embedded microprocessor that can gather only neighboring

information. We show that continuous evolution is enforced

at each time instant for at least one agent and also provide a

minimum lower bound for it; thus ensuring that the overall

switched system does not reach an undesired accumulation

point, i.e., it does not exhibit Zeno behavior [13]. The results

are depicted through simulated examples.

The remainder of the paper is organized as follows:

Section II presents some necessary background and discusses

the problem treated in the paper. The centralized case is

discussed in Section III while Section IV presents the de-

centralized counterpart. Some examples are given in Section

V while Section VI includes a summary of the results of this

paper and indicates further research directions.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we first review some related results on

algebraic graph theory [9] that are used in the paper and

proceed to describe the problem in hand.

A. Algebraic Graph Theory

For an undirected graph G with N vertices the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E, where E is the set of edges, and

aij = 0, otherwise. If there is an edge (i, j) ∈ E, then i, j

are called adjacent. A path of length r from a vertex i to a

vertex j is a sequence of r+1 distinct vertices starting with i

and ending with j such that consecutive vertices are adjacent.

For i = j, this path is called a cycle. If there is a path between

any two vertices of the graph G, then G is called connected.

A connected graph is called a tree if it contains no cycles.

The degree di of vertex i is defined as the number of its
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neighboring vertices, i.e. di = {#j : (i, j) ∈ E}. Let ∆
be the n × n diagonal matrix of di’s. Then ∆ is called the

degree matrix of G. The (combinatorial) Laplacian of G is

the symmetric positive semidefinite matrix L = ∆−A. For a

connected graph, the Laplacian has a single zero eigenvalue

and the corresponding eigenvector is the vector of ones, 1.

We denote by 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) the

eigenvalues of L. If G is connected, then λ2(G) > 0.

B. System Model

The system considered consists of N agents, with xi ∈ R

denoting the state of agent i. Note that the results of the

paper are extendable to arbitrary dimensions. We assume that

agents’ motion obeys a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N} (1)

where ui denotes the control input for each agent.

Each agent is assigned a subset Ni ⊂ {1, . . . , N} of the

rest of the team, called agent i’s communication set, that

includes the agents with which it can communicate. The

undirected communication graph G = {V,E} of the multi-

agent team consists of a set of vertices V = {1, ..., N}
indexed by the team members, and a set of edges, E =
{(i, j) ∈ V × V |i ∈ Nj} containing pairs of vertices that

correspond to communicating agents.

C. Problem Statement

The agreement control laws in [8], [17] were given by

ui = −
∑

j∈Ni

(xi − xj) (2)

and the closed-loop equations of the nominal system (without

quantization) were ẋi = −
∑

j∈Ni

(xi − xj , ), i ∈ {1, . . . , N},

so that ẋ = −Lx, where x = [x1, . . . , xN ]T is the stack

vector of agents’ states and L is the Laplacian matrix of

the communication graph. For a connected graph, all agents’

states converge to a common point, called the “agreement

point”, which coincides with the average 1
N

∑

i

xi(0) of the

initial states.

Note that the model (1),(2) has been shown to capture the

behavior of other multi-agent control problems apart from the

agreement problem. For example, it was shown in [7] that a

class of formation control problems can be reduced to a first

order agreement one with an appropriate transformation.

In this paper, we redefine the above control formulation to

take into account event-triggered strategies. Consider the sys-

tem (1). Both centralized and decentralized event-triggered

cooperative control are treated. The control formulation and

problem statement for each case are described in the sequel.

1) Centralized Event-triggered Cooperative Control: For

each i ∈ N , and t ≥ 0, introduce a (state) measurement error

ei(t). Denote the stack vector e(t) = [e1(t), . . . , eN (t)]T .

The discrete time instants where the events are triggered

are defined when a condition f(e(t), x(t)) = 0 holds.

The sequence of event-triggered executions is denoted

by: t0, t1, . . .. As noted above, each ti is defined by

f(e(ti), x(ti)) = 0, for i = 0, 1, . . .. To the sequence of

events t0, t1, . . . corresponds a sequence of control updates

u(t0), u(t1), . . .

Between control updates the value of the input u is held

constant and equal to the last control update, i.e.,:

u(t) = u(ti),∀t ∈ [ti, ti+1) (3)

and thus the control law is piecewise constant between the

event times t0, t1, . . ..

The centralized cooperative control problem treated in this

paper can be stated as follows: “derive control laws of the

form (3) and event times t0, t1, . . . that drive system (1) to

an agreement point.”

2) Decentralized Event-triggered Cooperative Control:

In the decentralized case, there is a separate sequence of

events tk0 , tk1 , . . . defined for each agent k according to

fk(ek(tki ),
∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) = 0, for k ∈ N and

i = 0, 1, . . .. Hence a separate condition encoded by the

function fk(ek(tki ),
∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) triggers the

events for agent k ∈ N . The update condition is distributed

in the sense that each agent requires knowledge of its own

measurement error and the relative states of its neighboring

agents in order to verify this condition.

The decentralized control law for k is updated both at its

own event times tk0 , tk1 , . . ., as well as at the last event times

of its neighbors t
j
0, t

j
1, . . . , j ∈ Nk. Thus it is of the form

uk(t) = uk(tki ,
⋃

j∈Nk

t
j

i′(t)), (4)

where i′(t)
∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

.

The decentralized cooperative control problem can be

stated as follows: “derive control laws of the form (4), and

event times tk0 , tk1 , . . ., for each agent k ∈ N that drive

system (1) to an agreement point.”

III. CENTRALIZED APPROACH

Consider the event-triggered multi-agent control problem

described previously. We assume that the control law can

be actuated only at discrete instances of time instead of

being a continuous feedback. These instances are triggered

when the measurement error of the state variable reaches

a certain threshold. In the case treated in this section, the

centralized event-triggered control scheme is considered. The

decentralized case is treated in the next section.

Following the notation given in the previous section, the

state measurement error is defined by

e(t) = x(ti) − x(t), i = 0, 1, . . . (5)

for t ∈ [ti, ti+1). The choice of ti encoded by the function

f will be given in the sequel. The proposed control law in

the centralized case has the form (3) and is defined as the

event-triggered analog of the ideal control law (2):

u(t) = −Lx(ti), t ∈ [ti, ti+1) (6)
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The closed loop system is then given by

ẋ(t) = −Lx(ti) = −L(x(t) + e(t)) (7)

Denote by x̄(t) = 1
N

∑

i

xi(t) the average of the agents’

states. Using the fact that the graph is undirected, the time

derivative of x̄(t) is then given by

˙̄x =
1

N

∑

i

ẋi = −
1

N

∑

i

∑

j∈Ni

(xi(t) − xj(t))

−
1

N

∑

i

∑

j∈Ni

(ei(t) − ej(t)) = 0

so that x̄(t) = x̄(0) =
1

N

∑

i

xi(0) ≡ x̄, i.e., the initial

average remains constant.

A candidate ISS Lyapunov function [22] for the closed-

loop system 7 is:

V =
1

2
xT Lx

We have

V̇ = xT Lẋ = −xT LL(x + e) = −‖Lx‖2 − xT LLe

so that

V̇ ≤ −‖Lx‖2 + ‖Lx‖‖L‖‖e‖

Enforcing e to satisfy

‖e‖ ≤ σ
‖Lx‖

‖L‖
(8)

with σ > 0, we get

V̇ ≤ (σ − 1) ‖Lx‖2

which is negative for σ < 1 and ‖Lx‖ 6= 0.

Thus, the events are triggered when:

f (e, x)
∆
= ‖e‖ − σ

‖Lx‖

‖L‖
= 0 (9)

This choice of f is of course motivated by the analysis above

in order to guarantee convergence to an agreement point.

The event times are thus defined by f(e(ti), x(ti)) = 0, for

i = 0, 1, . . .. At each ti, the control law is updated according

to (6):

u(ti) = −Lx(ti)

and remains constant, i.e., u(t) = −Lx(ti) for all t ∈
[ti, ti+1). Once the control task is executed the error is reset

to zero, since at that point we have e(ti) = x(ti)−x(ti) = 0
for the specific event time so that (8) is enforced.

The proposed control policy attains a strictly positive

lower bound on the inter-event times. This is proven in the

following theorem:

Theorem 1: Consider system ẋ = u with the control

law (6),(9) and assume that the communication graph G is

connected. Suppose that 0 < σ < 1. Then for any initial

condition in R
N the inter-event times {ti+1 − ti} implicitly

defined by the rule (9) are lower bounded by a strictly

positive time τ which is given by

τ =
σ

‖L‖ (1 + σ)
Proof : We will compute the time derivative of

||e||
||Lx|| :

d

dt

‖e‖

‖Lx‖
= −

eT ẋ

‖e‖ ‖Lx‖
−

(Lx)T Lẋ

‖Lx‖2

‖e‖

‖Lx‖

≤
‖e‖ ‖ẋ‖

‖e‖ ‖Lx‖
+

‖ẋ‖‖L‖‖e‖

‖Lx‖2

=

(

1 +
‖L‖‖e‖

‖Lx‖

)

‖ẋ‖

‖Lx‖

≤

(

1 +
‖L‖‖e‖

‖Lx‖

)

‖Lx‖ + ‖Le‖

‖Lx‖

≤

(

1 +
‖L‖‖e‖

‖Lx‖

)2

Using the notation

y =
‖e‖

‖Lx‖

we have

ẏ ≤ (1 + ‖L‖y)
2

so that y satisfies the bound

y(t) ≤ φ (t, φ0)

where φ (t, φ0) is the solution of

φ̇ = (1 + ‖L‖φ)
2
, φ (0, φ0) = φ0

Hence the inter-event times are bounded from below by the

time τ that satisfies

φ (τ, 0) =
σ

‖L‖

The solution of the above differential equation is given by

φ (τ, 0) =
τ

1 − τ ‖L‖

so that

τ =
σ

‖L‖ (1 + σ)

and the proof is complete. ♦
Using the extension of La Salle’s Invariance Principle for

hybrid systems [15], the following Corollary regarding the

convergence of the closed-loop system is now evident:

Corollary 2: Consider system ẋ = u with the control

law (6),(9) and assume that the communication graph G is

connected. Suppose that 0 < σ < 1. Then all agents converge

to their initial average, i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0)

for all i ∈ N .

Proof : Since V̇ ≤ (σ − 1) ‖Lx‖2, by Theorem IV.1 in [15],

we have that limt→∞ Lx(t) = 0. Since G is connected, the

latter corresponds to the fact that all elements of x are equal

at steady state, i.e., limt→∞ xi(t) = x∗. Since the initial

average remains constant we have x∗ = x̄ = 1
N

∑

i

xi(0) at

steady state. ♦
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IV. DECENTRALIZED APPROACH

In the centralized case, all agents had to be aware of the

global measurement error e in order to enforce the condition

(8). In this section, we consider the decentralized counterpart.

In particular, each agent now updates its own control input

at event times it decides based on information from its

neighboring agents. The event times for each agent i ∈ N are

denoted by ti0, t
i
1, . . .. We will follow the structure described

at the end of Section II to define the functions fi, i ∈ N
according to which the event times for agent i are defined.

The measurement error for agent i is defined as

ei(t) = xi(t
i
k) − xi(t), t ∈ [tik, tik+1) (10)

The decentralized control strategy for agent i is now given

by:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j

k′(t))
)

(11)

where

k′(t)
∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

Thus for each t ∈ [tik, tik+1), t
j

k′(t) is the last event time of

agent j. Hence, each agent takes into account the last update

value of each of its neighbors in its control law. The control

law for i is updated both at its own event times ti0, t
i
1, . . ., as

well as at the event times of its neighbors t
j
0, t

j
1, . . . , j ∈ Ni.

Note that this definition of k′ implies xj(t
j

k′(t)) = xj(t)+

ej(t). We thus have

ẋi(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j

k′(t))
)

=

= −
∑

j∈Ni

(xi(t) − xj(t)) −
∑

j∈Ni

(ei(t) − ej(t))

Hence in this case we also have ˙̄x = 0 for the agents’ initial

average.

Denote now Lx , z = [z1, . . . , zN ]T and consider again

V =
1

2
xT Lx

Then

V̇ = xT Lẋ = −xT L(Lx + Le) = −zT z − zT Le

From the definition of the Laplacian matrix we get

V̇ = −
∑

i

z2
i −

∑

i

∑

j∈Ni

zi (ei − ej)

= −
∑

i

z2
i −

∑

i

|Ni|ziei +
∑

i

∑

j∈Ni

ziej

Using now the inequality |xy| ≤ a
2x2 + 1

2a
y2, for a > 0, we

can bound V̇ as

V̇ ≤−
∑

i

z2
i +

∑

i

a|Ni|z
2
i

+
∑

i

1

2a
|Ni|e

2
i +

∑

i

∑

j∈Ni

1

2a
e2
j

where a > 0.

Since the graph is symmetric, by interchanging the indices

of the last term we get

∑

i

∑

j∈Ni

1

2a
e2
j =

∑

i

∑

j∈Ni

1

2a
e2
i =

∑

i

1

2a
|Ni|e

2
i

so that

V̇ ≤ −
∑

i

(1 − a|Ni|)z
2
i +

∑

i

1

a
|Ni|e

2
i

Assume that a satisfies

0 < a <
1

|Ni|
(12)

for all i ∈ N . Then, enforcing the condition

e2
i ≤

σia(1 − a|Ni|)

|Ni|
z2
i (13)

for all i ∈ N , we get

V̇ ≤
∑

i

(σi − 1)(1 − a|Ni|)z
2
i

which is negative definite for 0 < σi < 1.

Thus for each i, an event is triggered when

fi



ei,
∑

j∈Ni

(xi − xj)





∆
= e2

i −
σia(1 − a|Ni|)

|Ni|
z2
i = 0

(14)

where zi =
∑

j∈Ni

(xi − xj). The update rule (14) holds at the

event times tik corresponding to agent i:

fi



ei

(

tik
)

,
∑

j∈Ni

(xi(t
i
k) − xj

(

tik
)

)



 = 0

with k = 0, 1, . . . and i ∈ N . At an event time tik, we have

ei(t
i
k) = xi(t

i
k) − xi(t

i
k) = 0

and thus, condition (13) is enforced.

It should be emphasized that the condition (14) is verified

by agent i only based on information of each own and

neighboring agents’ information.

A similar theorem regarding the inter-event times holds in

the decentralized case as well:

Theorem 3: Consider system ẋi = ui, i ∈ N =
{1, . . . , N} with the control law (11) and update ruling (14),

and assume that G is connected. Suppose that 0 < a < 1
|Ni|

and 0 < σi < 1 for all i ∈ N . Then for any initial condition

in R
N , and any time t ≥ 0 there exists at least one agent

k ∈ N for which the next inter-event interval is strictly

positive.

Proof : Assume that (14) holds for all i ∈ N at time t. If it

doesn’t hold, then continuous evolution is possible since at

least one agent can still let its absolute measurement error

increase without resetting (10). Hence assume that at t all

errors are reset to zero. We will show that there exists at least

one k ∈ N such that its next inter-event interval is bounded

from below by a certain time τD > 0.
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Denoting

k = arg max
i

|zi|

and considering that |ei| ≤ ‖e‖ holds for all i, we have

|ek|

N |zk|
≤

‖e‖

‖z‖

so that
|ek|

|zk|
≤ N

‖e‖

‖z‖
= N

‖e‖

‖Lx‖

From the proof of Theorem 1 and the control update rule

(14), we deduce that the next inter-event interval of agent k

is bounded from below by a time τD that satisfies

N
τD

1 − τD ‖L‖
=

σka(1 − a|Nk|)

|Nk|

so that

τD =
σka(1 − a|Nk|)

N |Nk| + ‖L‖σka(1 − a|Nk|)

and the proof is complete. ♦
We should note that the result of this Theorem is more

conservative than the centralized case, since it only guar-

antees that there are no accumulation points and continuous

evolution is viable at all times instants. Using now La Salle’s

Invariance Principle for Hybrid Systems [15], the following

convergence result is straightforward:

Corollary 4: Consider system ẋ = u with the control law

(11),(14) and assume that the communication graph G is

connected. Then all agents converge to their initial average,

i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0)

for all i ∈ N .

Proof : By virtue of Theorem 3, the closed-loop switched

system does not exhibit Zeno behavior. The rest of the proof

is identical to that of Corollary 2. ♦

V. EXAMPLES

The results of the previous Sections are depicted through

computer simulations.

Consider a network of four agents whose Laplacian matrix

is given by

L =









1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2









We consider both the centralized and the decentralized

framework. Four agents start from random initial conditions

and evolve under the control law (6),(9) in the first case,

and the control law (11),(14) in the second case. In the

centralized case, we have set σ = 0.65, and σ1 = σ2 = 0.55,

σ3 = σ4 = 0.75 and a = 0.2 for the decentralized control

example. Figure 1 shows the evolution of ||Lx(t)|| in both

cases in time. The bottom solid line shows the evolution in

the centralized and the top dotted line in the decentralized

case. It can be seen that the system converges in both

frameworks.

Figure 2 shows the evolution of the error norm in the

centralized case. The solid line represents the evolution of the

error ||e(t)||. This stays below the specified state-dependent

threshold ||e||max = σ
‖Lx‖

‖L‖
which is represented by the

dotted line in the Figure. The existence of a minimum inter-

event time is clearly visible in this example.
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0
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||Lx||dec

||Lx||centr

Fig. 1. Four agents evolve under (6),(9) in the centralized case, and the
control law (11),(14) in the decentralized case. Convergence to the initial
average is achieved in both cases.
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Fig. 2. Evolution of the error norm in the centralized case. The solid
line represents the evolution of the error norm ||e(t)||, which stays below

the specified state-dependent threshold ||e||max = σ
‖Lx‖

‖L‖
which is

represented by the dotted line in the Figure.

The next two figures depict how condition (13) is realized

in the decentralized case for agents 1,3. In particular, the

solid line in Figure 3 shows the evolution of |e1(t)|. This

stays below the specified state-dependent threshold given by

(13) |e1|max =
√

σ1a(1−a|N1|)
|N1|

z1 which is represented by

the dotted line in the Figure. The same holds for agent 3

as shown in Figure 4 where the solid line represents |e3(t)|
which also stays below the specified state-dependent thresh-

old given by (13) |e3|max =
√

σ3a(1−a|N3|)
|N3|

z3, represented

by the dotted line in the Figure.
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Fig. 3. Four agents are controlled by (11),(14) in the decentralized
case. Condition (13) is depicted in the this case for agent 1. The solid
line shows the evolution of |e1(t)|. This stays below the specified state-

dependent threshold given by (13) |e1|max =
√

σ1a(1−a|N1|)
|N1|

z1 which

is represented by the dotted line.
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Fig. 4. Condition (13) is depicted in the this case for agent 3. The solid
line shows the evolution of |e3(t)|. This stays below the specified state-

dependent threshold given by (13) |e3|max =
√

σ3a(1−a|N3|)
|N3|

z3 which

is represented by the dotted line.

VI. CONCLUSIONS

We considered event-driven strategies for multi-agent sys-

tems. The actuation updates were event-driven, depending on

the ratio of a certain measurement error with respect to the

norm of a function of the state. A centralized formulation of

the problem was considered first and then the results were

extended to the decentralized counterpart, in which agents

required knowledge only of the states of their neighbors

for the controller implementation. The results of the paper

were supported through simulated examples. Future work

will focus on the application of the framework to other

cooperative multi-agent control tasks.

REFERENCES

[1] A.Anta and P.Tabuada. To sample or not to sample: self-triggered
control for nonlinear systems. IEEE Transactions on Automatic

Control, 2009. to appear.

[2] M. Arcak. Passivity as a design tool for group coordination. IEEE

Transactions on Automatic Control, 52(8):1380–1390, 2007.

[3] K.J. Astrom and B. Bernhardsson. Comparison of Riemann and
Lebesgue sampling for first order stochastic systems. 41st IEEE

Conference on Decision and Control, pages 2011–2016, 2002.

[4] M. Cao, B.D.O. Anderson, A.S. Morse, and C. Yu. Control of acyclic
formations of mobile autonomous agents. 47th IEEE Conference on

Decision and Control, pages 1187–1192, 2008.

[5] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques. Leader-
follower formation control of nonholonomic mobile robots with input
constraints. Automatica, 44(5):1343–1349, 2008.

[6] D.V. Dimarogonas and K.H. Johansson. Event-triggered cooperative
control. European Control Conference, pages 3015–3020, 2009.

[7] D.V. Dimarogonas and K.J. Kyriakopoulos. A connection between
formation infeasibility and velocity alignment in kinematic multi-agent
systems. Automatica, 44(10):2648–2654, 2008.

[8] J.A. Fax and R.M. Murray. Graph Laplacians and stabilization of
vehicle formations. 15th IFAC World Congress, 2002.

[9] C. Godsil and G. Royle. Algebraic Graph Theory. Springer Graduate
Texts in Mathematics # 207, 2001.

[10] W.P.M.H. Heemels, J.H. Sandee, and P.P.J. Van Den Bosch. Analysis
of event-driven controllers for linear systems. International Journal

of Control, 81(4):571–590, 2007.
[11] M. Ji and M. Egerstedt. Distributed coordination control of multi-

agent systems while preserving connectedness. IEEE Transactions on

Robotics, 23(4):693–703, 2007.
[12] E. Johannesson, T. Henningsson, and A. Cervin. Sporadic control of

first-order linear stochastic systems. Hybrid Systems: Computation

and Control, pages 301–314, 2007.
[13] K.H. Johansson, M. Egerstedt, J. Lygeros, and S.S. Sastry. On the

regularization of zeno hybrid automata. Systems and Control Letters,
38:141–150, 1999.

[14] D.B. Kingston, W. Ren, and R. Beard. Consensus algorithms are input-
to-state stable. American Control Conference, pages 1686–1690, 2005.

[15] J. Lygeros, K.H. Johansson, S. Simic, J. Zhang, and S. Sastry.
Dynamical properties of hybrid automata. IEEE Transactions on

Automatic Control, 48(1):2–17, 2003.
[16] M. Mazo, A. Anta, and P. Tabuada. On self-triggered control for linear

systems: Guarantees and complexity. European Control Conference,
2009.

[17] R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions

on Automatic Control, 49(9):1520–1533, 2004.
[18] R. Olfati-Saber and J.S. Shamma. Consensus filters for sensor

networks and distributed sensor fusion. 44th IEEE Conference on

Decision and Control, pages 6698–6703, 2005.
[19] M. Rabi, K.H. Johansson, and M. Johansson. Optimal stopping for

event-triggered sensing and actuation. 47th IEEE Conference on

Decision and Control, pages 3607–3612, 2008.
[20] W. Ren and E.M. Atkins. Distributed multi-vehicle coordinated control

via local information exchange. International Journal of Robust and

Nonlinear Control, 17(10-11):1002–1033, 2007.
[21] E.D. Sontag. On the input-to-state stability property. European Journal

of Control, 1:24–36, 1995.
[22] E.D. Sontag and Y. Wang. On characteizations of the input-to-state

stability property. Systems and Control Letters, 24:351–359, 1995.
[23] A. Speranzon, C. Fischione, and K.H. Johansson. Distributed and

collaborative estimation over wireless sensor networks. 45th IEEE

Conference on Decision and Control, pages 1025–1030, 2006.
[24] P. Tabuada. Event-triggered real-time scheduling of stabilizing control

tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685,
2007.

[25] X. Wang and M.D. Lemmon. Event-triggered broadcasting across
distributed networked control systems. American Control Conference,
2008.

[26] X. Wang and M.D. Lemmon. Self-triggered feedback control systems
with finite-gain L2 stability. IEEE Transactions on Automatic Control,
54(3):452–467, 2009.

FrAIn3.12

7136


