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ABSTRACT 
 
One of the most versatile and safe materials used in medicine are polymer-coated iron oxide 
nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The 
paramagnetic polymer-coated iron oxide nanoparticle aminoSPARK is used as a fluorescence-mediated 
tomography (FMT) imaging agent for stratification of prostate cancer tumors.  This is achieved by 
conjugating it to a peptide that targets SPARC (secreted protein acidic rich in cysteine), a biomarker 
protein associated with aggressive forms of prostate cancer.  Several types of polymer coatings for iron 
oxide nanoparticles have been systematically explored using a novel high-throughput screening technique 
to optimize coating chemistries and synthetic conditions to produce nanoparticles with maximum stability 
and ability to lower T2 contrast for MR imaging (R2, or relaxivity).  Carboxymethyl dextran emerged 
from the screen as an ideal coating for superparamagnetic iron oxide nanoparticles.  A commercially 
available, FDA-approved nanoparticle with similar surface chemistry, Feraheme, was chosen as a 
platform nanoparticle for further development. This work presents the first instance of chemical 
modification of Feraheme, making it more amenable to bioconjugation by converting its free carboxy 
groups to free amine groups.  This amine-functionalized Feraheme nanoparticle (amino-FH) is then used 
as a base nanoparticle to which various targeting and reporting functionalities can be added.  A FH-based 
nanoparticle that can be used for cell loading is synthesized by covalently combining Feraheme with 
protamine, a pharmaceutical that also acts as a membrane translocating agent.  A rhodamine-protamine 
conjugate is synthesized and then covalently bound to amino-FH using carbodiimide (CDI) chemistry.  
This results in a magnetofluorescent cell-labeling nanoparticle (ProRho-FH) that is readily taken up by 
mouse mesenchymal stem cells and U87 glioma cells.  ProRho-FH can be used to non-invasively track 
cells for development and monitoring of cell-based therapies or for further investigation of biological 
mechanisms such as cell migration, tumor growth, and metastasis.  This combination of two FDA-
approved, commercially available materials to yield a superparamagnetic and fluorescent cell labeling 
nanoparticle is an excellent alternative to the recently discontinued Feridex. All polymer-coated iron 
oxide nanoparticles used in this dissertation were thoroughly characterized to fully understand their 
physicochemical and magnetic properties. 
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CH AP T E R 1 :   T HE S I S  

O V E R V I E W 

 

 

 

 

1.1 Thesis Introduction 

The blurring of the boundaries between the disciplines of engineering and the biological 

sciences has revolutionized medicine.  Recent advances in domains such as nanotechnology and 

materials science and engineering have added many new tools for studying biological 

mechanisms and added many weapons for treatment of disease.  Specifically, the development of 

nanoparticles, which reside at the scale of biological interactions, have allowed researchers to 

design new ways for materials to interact with the human body.  The smallest dimension of 

nanoparticles is less than about 100 nm, which is comparable to the scale of interaction between 

cells and molecules in our bodies (Figure 1).  Our growing understanding of and ability to 

manipulate molecules on the nanometer scale has introduced the possibility of interacting on the 

molecular level with our cells and our bodies with unprecedented control. 
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Figure 1.  Scale of various nanoparticles and biological entities.  The polymer-coated iron oxide nanoparticles 
discussed in this dissertation, Feraheme, CMPVA-NP, AminoSPARK, and CMD-NP, can range from around 10-8 to 
10-7 nm in diameter. 

 

The extremely small size of nanoparticles gives rise to a variety of properties that larger 

forms of the same materials would not have.  For example, since volume scales as the radius 

cubed and surface area scales as the radius squared, as the radius shrinks the surface area-to-

volume ratio becomes very large.  Effects of the considerably augmented surface area include 

increased chemical reactivity, increased surface free energy, and a variety of other physical, 
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chemical, and mechanical effects.  Additionally, various quantum effects arise at these small 

length scales since the size of nanomaterials becomes comparable to the de Broglie wavelength 

(λ = h/p, where h is Planck’s constant and p is the momentum of the particle), effects that are 

negligible in more conventionally sized materials.   Just as some forces become more significant 

at these length scales, other forces that are important in bulk materials (e.g., gravity) become less 

important at these scales.  The different physical rules that govern nanomaterials give rise to 

properties that bulk materials do not have, and with our increased understanding we are now able 

to tune these different properties to achieve a desired effect for a particular application.  

Although many forms of nanomaterials have applications in medicine, including nanotubes, 

nanowires, and thin films, this work will focus on nanospheres of zero dimension, which will 

always be referred to in this dissertation simply as nanoparticles. 

Until recently it was necessary to remove tissue for biopsies and probe samples using 

histology to investigate what was happening in the body, which is not only invasive but time 

consuming, expensive, labor-intensive, and limited by a finite degree of sampling error.  The 

advent of noninvasive imaging was one of the most valuable technological advances in medicine.  

Not only can medical imaging provide a means to diagnose disease, it can also allow clinicians 

to monitor treatment and personalize therapies for each patient.  Nanoparticles that are used to 

enhance and augment imaging technologies have been particularly beneficial and will be the 

focus of much of this work.  Their size allows them to be injected systemically and circulate in 

the vasculature, as well as enter cells to label and track specific cell types.  They can act almost 

as mobile instruments of seeing, interacting on a molecular level with the body and reporting 

back to the physician or researcher. 
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The majority of the material, engineering, and design decisions in this dissertation were 

based on the goal of creating materials with the possibility of clinical translation.  The eventual 

destination of these materials is within the human body, thus it is necessary to use raw materials 

and chemical methods that are biocompatible. At times commercially available nanoparticles 

were used with surface modifications for the particular purpose we had in mind.  This strategy 

allows us to use a material that has been researched, developed, and scaled up, and in the case of 

an FDA-approved material, rigorously well-characterized and controlled.  Not only are these 

materials valuable because they have passed the high bar set by the FDA for safety, but they are 

also carefully quality controlled for purity and consistency, making the chemical approaches 

described here more amenable to reproduction by other researchers.  Some nanoparticles used in 

this study are not suitable for human use, but are important research nanoparticles in that they 

can be used in vitro and in animal models to further our understanding of various pathologies.  It 

is then a relatively easy jump to take these surface modifications and apply to them to clinically 

relevant nanoparticles with similar surface chemistries. 

Although this work focuses on the applications of these nanoparticles to imaging, many 

of the new chemistries developed here have yielded nanoparticles that can be used for a variety 

of other types of applications including cell separation and sensing.  In vitro applications of iron 

oxide nanoparticles such as purification, bioseparation, immunoassays, and sensing in medical 

devices, are large and active fields of research but are not specifically addressed here. 

Below is a table summarizing the polymer-coated iron oxide nanoparticles that are used 

and/or synthesized in this dissertation, along with their source, their physicochemical properties, 

and where they appear in the document.  General trends emerge which will be discussed later in 

the dissertation. 
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+aminoSPARK product insert 
^Feraheme product insert 
 
Table 1.  A list of the polymer-coated iron oxide nanoparticles used in this work, along with reference 
nanoparticles for comparison.  Key physicochemical properties are also listed. 

 

Table of Polymer-Coated Iron Oxide Nanoparticles and their Physicochemical Properties 

Formu-
lation Source 

Hydro-
dynamic 
diameter 

(nm) 

Core 
diameter 

(nm) 

Core 
# Fe 

R1 
(mmol-
1 sec-1) 

R2 
(mmol-
1 sec-1) 

Mag. 
Sat. 

(emu/
g Fe) 

Zeta 
Poten-

tial 
(mV) 

 

Type, # 
Functional 
Groups/NP 

 

Comment Chap-
ter 

aminoSPA
RK Visen 54 8.8 ± 2.5 ~8,000 n/a n/a n/a -7.15 VT680/VT 

750, NH2 
Para-

magnetic Ch. 4 

CMD-NP Synth-
esized 1 47 ± 4.6 18.9 ± 3.8 62,000 16.8 ± 

5.8 
271 ± 
26.3 68 -22 ± 

1.1 OH, COOH Result of 
screen Ch. 5 

CMPVA-
NP 

Synth-
esized1 

37.1 ± 
1.4 

7.2 ± 1.9 8,900 47.3 ± 
2.6 

119.2 ± 
2.4 59 -14 ± 

3.3 OH Result of 
screen Ch. 5 

Feraheme 
(feru-

moxytol, 
AMI 228) 

AMAG 
Pharma-
ceuticals 

17-31^ 6.4 ± 0.4* 5,874^ 32.4 62.7 23.62 -37.8 ± 
3.7 

8 
COOH 

FDA 
approved 

2009 

Ch. 6, 
7 

Amino-FH Synth-
esized 15 6.4 ± 0.43 5,874^ 26.2 44.9 nd -29.6 ± 

0.85 8 NH2 
Platform 

NP 
Ch. 6, 

7 

FH-Cy5.5 Synth-
esized 16.6 6.4 ± 0.43 5,874^ 23.2 47.8 nd -16.8 ± 

1.3 2.5 Cy5.5 Magneto-
fluorescent Ch. 6 

FH-Rho Synth-
esized 16.9 6.4 ± 0.43 5,874^ 24.7 55.1 nd -14.5 ± 

1.08 5 Rho Magneto-
fluorescent 

Ch. 6, 
7 

ProRho-
FH 

Synth-
esized 34.3 6.4 ± 0.43 5,874^ 20.6 65.2 nd -0.037 ± 

0.84 5 ProRho 

Magneto-
fluorescent 

cell 
labeling NP 

Ch. 6, 
7 

DTPA-
CyAl5.5-

FH 

Synth-
esized 14.8 6.4 ± 0.43 5,874^ 21.4 35 nd -21.9 ± 

1.65 
3.5 DTPA-

CyAl5.5 
Trifunc-
tional NP Ch. 6 

Feridex 

AMAG 
Pharma-
ceuticals, 
(discon-
tinued) 

120-180 15.2 ± 8.94 ~50,00
0 

23.7 ± 
1.24 

107 ± 
114 

93.6 ± 
1.64 -18.4 OH No longer 

available Ch. 7 

Combidex 
(Sinerem, 

feru-
moxtran, 
USPIO, 

AMI-227) 

AMAG 
Pharma-
ceuticals 

15-30 4.9 ± 1.54 2500–
5000 

22.7 ± 
0.24 

53.1 ± 
3.34 

94.8 ± 
0.74 -2 OH Poly-

disperse n/a 

Amino-
CLIO 

Synth-
esized5 29.8 4.6 ± 1.0 8,000 23.1 54.9 62 -16 30  NH2 

crosslinked 
coating Ch. 5 

MION-47 Synth-
esized6 36.4 4.6 ± 1.2 8,000 22.2 44.5 70 -13.6 OH 

non-
crosslinked 

coating 
Ch. 5 
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1.2 Thesis Motivations 

Iron oxide nanoparticles are one of the few materials injected into the body that are easily 

incorporated into the body’s natural metabolic pathways.  They can be synthesized to bind to 

biocompatible polymers like dextran, allowing them to be coated with various materials that can 

control their targeting and trafficking in the body.  Furthermore, their magnetic properties make 

them ideal magnetic resonance (MR) contrast agents.  There exist other materials that may have 

stronger magnetic properties or more robust surface properties, but iron oxide nanoparticles have 

the most desirable combination of safety, biocompatibility, stability, and imaging capabilities 

combined with a flexible platform for a variety of applications. 

This dissertation seeks to investigate several applications of polymer-coated iron oxide 

nanoparticles, as well as develop new nanoparticle formulations. The application of the 

nanoparticles range from using them to target specific tumor types to using them to label and 

track cells.  A new type of screening paradigm is also introduced to demonstrate a way to quickly 

develop new polymer-coated iron oxide nanoparticles that fulfill a variety of design criteria. 

The specific goals of this Ph.D. thesis are as follows: 

1. Use iron oxide nanoparticles as non – invasive imaging agents for staging prostate cancer 

2. Develop a screening method for determining the optimal coating chemistry and synthetic 

protocol for iron oxide nanoparticles 

3. Chemically modify Feraheme so that it is more amenable to bioconjugation and use it as a 

platform nanoparticle for a variety of imaging applications 

4. Develop iron oxide nanoparticles for cell labeling and tracking by MR, using as safe and 

biocompatible materials as possible 
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5. Characterize all the nanoparticles used in this dissertation to fully understand their 

physicochemical properties 

 

1.3 Thesis Organization 

The dissertation first gives background on polymer-coated iron oxide nanoparticles, both 

on how they have historically been used in medical imaging (Chapter 2) and on their material 

properties (Chapter 3).  Considerable attention is paid to the use of these nanoparticles as MR 

contrast agents and the magnetic properties that make this possible.  Prostate cancer and the 

current clinical challenges surrounding the disease are outlined in section 4.2 and gliomas (a type 

of brain cancer) are described in section 7.2.  The state of the art of medical imaging 

technologies, including the drawbacks of current technologies and what is needed in future 

technologies, is described in section 2.2.   

Several different polymer-coated iron oxide nanoparticles are used in a optical and 

magnetic imaging modalities.  Two of the nanoparticles are commercially available 

(aminoSPARK and Feraheme), but have been chemically modified to achieve a specific 

function.  The other polymer-coated iron oxide nanoparticle (CMD-NP) is a novel material 

developed with specific parameters for clinical translation in mind.   

The projects described in this dissertation also have different goals and focuses.  The 

project in Chapter 4 describes an injectable imaging agent developed for diagnosis and prognosis 

of cancer.  Next, in Chapter 5, a clinically relevant polymer-coated iron oxide nanoparticle is 

developed based on a screening paradigm that seeks to maximize stability and potency.  Chapter 

6 describes a chemical strategy for modifying the commercially available FDA-approved 
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nanoparticle Feraheme, transforming it into a versatile platform nanoparticle, after which it is 

modified for use as a cell tracking agent. Finally, Feraheme was combined with the 

commercially available drug protamine to label cells, an important function for the development 

of therapies that use cells and for deeper investigations of the biological mechanisms of various 

phenomena involving cell migration (e.g., metastasis). 

Chapter 4 describes a project using polymer-coated iron oxide nanoparticles to image a 

prostate cancer biomarker called secreted protein acidic rich in cysteine (SPARC).  The 

nanoparticle is called aminoSPARK and is commercially available. 

Chapter 5 describes a new screening paradigm for developing polymer-coated iron oxide 

nanoparticles.  Techniques were developed for screening a large number of polymer coatings and 

synthetic strategies to optimize specific parameters for the nanoparticles.  Two new nanoparticle 

platforms were developed from this work, one coated with carboxymethyl dextran (CMD) and 

one coated with carboxymethyl polyvinyl alcohol (CMPVA). The optimal coating CMD is 

similar in surface chemistry to Feraheme, a commercially available, FDA-approved 

pharmaceutical.  The benefits of using an approved drug for further work were evident and 

further research was continued using Feraheme.  

Chapter 6 describes the chemical modification of Feraheme, the carboxymethyl dextran-

coated nanoparticle similar to the one developed in Chapter 5. This project begins by describing 

a way to make an amino-functionalized version of Feraheme, useful for a variety of 

bioconjugation strategies.  One possible application of a modified Feraheme is described in 

Chapter 7, where a protamine-functionalized version of Feraheme is developed for use as a cell 

labeling agent.  The protamine has first been conjugated to rhodamine, greatly facilitating in 

vitro characterization of this material.  This cell labeling agent readily enters cells and allows 
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cells to be tracked and imaged in vivo and in vitro by fluorescence, iron content, and MR 

imaging. 

Recommendations for a continuation of this line of work along with potential drawbacks 

are described in Chapter 8 and the dissertation is summarized in Chapter 9.  Chapter 10 contains 

the references for this work, followed by the acknowledgments to all the people that made this 

work possible.
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CH AP T E R 2:   I N T R OD U C T I ON  

T O  T H E  R O L E  OF  P O L Y M E R-

C O A T E D  I R ON  O X I D E  

N A N O P A R T I C L E S I N  M E D I C A L  

I M A G I N G 

 

 

 

 

2.1 Iron Oxide Nanoparticles in Medicine 

Magnetic materials have been used in biology for a variety of applications such as cell 

sorting and tracking,7 drug delivery,8 sensing9 and imaging.10 Metals such as cobalt and nickel 

are highly magnetic but also toxic,11, 12 limiting their use in biomedical applications.  Iron oxides, 

on the other hand, have a long history of safe clinical use. 
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Figure 2.  Schematic of polymer-coated iron oxide nanoparticles.  Left:  polymer-coated iron oxide nanoparticle.  
The polymer coating is generally significantly larger than the iron core (blue).  Right:  crystal structure of iron oxide 
core generally consists of magnetite Fe3O4 and maghemite Fe2O3.  Adapted from reference 13.   

 

Polymer-coated iron oxide nanoparticles (Figure 2) have long been used in an injectable 

form to treat iron anemia, a relatively common deficiency that can be caused by a variety of 

factors including blood loss, nutritional deficiencies, and difficulties with iron absorption.  Iron is 

needed by the body to produce hemoglobin, the protein that carries oxygen in the blood.  Some 

examples of paramagnetic dextran-coated iron oxide nanoparticles used to treat anemia are 

INFeD (Watson Pharmaceuticals) and Dexferrum (Luitpold Pharmaceuticals).  Recently 

Feraheme (a.k.a. ferumoxytol, AMAG pharmaceuticals) was approved to treat anemia, although 

this nanoparticle is superparamagnetic and thus can be used as an MR contrast agent as well (see 

Chapters 6 and 7).  

Another important medical application of polymer-coated iron oxide nanoparticles is as 

imaging agents in a variety of contexts.  Their coating allows for conjugation of functional 

ligands, including fluorophores for fluorescent imaging and radioactive ions for PET imaging.  
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Superparamagnetic iron oxide nanoparticles have the ability to lower the T2 contrast signal for 

MR imaging and have been used to target phagocytic cells as well as molecular targets in vivo.  

They can also be used to load cells for tracking in order to develop cell-based therapies.  One of 

the most effective ways to follow migration of the cells in vivo is using MR imaging, which is 

noninvasive and has no significant toxic effects.  (The use of the iron oxide nanoparticle 

Feraheme to label and track cells is described in Chapter 7).  Some examples of FDA-approved 

iron oxide nanoparticle MR imaging agents are Feridex IV (formerly supplied by AMAG 

Pharmaceuticals, recently discontinued) and Resovist (a.k.a. ferucarbotran, Bayer Schering 

Pharma AG). 

Imaging agents are successful if enough of them accumulate at their intended target to 

provide a robust signal.  The emphasis on imaging agents is on their non-toxicity and lack of 

interaction with regions of the body other than their intended target.  On the other hand, 

therapeutic agents in general must either deliver a load of therapeutic agent or must themselves 

have therapeutic effects.  More often than not these effects are toxic to normal tissue as well, so 

it is essential to fall within the optimal therapeutic window:  low enough in toxicity to result in 

minimal damage to surrounding tissue, yet toxic enough to eradicate the intended target.  With 

these design parameters in mind, a therapeutic iron oxide nanoparticle can be created. 

Superparamagnetic nanoparticles themselves can be used as therapeutic agents by using 

their hyperthermic qualities to kill cells.  They can be heated by an external alternating magnetic 

field, yielding cell death at temperatures above 41-42˚C.  Hyperthermia has been used to target 

nanoparticles to tumor cells and kill them,14, 15 an attractive option since many types of cancer 

cells are more sensitive to high temperatures than normal cells.  Another therapeutic strategy 

using polymer-coated iron oxide nanoparticles was developed by McCarthy et al.; these 
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researchers created theranostic (therapeutic and diagnostic) nanoparticles that are conjugated to 

potent photosensitizers for photodynamic therapy.16  Magnetic nanoparticles can also be used as 

vehicles for delivering therapeutic agents.17  Often the nanoparticle will be multifunctional, 

containing ligands for targeting as well as therapeutic drugs. Targeting allows for more focused 

delivery of the payload, resulting in less drug needed to fall into the therapeutic window, and 

thus to less toxic side effects.  It is important to note that unlike for imaging agents, when 

designing a therapeutic agent, biomarkers for a specific pathology that also happen to be 

expressed in other tissues or organs should be avoided as a target molecule since the toxicity 

would then reach those parts of the body. 

The use of magnetic nanoparticles in biology and medicine will improve our 

understanding of biological processes at the nanoscale, and will also improve our ability to 

diagnose and treat disease.  Although iron oxide nanoparticles have a long history of different 

types of uses in medicine and are actively being developed for a variety of applications today, 

this dissertation will focus on their development for use in the field of medical imaging. 

 

2.2 Background on Medical Imaging Technologies 

The ability to non-invasively investigate what is happening in the body is extremely 

useful for diagnosing pathologies, monitoring treatments, and providing guidance to more 

invasive treatments like surgery.  As mentioned in the previous section, iron oxide nanoparticles 

have been used to augment many of the imaging modalities described below.  This section is not 

meant to be an exhaustive review of medical imaging, only to give an idea of some of the 

different imaging technologies that can benefit from nanoparticle contrast agents. 
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2.2.1 Radionuclide Imaging 

Single photon emission computed tomography (SPECT) uses a gamma camera to capture 

gamma rays emitting from radionuclides that have been injected into the body.  Multiple 2-D 

images are acquired and then stitched together by a computer to form a 3-D image.  Positron 

emission tomography (PET) is a similar imaging technique in that it detects radioactive tracer 

isotopes that have been injected into the body, but unlike SPECT, which measures gamma ray 

radiation directly, PET measures the two gamma photons emitted when an emitted positron 

annihilates with an electron.  As there are two coincident emissions, PET is able to construct 

higher spatial resolution images (as low as ∼33 mm3) than SPECT, with a sensitivity of about 

10−11–10−12 mole/L whereas SPECT has a sensitivity about an order of magnitude below that.  

However, SPECT is less expensive than PET, partly because the radioisotopes used are less 

expensive and have longer half-lives.  

The use of PET is limited by its tracers, which are expensive not only due to the high 

costs associated with the cyclotrons required to make them, but their generally short half-lives 

require them to be made close to the site of administration and restrict the window of time in 

which a scan can be made. For this reason it is common to use tracers with relatively longer half 

lives such as fluorine-18 (F-18), which has a half-life of 118 minutes. One of the most common 

molecules used for PET imaging is fluorodeoxyglucose (FDG), an analogue of glucose that the 

body can use as an energy source, allowing visualization of metabolic activity.  PET scanning 

using FDG is widely used in oncological applications to diagnose and monitor treatment of 

tumors, since tumors often metabolize FDG differently than normal tissue.  PET is also used 

extensively for a variety of other applications, including in pharmacology to determine the 
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biodistribution of new drugs. One major drawback to the use of PET is the risk associated with 

the use of the radioactive tracers, which exposes the subject to ionizing radiation.  This risk 

limits the possibility of performing longitudinal studies. 

 
2.2.2 Computed Tomography (CT) Imaging 

Computed tomography (CT), which has also been known as body section röntenography 

and the computed axial tomography (CAT) scan, uses digital processing to construct a three-

dimensional image from many two-dimensional X-ray images that have been taken around one 

axis of rotation.  This type of imaging is used in all areas of the body to assess and diagnose a 

variety of pathologies, including cancer, physical injuries and trauma, bood clots and other 

obstructions, and inflammation.  Resolution of standard medical CT instruments is on the order 

of 1-2 mm.  The recent popularity of full-body CT has associated risks, including exposure to 

radiation, and there have been many studies linking exposure to CT radiation with cancer.  

Contrast agents such as intravenous iodine are sometimes used to highlight the vasculature, but 

there are documented risks from these types of contrast agents as well. 

 

2.2.3 Optical Imaging 

Bioluminescence imaging (BLI) capitalizes on the inherent capabilities of certain 

organisms to bioluminesce by taking the portion of the DNA encoding the luminescent protein 

and inserting it into the DNA of the test subject.  Several reporters have been used including 

firefly and renilla luciferases, both of which require an injection of substrate (D-luciferin and 

coelenterazine, respectively) prior to imaging.  The small amount of light emitted is detected by 

a CCD camera which is extremely sensitive but which is still limited to just several centimeters 

of tissue due to attenuation, making this technique most applicable to small animal imaging.  



Iron Oxide Nanoparticles for Medical Imaging 
 
 

32 

Mammalian tissues have a low background of intrinsic bioluminescence, advantageous for 

achieving decent signal-to-noise ratios with BLI. 

Fluorescence-Mediated Tomography (FMT) is a proprietary imaging system of VisEn 

that can detect near-infrared probes in vivo in deep tissues using its tomographic reconstruction 

and sophisticated algorithmic models, an improvement over traditional optical imaging 

techniques.  Although FMT is not a clinically relevant imaging modality, it is an extremely 

valuable, relatively low-cost research tool for imaging small animals.  Despite the limitations of 

optical imaging methods for humans due to the small path length of light, there is much to be 

gained from using these imaging methods in the study of small animal models. 

 

2.2.4 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging, also known as nuclear magnetic resonance imaging, is the 

most powerful imaging technique for visualizing soft tissue detail in the body and provides the 

highest resolution (sub micron) of any other imaging modality.  Compared with optical imaging 

techniques, it has excellent tissue penetration depth, which is important when visualizing a 

human being as opposed to a small animal.  A powerful magnet, usually a superconducting 

magnet, is used to generate extremely high magnetic fields in the imaging subject.  In the clinic 

magnets between 0.5-2 tesla are used, though magnets as strong as 60 tesla are used in research.  

Living tissue is largely comprised of water molecules, each of which contain two hydrogen 

nuclei that have large magnetic moments.  Normally the magnetic moments are randomly 

aligned and cancel each other out, but in the homogenous magnetic field of the MR scanner 

some of the magnetic moments align, producing a net magnetic moment.  A radiofrequency (RF) 

pulse is initiated by the scanner and absorbed by the hydrogen protons, causing them to precess 
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in a different direction at a frequency known as the Larmor frequency, which is proportional to 

the magnetic field. Once the magnetic field is turned off the proton spins relax to their unexcited 

state and release a photon, which is detected and transformed into an image.  The physics of this 

relaxation process is described in more detail in Section 2.3. 

MRI has comparable resolution to CT and much better contrast, but the major advantage 

of MRI is its safety.  Excluding metal implants in the body, MRI is an extremely safe procedure 

as there are no known negative effects to being exposed to a high magnetic field.  Unlike PET 

and CT, there is no need to expose the subject to ionizing radiation and thus there is not an 

increased risk associated with multiple scans.  

 

Since each imaging modality has its advantages and disadvantages, naturally there is a 

significant amount of effort to combine one or more of these medical imaging modalities, 

capitalizing on the strengths of each and complementing the weaknesses.  The combinations of 

SPECT-CT, PET-CT and PET-MRI are being increasingly used and refined.  One of the 

difficulties of achieving a successful combination is the different time scales of acquisition for 

each modality and the co-registration of the images.  Nevertheless, it is a promising area of 

research where iron oxide nanoparticles could greatly contribute, in part because of their 

potential for multifunctionality. 

The imaging modalities described above have drastically improved our ability to non-

invasively gain an understanding of what is happening inside the body.  Until recently, these 

imaging technologies were only able to show reveal physiological information such as tumor 

size and anatomical location.  The advent of molecular imaging has made it possible to probe 

more specific parameters of disease, including the presence of growth factors, molecular 
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abnormalities and tumor biomarkers.   Molecular imaging is also revolutionizing how drugs and 

other treatments are evaluated, as well as facilitating basic research on the biological 

mechanisms of disease.   Nanoparticles are often the platform material for these targeted imaging 

agents and in doing this they have given us unprecedented access to the molecular life of the 

body.  Nanoparticles can also be used to label materials that are transplanted into the body, such 

as cells, so that they can be tracked non-invasively. 

 

2.3 Iron Oxide Nanoparticles used as Imaging Contrast Agents  

Polymer-coated iron oxide nanoparticles can be used as imaging contrast agents for many 

of the different imaging modalities presented above either by conjugating imaging moieties to 

the surface of the particle or using the inherent properties of the nanoparticle.  For example, 

various optically active molecules can be conjugated to iron oxide nanoparticles for use in  

optical imaging.  AminoSPARK nanoparticles have near-infrared fluorochrome tags VT680 or 

VT750 covalently bound to their coating, allowing them to be visualized by FMT.  PET-

imageable radioisotopes can be conjugated to iron oxide nanoparticles via chelation agents such 

as DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (Diethylene 

triamine pentaacetic acid). 

However, the most common use of iron oxide nanoparticles in medical imaging is as MR 

contrast agents because the iron oxide core can have a structure that is superparamagnetic, 

allowing them to be visualized using MRI.  Without contrast agents MR imaging can already 

discern between different types of soft tissue and provide a great deal of information, and indeed 

the majority of MRI scans are completed without contrast agents.  However, an increasing 

number of scans are enhanced by the use of contrast agents, which can greatly improve the 
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visualization of various tissues as well as highlight specific areas, such as a tumor or other 

pathology. 

MR contrast agents can be categorized into agents that alter the T1 relaxation time and 

agents that alter the T2 relaxation time.  Both of these types of agents change the MR signal but 

the have different physical mechanisms of action.  When an external field B is applied along the 

z axis, the nuclear spin magnetization vector M recovers towards its equilibrium value Meq.  The 

decay constant of Mz (the parallel component of M) is known as T1, and describes the energy 

transfer from the proton to other materials (e.g., the ‘lattice’ or dispersant), while the decay 

constant of Mxy (the perpendicular component of M) is known as T2, which describes the 

dephasing of the spin due to the magnetic field inhomogeneities.  The equations below show that 

the T1 is the time it takes for the signal to recover approximately 63% (1-1/e) of its original 

value while the T2 is the time it takes for the signal to recover approximately 37% (1/e) of its 

initial value: 

Mz(t) = Mz,eq(1-e-T/T1) 

Mxy(t) = Mxy,eq(0)e-T/T2 

The T1 relaxation time is also known as the spin-lattice or longitudinal relaxation time, and the 

T2 relaxation time is also known as the spin-spin or transverse relaxation time.  

Contrast agents that affect the T1 generally cause an increased amount of T1 signal and 

thus are known as positive contrast agents (regions with these agents become hyperintense).  The 

most commonly used T1 agent is based on gadolinium (Gd), a paramagnetic element that is 

injected as an IV contrast agent.  There are several FDA-approved gadolinium-based agents 

including Magnevist (Bayer Schering Pharma) which is Gd complexed with DTPA. Although 
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gadolinium is considered toxic as a free ion, when it is chelated it is considered to be safe.  

Nevertheless, some gadolinium manages to be liberated, causing many significant safety 

concerns, including nephrogenic systemic fibrosis/nephrogenic fibrosing dermopathy 

(NSF/NFD), which affects connective tissues throughout the body.  Many iron oxide 

nanoparticles can also affect the T1 signal, but generally to a lesser degree than the T2 signal.18, 

19 

Contrast agents that affect the T2 reduce the T2 and T2* signal and are known as 

negative contrast agents (regions with these agents become hypointense).  Superparamagnetic 

iron oxide nanoparticles are the most common class of contrast agents that affect the T2.  FDA-

approved superparamagnetic iron oxide contrast agents include Combidex and Feridex 

(Endorem) by Advanced Magnetics (Feridex was recently discontinued).  Unlike gadolinium, 

iron oxide nanoparticles have little known toxic effects.  The physical basis behind T2 MR 

contrast agents will be discussed in more detail in Chapter 3. 

 

2.4 Biocompatibility and Toxicology of Iron Oxide Nanoparticles 

One of the key advantages of using iron oxide nanoparticles as imaging agents and in 

other biomedical applications is their relative lack of toxicity.20, 21  Although different iron oxide 

nanoparticles have different fates in the body depending on the particular chemical composition 

of their coating and core, standard toxicological and pharmacological tests have shown iron 

oxides to be one of the safest materials used in human beings.   

The immune system employs a series of methods to clear foreign entities from the 

circulation, which can be problematic when trying to engineer a long-circulating nanoparticle.  
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The reticulo-endothelial system (RES, also known as the mononuclear phagocyte system or 

MPS) is an entire family of cells that work together and include tissue macrophages, blood 

monocytes, and bone marrow progenitors.  When the system recognizes a material as foreign the 

first thing that happens is that opsonins, plasma proteins in the circulation known as complement 

proteins, spontaneously adsorb to the surface of the foreign body, marking it as foreign.  These 

opsonins have essentially tagged the foreign material for phagocytic cells like monocytes and 

macrophages to recognize as something that needs to be cleared.  The pattern of opsonin 

adsorption, which is dependent on factors like nanoparticle size and surface chemistry, 22, 23 

determines the pattern of clearance of the nanoparticle.  Eventually the phagocytic cells 

accumulate in organs such as the liver (e.g. in Küpffer cells) and other macrophage-rich organs, 

ultimately determining the biodistribution of iron oxides injected into the body.   

In the case of dextran-coated iron oxide nanoparticles, the dextran is degraded by 

intracellular dextranases and then eliminated in the urine.24  Other biodegradable polymer 

coatings have similar fates.  The iron from the nanoparticles enters the body’s natural iron 

metabolic system, is sequestered in the iron storage protein ferritin and eventually ends up in the 

hemoglobin in red blood cells.25  Although iron is an essential nutrient, it can be toxic in some 

situations, but generally only when very large amounts of elemental iron have been ingested.26  It 

is also possible for some individuals to have an adverse immune reaction to the coating.  Some 

people possess anti-dextran antibodies that can cause severe allergic reactions to dextran 

injections, which have historically been used in the clinic as a plasma expander.  It is thus 

possible that nanoparticles coated with these types of polymers could thus potentially induce a 

similar reaction.   



Iron Oxide Nanoparticles for Medical Imaging 
 
 

38 

Although it is not always straightforward to engineer the perfect coating for the particular 

function of the nanoparticle, some trends do emerge.  Charged dextrans such as carboxymethyl 

dextrans tend to have shorter blood half-lives.10  Other factors such as nanoparticle size are also 

important in determining the fate of the nanoparticles in the body, but the coating choice is a 

major determinant of trafficking in vivo.  If the target location of the nanoparticle is not within a 

phagocytic cell, a different type of coating must be devised to essentially camouflage the 

nanoparticle from the RES system.  There are many strategies to avoiding the complement 

activation system and there are many complex factors interacting with each other that effect 

clearance time, but in general, long-circulating nanoparticles tend to be small in size, less 

charged, and more hydrophilic.  Aspect ratio may also play a role, and some researchers have 

altered trafficking by using high aspect ratio shapes like tubes, but this parameter is not explored 

here.  
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CH AP T E R 3 :   M A T E R I A L  

P R OP E R T I E S A N D  

C H A R A C T E R I Z A T I O N  O F  I R O N  

O X I D E  N A N O P A R T I C L E S  
 
 
 
 
 
 
 
 
 

3.1 Structure and Forms 

Iron oxide nanoparticles are generally one or both of magnetite (also known as iron(II,III) 

oxide, Fe3O4) and maghemite (also known as iron(III) oxide, γ-Fe2O3).  Although the magnetic 

properties of these two forms are different the crystal structures are very similar, basically 

consisting of a cubic inverse spinel structure with oxygen atoms in an fcc lattice and Fe cations 

occupying interstitial tetrahedral and octahedral sties.6  Maghemite is essentially a Fe(II)-

deficient magnetite and is formed by oxidation of magnetite.   The equations for these two forms 

of iron oxide are given by: 

Fe3O4:  [Fe3+]Th[Fe3+Fe2+]OhO4 
 

γ-Fe2O3:  0.75[Fe3+]Th[Fe3+
5/3 V1/3]OhO4 
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where Th denotes the tetrahedral sites of the spinel structure and Oh denotes the octahedral sites. 

Although the addition of other types of metal ions (e.g. Co, Ni) to iron oxides (i.e., 

doping) can increase the potency of the nanoparticle in terms of its ability to lower the T2, both 

Co and Ni are susceptible to oxidation and have exhibited toxic properties.  Only iron oxide 

alone has a proven history of safe and non-toxic use in vivo, thus this dissertation will focus on 

the possibilities of iron oxides without additives. 

Some reviews choose to categorize the different formulations of nanoparticles by 

hydrodynamic size:10  nanoparticles that fall between 50-180 nm are the known as 

superparamagnetic iron oxide nanoparticles (SPIOs), nanoparticles that are 10-50 nm in diameter 

are known as ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs), and nanoparticles 

smaller than 10nm in diameter are known as very small superparamagnetic iron oxide 

nanoparticles (VSPIOs).  In this work we will not make this kind of distinction because although 

size is a an important characteristic of nanoparticles, many other properties such as core structure 

and coating chemistry are equally if not more important, thus categorizing iron oxide 

nanoparticles by hydrodynamic size is considered by the author to be a somewhat arbitrary 

distinction.  Instead nanoparticles will be considered individually in this dissertation, based 

primarily on core composition and coating type. 

 

3.2 Synthesis 

There are several synthetic strategies to making polymer-coated iron oxide nanoparticles 

including thermal decomposition and/or reduction, micelle synthesis, hydrothermal synthesis, 

and biosynthesis.27-30  In general it is desirable for the synthetic process to be scaleable to an 
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industrial size, be reproducible from batch to batch, and result in relatively monodisperse 

nanoparticles.  The synthesis and preparation of these nanoparticles in large part determine the 

size, shape, and the degree of impurities and structural defects.  All of these factors can affect the 

magnetic behavior, which for MR contrast agents determines their potency and sensitivity.  The 

monodispersity of a nanoparticle preparation is also important, as monodisperse preparations are 

easier to characterize, are more likely to win FDA approval, and have more easily controllable 

properties.  The use of a surfactant during synthesis can improve the monodispersity of the 

nanoparticles, but the difficulty in fully removing the surfactant and the problems arising from 

potential toxicity have yet to be fully investigated. 

The nanoparticles used in this dissertation have been synthesized using a coprecipitation 

method whether they were synthesized in-house or purchased from a supplier, so this relatively 

simple and scaleable synthetic reaction will be described here in more detail.  In a general 

coprecipitation reaction, stoichiometric amounts of ferric and ferrous chlorides are mixed in 

aqueous media in the presence of ammonia and the coating polymer, yielding homogenous 

spherical magnetite particles.  Homogenous nucleation occurs when there is a critical 

supersaturation of nanoparticle starting material, which is achieved by slowly increasing the pH 

of the solution.  The nanoparticles grow when solutes in the solution diffuse to their surface, with 

complete precipitation of Fe3O4 occuring between pH 9 and 14.  During this period of growth it 

is best to avoid nucleation to achieve monodispersity.  The polymer used to coat the 

nanoparticles can be a starch-derivative such as dextran or carboxymethyl dextran (CMD) or 

another kind of polymer such as carboxymethyl polyvinyl alcohol (CMPVA).  Many of the 

coating options are investigated in Chapter 5.   During synthesis the polymer forms a swollen 

three-dimensional scaffold, preventing aggregation of the nucleated iron particles.   
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Two forces compete to determine the size of the resulting nanoparticle:  the surface 

energy and entropy.  The polymer that is added to the reaction vessel  chelates the iron, lowering 

the surface tension and allowing smaller nanoparticles to stabilize.   The reaction can be written 

as 

Fe2+ + 2 Fe3+ + 8 OH-    Fe3O4 + 4H2O 

Some of the magnetite (Fe3O4) tends to oxidize and form maghemite (y-Fe2O3): 

Fe3O4 + 2 H+  y-Fe2O3 + Fe2+ + H2O 

This process of oxidation is sensitive to the pH of the suspension.  Various other parameters of 

the reaction can be tuned to control size, crystallinity, and composition including the 

ferric/ferrous ratio, the polymer/Fe ratio, the ionic strength of the solution, the temperature, and 

the addition of salts. 

The resulting nanoparticles have a core made of a combination of magnetite (Fe3O4) and 

maghemite (y-Fe2O3).  The dextran or other polymer coating has a hydrogen bonding interaction 

with the iron which keeps the nanoparticle fairly stable due to the length of the polymer and the 

large number of hydrogen bonds formed; however, dextran coatings can at times become 

dissociated from the nanoparticle.  For this reason cross-linking has been used to stabilize the 

polymer coating to yield a cross-linked iron oxide (CLIO) nanoparticle.  Carboxylating the 

dextran can also improve stability without crosslinking by strengthening the association between 

the polymer and the iron oxide core.  Nanoparticle coatings are discussed in more detail in 

section 3.4. 
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3.3 Physical and Chemical Properties 

It is important to understand the physicochemical properties of the nanoparticles not only 

because these properties determine their stability, quality and reproducibility of production, and 

efficacy as MR contrast agents, but because fully characterizing these nanoparticles is the best 

way to understand how they will behave in the body.  Both the size and surface chemistry of the 

nanoparticle will affect the pharmacokinetics and in vivo trafficking of the nanoparticle and 

being able to control these parameters is critical for developing an effective imaging agent.  

Many characterization techniques can be used and each of these can give a variety of types of 

information.  This section is ordered around the types of properties that can be investigated, and 

will mainly focus on techniques employed in this dissertation. 

 

3.3.1 Size (Core and Hydrodynamic) 

The size of nanoparticles is crucial to their function.  The balance of forces determining 

colloidal stability is dependent on the dimensions of the nanoparticle, since smaller sizes prevent 

gravitation forces from being significant enough to cause precipitation.  Also, the high surface 

area-to-volume ratio of nanomaterials enhances the effect of ligands attached to the nanoparticle 

surface.  The small size of nanoparticles also tends to increase diffusion in the body and increase 

blood half-life. Importantly, nanoparticles are on the same size scale as the biological 

interactions that govern our bodies, making them ideal candidates as probes of biological 

function. Their magnetic properties are also size-dependent: magnetization relaxation goes as 

KV/kT, where K is the particle anisotropy constant, k is Boltzmann’s constant, T is temperature, 

and V is the volume of the particle.31  The magnetic phenomenon of superparamagnetism, 
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essential for T2 contrast agents (see section 2.3), occurs when KV becomes comparable to 

thermal energy kT.   

One way to determine the size of the iron core of the nanoparticles, is by using 

transmission electron microscopy (TEM) since the polymer coating is more transparent to the 

electron beam.32   TEM can give information on the size of the core, the polydispersity of the 

nanoparticle population, as well as an idea of the type of shapes formed by the nanoparticles.  

This microscopy technique functions by recording the interaction of an electron beam through a 

material with a CCD camera.  TEM has much improved resolution compared with optical 

methods because of the small de Broglie wavelength of electrons as compared with the 

wavelength of light, allowing even atomic structure to be discerned.  Core size can also be 

measured using small-angle X-ray scattering (SAXS),33,34 laser-desorption ionization mass 

spectroscopy,35 and X-ray diffraction (XRD), where core diameter is inversely proportional to 

crystalline peak width.36    

Dynamic Light Scattering (DLS) is a technique used to determine the hydrodynamic size 

of particles in solution.  A light source, generally a laser in the case of DLS, shines on the 

particle solution and as long as the particles are smaller than the wavelength of light (< ~250 nm) 

they will scatter light in all directions uniformly, a phenomenon called Rayleigh scattering.  

Thermal energy causes the particles to constantly undergo Brownian motion so that with a 

monochromatic and coherent light source like a laser there is a time-dependent fluctuation in the 

distance between particles.  Various mathematical approaches can then be used to arrive at the 

diffusion coefficient of the particles.  Knowing the diffusion coefficient D and the viscosity of 

the dispersant η, it is possible to determine the size (r, for radius) of the particles using the 

Stokes-Einstein equation: 
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where kB is Boltzmann’s constant and T is temperature. Scanning tunneling microscopy (STM) 

and atomic force microscopy (AFM) can also be used to determine the size of the 

nanoparticle.37,38 

A method of determining the nanoparticle core weight or number of iron atoms per core 

by using the viscosity of a nanoparticle suspension has been described previously (referred to as 

the viscosity/light scattering method or VLS).39  In this approach viscosity measurements of a 

nanoparticle suspension are used to determine the nanoparticle volume fraction, which is then 

divided by the average volume of a nanoparticle obtained by DLS.  The weight of one 

nanoparticle can then be calculated by dividing the iron concentration by the number of 

nanoparticles per volume.  Once the weight and composition of the core are known, it is possible 

to estimate the number of atoms in the core.  

 
3.3.2  Surface Properties 

Atomic force microscopy (AFM) is a scanning probe microscopy technique that uses a 

cantilevered probe with a nanoscale radius of curvature to raster across a surface, drawing a map 

of the surface.  Nanoparticles can be immobilized to an atomically flat surface like flame-

annealed gold and their surface morphology can be determined.  Depending on the sample and 

the functionality of the tip, the AFM can be used to determine mechanical forces, van der Waals 

forces, and electrochemical forces, of the sample.  Scanning Tunneling Microscopy (STM) can 

be used to image materials with atomic resolution and map electrical properties. 
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Nanoparticles in solution are colloidal suspensions and thus their surface zeta potential is 

one of the main determinants of stability in solution.  The balance between the van der Waals 

attractive force and the electrical double layer repulsive force governs whether the nanoparticles 

will flocculate or remain dispersed.  The steric repulsion of the polymer coatings of the 

nanoparticles discussed in this work is one major factor in keeping the van der Waals attractive 

forces low, but surface charge is also an important parameter.  The potential at the electrical 

double layer can be measured using the electrophoretic mobility of the nanoparticles, which 

essentially measures the velocity of the nanoparticles as they move between two electrodes in 

response to an applied electrical potential.  Naturally zeta potential is extremely sensitive to the 

pH and ionic strength of the dispersant so great care must be made to keep those parameters 

consistent across measurements.  The zeta potential can give an idea of stability as well as a 

qualitative idea of surface functional groups.  

 

3.3.3 Composition 

One way to investigate the arrangement and type of atoms in a crystal is to use X-ray 

diffraction.  When bombarded by X-rays, the atoms in a crystal scatter the electromagnetic 

radiation in a way that is characteristic of the arrangement and type of atoms.  The conditions 

required for diffraction are described by Bragg’s Law 
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characteristic of the material of the sample, and can be determined by comparing the sample’s 

profile with reference patterns in known databases.  XRD can also be used to determine the unit 

cell lattice parameters, the phase composition, the amount of residual strain or macrostrain, the 

amount of microstrain, and the crystallite size (see section 3.3.1) of a given sample. 

Energy dispersive X-ray spectroscopy (EDS or EDX) can be used for elemental analysis 

of a sample, and it is often coupled with an electron microscope.  A high-energy beam of 

charged particles (not necessarily X-rays) bombards the sample and number and energy of the 

emitted X-rays, which are characteristic of the energy difference between the electron shells 

around the nucleus, can be used to determine the elemental composition of the sample. 

Mass spectrometry can also be used to assess nanoparticle composition, but is used in this 

dissertation to confirm the synthetic product of a conjugation reaction for a nanoparticle ligand 

(Chapter 7).  In this technique the sample is ionized by an energy source such as an electron 

beam.  The ions are then accelerated in an electric field and the mass-to-charge ratio is 

determined from their motion to the other side.  The mass spectrometric signature of the sample 

can then be used to determine the composition. 

 

3.4 Iron Oxide Nanoparticle Coatings 

The surface of the nanoparticle is what the body interacts with first and is thus crucial in 

determining the fate of the nanoparticle.  Bare iron oxide nanoparticles tend to be problematic 

because they are insoluble in water, causing agglomeration and precipitation.  In order to 

stabilize the nanoparticles a coating that uses electrostatic and/or steric repulsion to limit 

nanoparticles’ attraction to each other either is necessary.  Another issue with uncoated iron 

oxide nanoparticles is their immunoreactivity, causing activation of the complement system as 
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described in section 2.5 and leading to the nanoparticles being prematurely cleared from 

circulation.  For these reasons most nanoparticles injected in vivo have some sort of coating that 

serves to avoid premature clearance, render the nanoparticles water-soluble, protect particle 

surfaces from oxidation, and improve biocompatibility.  A diverse range of materials have been 

used for coatings, including lipids,40 dendrimers,41 proteins,42 carbohydrates such as starch,43 and 

various other polymers such as polyethylene glycol (PEG)44 and polyacrylamide.45  Clinical 

preparations of iron oxide nanoparticles have almost exclusively used dextran and its 

derivitatives because they have already been used clinically as plasma expanders (their 

attachment to drugs can increase a drug’s circulation time) and because they have an intrinsic 

affinity for iron oxides.46  Coatings can also provide chemical entrance points for conjugation of 

imaging, targeting, and other functional modalities. The magnetic properties that allow 

nanoparticles to serve as effective MRI contrast agents are still due to the iron oxide core, while 

targeting, optical imaging, and most of the interactions with biological systems are functions of 

the nanoparticle coating. 

Many iron oxide nanoparticles take advantage of the fact that macrophages and 

monocytes are designated to engulf foreign bodies, and are likely to take them up. Ferumoxides 

(Endorem®, Feridex) and ferucarbotran (Resovist®) are two types of dextran-coated iron oxide 

nanoparticle preparations that have been approved for intravenous use, mainly for imaging of 

liver lesions and tumors.  However, these “blood pool” (as opposed to targeted) nanoparticles 

only accumulate due to differences in endocytotic uptake and/or tissue composition, and are not 

molecularly targeted in any way.47   Furthermore, their synthetic protocol yields polydisperse 

populations, making them more difficult to characterize and giving them shorter half lives.    



CHAPTER 3:  Material Properties of Iron Oxide Nanoparticles 
 

49 

The monodisperse iron oxide nanoparticle (MION) class of nanoparticles, which includes 

Combidex, has been shown to improve the ability of MRI to detect lymph node metastases.13  

Other applications of these nanoparticles include the imaging of angiogenesis,48 inflammatory 

cells in atherosclerotic plaques,49 and primary tumors for better border definition.50  However, 

MIONs are not easily functionalized and the polymer coating is not very stable in physiological 

conditions.  One way to improve stability is to cage the dextran coating using epichlorohydrin to 

yield a cross-linked iron oxide nanoparticle (CLIO).  This cross-linked polymer coating works 

well for adding functional groups and for stability, and CLIO has enjoyed great success as an 

experimental platform.  However, it cannot biodegrade and thus is not clinically translatable. 

 

Figure 3.  Evolution of magnetic nanoparticles.  Boxes shaded grey indicate preparations in clinical trials in the 
United States. Boxes shaded yellow indicate preparations used in this dissertation.   

  

The newest class of iron oxide nanoparticles are molecularly targeted, long-circulating 

preparations that have stable polymer coatings that are not cross-linked.  An ideal imaging agent 
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has high affinity (sub-nanomolar to nanomolar) for its target, has low levels of nonspecific 

binding/uptake, has low toxicity, has a detection method with high resolution, avoids clearance 

before it reaches its target, and yet is eventually cleared to allow longitudinal study of the 

subject.  A molecularly targeted imaging agent for an aggressive subtype of prostate cancer is 

discussed in Chapter 4.  Ferumoxytol (Feraheme) is one of the most recently FDA-approved 

iron oxide nanoparticle agents, and has excellent stability without crosslinking.  Modification of 

the coating of Feraheme will be discussed in Chapter 6 and the use of a modified Feraheme for 

cell labeling will be discussed in Chapter 7 

 

3.5 Magnetic Properties 

Iron oxide nanoparticles’ magnetic properties are determined by a variety of factors 

including their composition, the chemical phases present, their microstructure, and their size and 

shape.  The ability to tune these properties and dictate the potency of a nanoparticle is an 

important component of nanoparticle design. 

 

3.5.1 Background on Magnetism 

There are several different types of magnetism that can be exhibited in materials 

depending on the arrangement and composition of atoms.  It is the special structure of some iron 

oxides that give rise to the magnetic properties that make them useful as MR contrast agents.  

Many factors can influence a material’s magnetic state, including size and crystal structure, as 

well as environmental factors such as temperature and pressure. 

Diamagnetism occurs in all materials but is often overwhelmed by more prominent 

paramagnetic and ferromagnetic effects.  All materials will experience a dipole moment in 
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opposition to an externally applied magnetic field due to the change in orbital velocity of paired 

electrons around atomic nuclei.   However, this effect is not dominant in most materials and only 

a few known materials (e.g., water, bismuth, superconductors) exhibit observable diamagnetic 

behavior.  

Materials such as iron that have unpaired electrons, i.e., they possess orbitals with one 

electron in them, can exhibit paramagnetic behavior.  When there are two electrons in an orbital 

the Pauli Exclusion Principle dictates that the two electrons must have opposite spins; in these 

situations their magnetic fields cancel each other out. However, unpaired electrons are free to 

align in a direction that will yield a net magnetic dipole moment in response to an externally 

applied magnetic field, and if they align parallel to the field these materials are considered 

paramagnetic.  In the absence of an external field entropic effects due to thermal motion cause 

the spins of the electrons to align randomly, yielding a net magnetic dipole moment of zero.  The 

temperature at which this thermal motion becomes a weak and negligible effect is a transition 

temperature known as the Curie temperature. 

When a material contains atoms in different sublattices pointing in different directions to 

yield a net magnetic moment of zero they are known as anti-ferromagnetic.   This ordering 

disappears at the Néel temperature, above which the material is generally paramagnetic.  If the 

magnetic moments of the different sublattices do not cancel each other out the material is 

considered to be ferrimagnetic, a type of magnetism described below. 

Materials that have a permanent magnetic dipole even in the absence of a magnetic field 

are described as ferromagnetic or ferrimagnetic.  Materials that contain only spins going in the 

same direction, all contributing to the net magnetization, are referred to as ferromagnetic.  

Ferrimagnetic materials like iron oxides contain a number of anti-aligned ions that are not 
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canceled out by ions aligned with the field. The ability of unpaired electrons in ferrimagnetic 

materials to spontaneously align is due to quantum mechanical effects.  Again, there exists a 

critical temperature known as the Curie temperature (or Néel temperature for anti-ferromagnetic 

materials) above which these materials are no longer ferromagnetic and exhibit paramagnetic 

behavior. 

Superparamagnetism occurs in ferrimagnetic nanoparticles that are small enough that the 

affect of thermal energy becomes significant even when the material is below its Curie 

temperature.  The Néel-Arrhenius equation describes this phenomenon by showing the effect of 

thermal fluctuations on the average length of time between random flips in the direction of the 

magnetization moment: 

 

 

where τN is the mean time between flips, τ0 is the material property of the attempt time (typically 

between 10-9-10-10 seconds), K is the magnetic anisotropy of the nanoparticle, V is the volume of 

the nanoparticle, kB is the Boltzmann constant, and T is the temperature.  If the measurement 

time is much shorter than τN, the nanoparticle will appear to have ferrimagnetic qualities even if 

the material is below its Curie temperature.  It is clear from the presence of V in the equation that 

the nanopartice dimensions are an important factor in determining the superparamagnetic 

qualities.  For iron, the critical diameter for spherical particles to become a single domain is 14 

nm, and for Fe3O4 the critical diameter is 128 nm.51  Superparamagnetic nanoparticles only 

exhibit net magnetic dipoles when an external magnetic field is applied, relaxing to their initial 

state once the field is removed.   
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In general, a material will experience a magnetic induction B when an external field of 

strength H is applied as defined by the following equation: 

B = µ0(H + M) 

where µ0 is the permeability of free space and M is the magnetization of the material.  M is 

defined as the magnetic moment per unit volume m/V.  Another important parameter of 

magnetic materials is their volumetric magnetic susceptibility χ, a dimensionless number that is 

defined by: 

M = χH 

The different classes of magnetic materials discussed above will have different values of χ, with 

ferro/ferrimagnets having larger values and paramagnets and diamagnets having smaller values. 

 
3.5.2 Characterization of Magnetic Properties 

A superconducting quantum interference device (SQUID) is a type of sensitive 

magnetometer that can measure very weak magnetic fields, even fields as low as 10-14 T.  The 

device consists of two parallel Josephson junctions, which are two superconductors separated by 

a non-conducting barrier thin enough to allow electrons through; this flow of electrons is referred 

to as a Josephson current.  A magnetization (M) versus field (H) hysteresis loop can be drawn to 

determine the magnetic properties of the nanoparticle (Figure 4).  If an externally applied 

magnetic field is large, some of the spins in a magnetic material will align with the field.  The 

maximum value of this magnetization is known as the saturation magnetization Ms.   When the 

value of the external magnetic field goes down, the number of aligned spins will also tend to go 

down.  If a material is ferro/ferrimagnetic, the magnetization at zero field does not return to zero 
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and that residual magnetic moment is known as the remanent magnetization Mr.  The magnitude 

of the field required to bring the material back to zero magnetization is known as the coercive 

field Hc.  The ratio of the remanent magnetization to the saturation magnetization is known as the 

remanence ratio Mr/Ms, which is a value from 0 to 1. 

 

Figure 4.  Hypthetical M-H curves of a particles exhibiting different types of magnetism injected into a blood 
vessel.  Top left:  diamagnetic material (DM), top right:  paramagnetic material (PM), bottom left: ferromagnetic 
material (FM), bottom right:  superparamagnetic material (SPM).     Key magnetic parameters are highlighted in the 
FM case:  Remanent Magnetization Mr, Saturation Magnetization Ms, and the Coercivity Hc, and multi-domain 
ferromagnetic materials (------) versus single-domain materials () are shown.  The SPM case is the FM case 
smaller than a critical diameter where the spins in the particle are affected by thermal fluctuations.  Adapted from 
reference 52. 
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In this dissertation, the SQUID is used to draw M-H loops at constant temperature to 

assess magnetic behavior and determine the saturation magnetization (Chapters 4, 5).  In general 

the saturation magnetization of nanoparticles decreases with particle size and increases with 

crystallinity.53,54 

NMR relaxometry another technique for determining how nanoparticles will behave in 

the MR scanner.  In the presence of a magnetic field, e.g. one produced by a relaxometer or an 

MR imager, the magnetic moments of superparamagnetic nanoparticles align and exhibit a net 

magnetization.  A radiofrequency pulse then perturbs the alignment of the moments and causes 

the spins to precess.  After the energy from the pulse is removed the susbsequent relaxation can 

be measured.  The relaxation times R1 and R2 can be calculated from the slopes of 1/T1 and 

1/T2 versus concentration, respectively.  High relaxivities are desired since (in most situations) 

less nanoparticle will be needed to achieve high resolution and sensitivity.  The relaxivity of an 

MR contrast agent describes its effectiveness to lower the T1 and T2 relaxation times of the 

signal, and is given by: 
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where C is the concentration of contrast agent.  Many factors can influence the potency of a 

nanoparticle, including the method of synthesis of the nanoparticle, the size and crystal structure 

of the core,55 and the surface chemistry and thickness of the coating.56  The coating can affect 

how water protons interact with the magnetic field created by the superparamagnetic core.57 

Although the spin-spin relaxation time (T2) is reduced by the presence of 

superparamagnetic nanoparticles, the extent to which this occurs in vivo is the result of a rather 

complex combination of factors including the chemical environment around the nanoparticle and 
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how the nanoparticle is compartmentalized in the tissue.  Even if it is possible to determine the 

R2 of the nanoparticle in vitro it is not always straightforward to predict the extent to which it 

will lower the T2 in vivo, although it is an excellent first approximation for preclinical 

characterization.  Contrast agents for MR were described in more detail in Section 2.3. 
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CH AP T E R 4 :   T HE  U S E  OF  A  

T A R G E T E D  F L U O R E S C E N T  I R O N  

O X I D E  N A N O P A R T I C L E  T O N O N-

I N V A S I V E L Y  I M A GE  A N D  

S T R A T I F Y  P R O ST A T E  C A N C E R   

 

 

4.1 Summary 

This chapter will explore how an iron oxide nanoparticle conjugated to a ligand that 

targets a specific subtype of cancer can be used to stratify cancer patients.  Prostate cancer is the 

most commonly diagnosed non-skin malignancy in the United States and presents with a wide 

range of aggressiveness, from extremely slow-growing to highly aggressive.   There is a clinical 

need to determine the metastatic potential of a cancer in order to design the most appropriate 

treatment plan.  In this chapter we describe the development of an iron oxide nanoparticle-based 

imaging agent that targets SPARC (secreted protein acidic rich in cysteine), a molecular marker 

of prostate cancer metastatic potential.  Previous studies by this group used phage display to find 



Iron Oxide Nanoparticles for Medical Imaging 
 
 

58 

a peptide with high binding affinity for the protein SPARC.  Here the SPARC-targeted peptide is 

conjugated to a biocompatible iron oxide nanoparticle that is also coupled to a fluorophore for 

optical imaging.  Prostate cancer cell lines with varying degrees of SPARC expression were used 

to show the ability of this imaging agent to bind specifically to SPARC in vitro and in vivo.   We 

have developed an optical imaging agent that can non-invasively access molecular information 

that correlates with the metastatic potential of the prostate tumor.  This prognostic information 

could enable clinicians to stratify patients and design appropriate treatment strategies. 

 

4.2 Background on Prostate Cancer 

A man living in the United States has a 50% chance of developing some type of cancer in 

his lifetime, and prostate cancer is the second most commonly diagnosed cancer in this group.58  

The incidence of prostate cancer increases with age more than for any other cancer; at 60-79 

years of age the chances for a man in the United States to be diagnosed with prostate cancer is 

1:8.  As the population ages, the number of cases of prostate cancer is only expected to 

increase.59   

Early detection is essential for local therapies such as surgery or radiation to be effective, 

and surgery has been shown to reduce deaths from prostate cancer as compared to a regimen of 

watchful waiting.60  After local therapy, prostate cancer recurs in up to 40% of men, which is 

likely a result of the cancer spreading before a diagnosis was made.61  On the other hand, there is 

also a risk of over detection due to systematic screening, leading to unnecessary treatment.62 

Current methods for diagnosing prostate cancer are neither specific nor sensitive.  A 

digital rectal exam (DRE) can only detect tumors of a certain size and position, causing many 

tumors to go undetected. The gold standard for prostate cancer detection is blood tests for serum 
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prostate specific antigen (PSA), a protein that is also produced by both normal and hypertrophied 

prostate. Thus some men may have a high circulating PSA caused only by benign prostatic 

hypertrophy (BPH), infection, or other factors, and would have to endure unnecessary biopsies 

and emotional distress.  Autopsy findings63-65 and the recent results of the Prostate Cancer 

Prevention Trial66 indicate the prevalence of prostate cancer is much higher than anticipated in 

men with PSA levels considered to be in the normal range (<4 ng/ml).  Conversely, some men 

may have low circulating PSA due to a smaller prostate gland, but still have prostate cancer; in 

these cases the prostate cancer would be missed.  Although there have been some improvements 

in how PSA is used as a diagnostic tool, such as considering the rate of PSA increase (i.e. the 

PSA velocity) instead of the absolute concentration, and taking into account effects due to age, 

ethnicity, and prostate size, relying on PSA for prostate cancer diagnosis is still educated 

guesswork at best.67  

Recent attempts to improve sensitivity for prostate cancer diagnosis have included more 

invasive procedures such as transrectal ultrasound-guided biopsies.  Generally six to eight 

biopsies are taken, and sometimes many more, from various locations in the prostate.  A 

pathologist evaluates the biopsies and gives a prognosis that will determine the course of 

treatment.  Biopsies are invasive and time-consuming, and it is entirely possible that they could 

miss the tumor location, or miss the presence of a higher-grade cancer.  Furthermore, histologic 

analysis is time- and labor-intensive and can be prohibitive in a research setting in terms of 

economics, time, and survival of the research animal during longitudinal studies. 

Clearly new biomarkers for prostate cancer detection and new ways to image prostate 

cancer are needed. In addition, prostate cancer is a heterogeneous disease, so knowledge of 

prostate cancer at the molecular level can help determine an appropriate course of treatment. 
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Finally, it would be helpful to accurately define the tumor volume to guide the surgeon during a 

prostatectomy, which current modes of detection cannot provide. 

Many disciplines come together in an attempt to design new molecularly-targeted 

diagnostic tools for prostate cancer.  Research on the etiology of prostate cancer has given us a 

wealth of new information and has revealed potential new biomarkers for the presence of 

prostate cancer and for accurate staging.  High-throughput screening methods can be used to find 

affinity ligands to these new biomarkers.  Advances in our ability to engineer materials at the 

nanoscale have allowed us to tailor nanoparticles to interact with biological systems with 

unprecedented specificity. Crucially, these nanoparticles interact on the scale at which cell 

signaling and other biological processes interact, so that the attachment of molecules of different 

functionalities, e.g., imaging moieties and targeting moieties, can direct the nanoparticle to a 

molecularly specific location and then report where it has been readdressed. 

Molecularly targeted imaging agents are important for several reasons.  Firstly, they can 

be used as probes of the biological mechanisms of human disease.  Secondly, since they can be 

more sensitive than current means of detection, making them ideal for early detection of tumors.  

Thirdly, imaging is a non-invasive way of gathering information about the tumor, allowing the 

researcher to stratify patients and design treatment plans without any of the possible side effects 

from more invasive methods.  Finally, they can be used to monitor a treatment plan and quickly 

determine whether a course of treatment is working. 

In order to find new biomarkers for prostate cancer, researchers must investigate prostate 

cancer at the molecular level. Microarray studies have been particularly beneficial in determining 

the differential expression of genes in normal prostate tissue versus cancerous prostate tissue and 

have implicated several genes as playing a role in the progression of this cancer.68  An ideal 
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target biomarker would be on the cell surface for optimal accessibility, be present in high 

numbers, and have a significantly different expression profile than the other types of cells in their 

milieu, be they normal cells or more benign tumor cells if the goal is to stratify subtypes of 

prostate cancer within a heterogeneous tumor.  One of the biomarkers used to distinguish more 

aggressive subtypes of prostate cancer is described in the next section.   

 

4.3 Background on Secreted Protein, Acidic, Rich in Cysteine 

(a.k.a. SPARC, osteonectin, BM-40) 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 5. Structure of SPARC as derived from crystallographic data.  Adapted from reference 69. 
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SPARC is a 32 kDa glycoprotein involved in a variety of mechanisms including 

development, cell turnover, angiogenesis, and tissue remodeling and repair.  SPARC consists of 

a Ca+2-binding extracellular domain, a follistatin-like bioactive domain, and an acidic domain on 

the NH2 terminus (Figure 3). 

 

 

 

 

 

 

 

Figure 6.  SPARC is expressed in a variety of forms of human cancer, and is part of the invasion-specific 
cluster for several tumor types. Adapted from reference 70. 
 

SPARC has been associated with many types of human cancers, including pancreatic, 

breast, ovarian, and small-cell lung carcinoma, and gene profiling has identified SPARC as part 

of an invasion-specific cluster of genes in pancreatic and breast carcinoma (Figure 6).  In fact, 

SPARC is often expressed by metastatic tumors and has been called the “proinvasive” protein.71   

It has been shown that SPARC disrupts cell adhesion,72 promotes changes in cell shape,73 plays a 

role in wound healing, and is active in angiogenesis and tumorigenesis.74  The expression of 

SPARC produces intercellular gaps, which promote vessel permeability, thus facilitating 

leukocyte extravasation;75 this mechanism is due to the binding of SPARC with VCAM-1.76  

SPARC is also a component of the bone matrix and has a promigratory, anti-adhesive effect on 
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cells.69  SPARC has also been shown to play a role in cancer immunity:  SPARC-null mice 

exhibited decreased macrophage infiltration of tumors, and it has been shown that SPARC 

inhibits antitumor polymorphonuclear leukocyte (PMN) activity, aiding in tumor avoidance of 

immune surveillance.77 

There seems to be a correlation between SPARC expression and prostate cancer 

invasiveness to bone, although its exact role has been debated.  Thomas et al. demonstrated that 

SPARC mRNA expression was higher in bone-metastasizing prostate cancer cell lines, and also 

showed intense SPARC staining in metastatic lesions in bone.78  Exogenously added SPARC has 

been shown to contribute to the osteotropism of adenocarcinoma cells.79  SPARC has also been 

shown to interact with members of the matrix metalloproteinase (MMP) family, known players 

in proteolysis of the ECM, leading to tumor invasion and metastasis.  Complicating the picture is 

a study by De et al. which demonstrated that SPARC supports the migration of highly metastatic 

cell lines to bone, but that it is the bone-derived (and not tumor cell-derived) SPARC that 

determines this behavior.80  This study was performed using SPARC-null mice, but unfortunately 

the researchers did not take into account tumor cell–derived SPARC so it is difficult to interpret 

the results. It is possible that both sources of SPARC are necessary for prostate cancer bone 

metastasis.  One theory is that in order for the prostate cancer cells to thrive in bone they must be 

“osteomimetic,” which would include expression of proteins such as SPARC.  These studies 

seem to support Fidler’s 2003 “seed and soil” hypothesis of cancer metastasis, where the tumor 

cell (the “seed”) must be mobile and able to deadhere from the primary tumor site, and 

additionally the bone (the “soil”) must be conditioned for tumor growth.81 

Interestingly, SPARC over-expression has also been shown to inhibit tumor cell 

proliferation in vitro and in vivo.82, 83  There are many possible explanations for this seemingly 
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contradictory finding, but one is that the regulation of SPARC expression must be timely to 

result in an invasive phenotype.  It has been shown that certain factors that can inhibit early stage 

tumors can then switch and become mitogens for more advanced tumors, i.e. ones that could 

imminently metastasize.84   

Despite controversies over whether SPARC is tumor or stroma-derived, there is a clear 

indication that its presence denotes an aggressive form of prostate cancer, making it an excellent 

biomarker for diagnostic imaging.  How this biomarker can be targeted is described in the 

following section.  

4.3.1 Phage Display for Identification of Affinity Peptides to SPARC 

There are many methods for identifying affinity ligands to target molecules.  High-

throughput screening methods have been used as a brute force method to test a large number of 

different molecules as the most efficient and effective way to design affinity ligands. In general 

we do not have a complete enough understanding of molecular interactions to design the 

structure of a molecule to bind to a target biomarker; instead, we can use a process of trial-and-

error, testing a large number of molecules to determine which molecule binds the best.  

Targeting moieties can consist of many different types of molecules including peptides, 

oligonucleotides, small molecules, and antibodies.  Antibodies have been shown to successfully 

target nanoparticles to specific tissues of interest.85-87  Peptides and small molecules can have 

similar affinities as antibodies but are much less expensive, easier to synthesize, and easier to 

purify and handle.  They are also less likely to be immunogenic, have less steric hindrance of 

binding, and are much more likely to be FDA-approved.   
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Phage display is one of the most powerful methods for finding a peptide sequence that 

can bind to a target of interest.  In this high-throughput screening approach, bacteriophage that 

have been genetically modified to display a library on their protein coat are used to test binding 

to a target.  When the molecular structure of the target is not known it is sometimes possible to 

use this method to isolate and characterize the target and determine its identity after the fact.  

Random peptide sequences are the most commonly used library because they are diverse, 

commercially available, and are the easiest method for high throughput screening.   

Screens can be performed directly on target molecules (e.g., as proteins immobilized on 

plates), although complications can sometimes arise from the fact that the target molecule is not 

in its native environment and the required interaction in vivo may be more complex.  

Furthermore, since generally one peptide binds to one target in this type of screen, there is no 

amplification of signal.  A potential improvement is to screen on live cells expressing the target 

molecule, a technique which can be used when targeting a cell type without any prior knowledge 

of a potential biomarker.  Amplification of signal is possible in this type of screen because phage 

clones can become internalized and then trapped within the cell, concentrating the imaging 

moiety and essentially eliminating Koff, thereby making the affinity effectively infinite.   Binding 

under physiological flow conditions is a further refinement that can increase the chances that the 

molecule found in the screen will actually bind in vivo, and is particularly important when the 

target cells are endothelial.  The most complex system for carrying out a phage display screen is 

in vivo for the targeting of specific organs or disease.  Obviously the clones chosen from this 

type of screen have already overcome in vivo delivery barriers to be selected so these clones are 

even more easily translatable for use as an in vivo targeting agent.  However, the complexity and 

cost of this type of in vivo screen may be prohibitive. 
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There are many advantages to using phage display.  It is much more rapid and 

economical than traditional chemical re-synthesis, it provides a large peptide diversity, and it 

benefits from the many types of phage clones and libraries.  Furthermore, bacteriophage only 

have a single copy of each gene, therefore protein expression is not dependent on the expression 

and interaction of multiple genes.  In other words, genotype equals phenotype since one gene 

leads to one protein and vice versa.  Thus when a clone is chosen based on its phenotypic 

characteristics it is identifiable by the appropriate portion of its genome. 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Comparison of SPARC-targeted phage clones.  A) Comparison of target affinity B) In vivo imaging of 
Lewis lung carcinoma tumors using FMT.  C) Comparative immunofluorescence of tumor accumulation for each 
phage clone. Nuclei have been counterstained with DAPI (blue).  Scale bar = 10 nm.  Adapted from reference 88. 
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In order to find an affinity peptide to SPARC Kelly et al. used phage display to screen a 

linear 7mer peptide library against purified SPARC in vitro.88  There were several hits but only 

one, SPPTGIN (henceforth referred to as SPP), targeted well in vivo.  SPP is Phage 23 in Figure 

6.  

Each affinity peptide sequence is then modified to include a C-terminal extension for 

fluorescent labeling with FITC as well as providing a cysteine handle for nanoparticle 

conjugation. Conjugation of a targeting moiety to a nanoparticle has been shown to improve 

pharmacokinetics, improve stability, and can improve affinity and/or avidity of the targeting 

molecule via multivalency effects.   In this study we will use the commercially available 

nanoparticle aminoSPARK as the imaging agent that will be conjugated to SPP. 

 

4.4 Aims 

Approximately one out of every six men will be diagnosed with prostate cancer in the 

United States. Treatment options for localized disease vary considerably, and range from 

“watchful waiting” (no active treatment) to radical prostatectomy. However, it is difficult to 

ascertain which treatment option is appropriate because the ability of the treating physician to 

accurately predict the tumor’s metastatic potential is limited. Prostatic biopsies are crucial both 

for diagnosing prostate cancer and for deriving prognostic information. However, prostate 

biopsies are invasive, time consuming, and are limited by a high degree of sampling error.89  In 

part due to the problems with prostate biopsies, it is not uncommon for treatment of prostate 

cancer to be incorrectly paired with the underlying disease aggressiveness, commonly resulting 

in patients with slow-growing tumors enduring unnecessary surgery and conversely, patients 
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with more aggressive tumors relegated to watchful waiting.90  Here we have synthesized a non-

invasive imaging agent that provides insight into the metastatic potential of prostate cancer, an 

important tool that could aid clinicians in recommending the most appropriate treatment for their 

patients. 

 

4.5 Introduction 

Secreted Protein Acidic and Rich in Cysteine (SPARC), also known as osteonectin or 

BM-40, is a ~32kDa matricellular glycoprotein that modulates cell-matrix interactions and is 

expressed in a variety of tissues during development and during tissue repair and remodeling.71  

It is involved in a diverse range of mechanisms and has been shown to disrupt cell spreading and 

adhesion,91 disassemble focal adhesions,72, 91 mediate leukocyte diapedesis,76 induce cell 

rounding and changes in cellular morphology73, 75, 92, regulate cell proliferation 93, 94, and it has 

demonstrated activities in angiogenesis,95 extracellular matrix remodeling,96, 97 and 

tumorigenesis.74  Furthermore, SPARC has been shown to be involved in the endothelial to 

mesenchymal transition (EMT), a hallmark of tumor invasiveness98 and prostate cancer 

progression,99 by repressing E-cadherin.100  

Recently, analysis of human tumor samples has indicated the presence of high levels of 

SPARC expression correlating with clinical prognosis and outcome.  Indeed, in breast, lung, 

pancreas, and prostate cancer, high levels of SPARC indicates a worse prognosis.101  Gene 

expression profiling has shown that SPARC is expressed more highly in prostate cancer of 

higher Gleason grades.102  Studies showing differential expression of SPARC in prostate cancer 

revealed that SPARC is expressed most highly in bone-metastasizing prostate cancer cell lines 

and metastatic lesions in bone demonstrated intense SPARC staining.78  It has also been shown 
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that endogenous SPARC expression in the bone itself can contribute to prostate cancer 

metastasizing to bone.80  In certain prostate cancer cell lines SPARC has been shown to increase 

activity of the matrix metalloproteinases,79 a class of molecules strongly associated with tumor 

invasion and metastasis.103   

SPARC is expressed in various other human cancers as well, and its presence is often 

correlated with high metastatic potential.  Gene profiling has found SPARC to be part of the 

invasion-specific cluster in both pancreatic and breast carcinoma,70 and SPARC expression is 

associated with invasiveness and metastasis in gastric cancer.104  These findings of SPARC 

expression correlating with a worse prognosis is not surprising given that SPARC has been 

shown to mediate many of the steps in the metastatic pathway, such as cell rounding, disruption 

of focal adhesions, and degradation of the extracellular matrix.  In fact, its promigratory, anti-

adhesive effect on cells has led to SPARC being referred to as the “proinvasive” protein.69  

Given the role of SPARC in invasion and metastasis and that SPARC expression has 

been shown in various studies to be correlated with increased metastatic potential and poor 

clinical outcome of patients with prostate cancer, it is an ideal target for imaging agents seeking 

to stratify prostate cancer patients.  In this work we have developed and thoroughly characterized 

an imaging agent that can detect a metastatic subpopulation of SPARC-expressing cells, enabling 

a non-invasive, molecular-based approach to prostate cancer prognostication and treatment 

selection. 
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4.6 Experimental 

Cell Lines 

LNCaP and DU145 cell lines were obtained from the American Type Tissue Culture 

Collection (ATCC), and LNCaP-C42 and LNCaP-C42b cell lines were a generous gift from Dr. 

Michael Weber, University of Virginia Cancer Center.  LNCaPs were grown in RPMI 1640 

media supplemented with 10% fetal bovine serum, C42s and C42bs were grown in T-Media 

supplemented with 5% fetal bovine serum, and DU145s were grown in MEM supplemented with 

10% fetal bovine serum.  All cultures were maintained in a CO2 humidified incubator at 37°C. 

 

Western Blot 

LNCaP, LNCaP-C42, LNCaP-C42b, and DU145 cells were grown in 24 well plates to 

confluence then harvested via scraping with 500 uL of 1 % Triton X-100 in PBS with 

mammalian protease inhibitor cocktail added (Sigma, St. Louis, MO).  Protein concentrations of 

lysates were quantified via Bininchoninic Acid (BCA) protein assay (Pierce, Rockford, IL) and 

equal amounts of protein from each fraction were size-fractionated by SDS-PAGE.  All fractions 

were analyzed for SPARC expression via Western blotting. 

 

Static Transwell Assay 

          Cells were grown to 80% confluence in the upper chamber of Boyden chamber inserts 

(Millipore, Billerica MA) and the number that invaded the lower chamber was determined using 

a Coulter Counter.   

 

Histology and Immunohistochemistry 
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Prostate disease spectrum (prostatic cancer progression) arrays were purchased from US 

Biomax, Inc. (Rockville, MD) and probed with anti-SPARC antibody (NCL-O-NECTIN from 

Novocastra, Newcastle upon Tyne, UK) at a dilution of 1:20, with standard citrate retrieval.  

Statistics were performed to compare metastatic to non-metastatic tumor samples using an 

unpaired t-test. P values of less than 0.05 were considered statistically significant. 

 

Materials Characterization 

AminoSPARK 680 and AminoSPARK 750 nanoparticles were purchased from VisEn 

(Woburn, MA).  Information obtained from a phage display screen previously shown to bind to 

SPARC with high affinity88 was used to create a peptide sequence, SPPTGINGGSK(FITC)C, 

which was conjugated to the targeting nanoparticle.  To determine iron concentration, 

aminoSPARK powder was weighed then dissolved in 1 ml 6N hydrochloric acid (HCl) plus 3 µL 

of 30% hydrogen peroxide for one hour.  Percent iron was then deduced by comparing the 

absorbance of the nanoparticle sample at 435 nm to the absorbance of iron standards.  Iron oxide 

core size was determined by transmission electron microscopy (TEM) on a JEOL 200CX 

instrument at 200 kV.  Dilute nanoparticle solution was spotted onto a copper carbon film TEM 

grid (Electron Microscopy Sciences, Hatfield PA).  Core size distribution was calculated using 

ImageJ software and manually.  Surface morphology and the three-dimensional shape of the 

nanoparticles was imaged by tapping mode Atomic Force Microscopy (AFM) on a Dimension 

3000 Scanning Probe Microscope (Veeco Instruments, Plainview, NY) and analyzed using 

Veeco’s Nanoscope software.  Nanoparticles were reacted with N-succinimidyl S-

acetylthioacetate (SATA, Molecular Biosciences, Boulder CO), deprotected with hydroxylamine, 

and then dropcast on Au(111) on mica.  Hydrodynamic size of the nanoparticles was determined 
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by dynamic light scattering (DLS) using a Zetasizer (Malvern Instruments, Marlboro, MA).  

Magnetic characteristics were determined using an AC and DC Superconducting Quantum 

Interference Device (AC/DC SQUID, Quantum Design, San Diego, CA) with a field scan range 

of ± 50,000 gauss at 298K.  Chemical makeup and structure of the core was investigated by X-

ray diffraction (XRD) on a Rigaku RU300 diffractometer (Tokyo, Japan) 

  

Specificity of SPARC-NP 

LNCaP (SPARC positive) and DU145 cells (SPARC negative) were incubated with 

increasing log concentrations of SPARC-NP and Control-NP for one hour at 37°C, washed three 

times with DPBS, then harvested by incubation with trypsin, centrifuged and analyzed (10,000 

cells/sample) by flow cytometry on a Becton Dickinson FACSCalibur cytometer (Becton 

Dickinson, Franklin Lakes, NJ).  EC50s were determined by fitting a sigmoidal dose response 

curve.  All samples had a single narrow peak (example Fig. 3D).  Mean fluorescence was plotted 

to describe relative uptake.    In vivo imaging was performed using FMT-CT in mice with 

DU145, C42, and C42b xenograft tumors.  SPARC-NP and Control-NP were coinjected. 
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4.7 Results and Discussion 

 

Figure 8.  Tissue microarray analysis of SPARC expression shows that it is correlated with prostate cancer 
progression and metastasis.  A.  Immunohistochemical analysis of SPARC expression in a prostate cancer tissue 
microarray of a range of Gleason patterns.  Representative staining of cores of Gleason Score 2-4 (upper left), 
Gleason Score 5-6 (upper right), Gleason Score 7-8 (lower left), and Gleason Score 7-8 (lower right).  B.  A 
summary of the expression quantitation in tumoral, stromal, and epithelial compartments scored in intensity from 0-
3 and shown here as a single summed score from 0-7. 
 

SPARC Expression Correlates with Prostate Cancer Grade 

SPARC expression in 53 human prostate cancer samples was measured by 

imunnohistochemical analysis of tissue microarrays consisting of cores of various cancer grades 

(Figure 8A). As prostate cancer becomes advanced, SPARC expression increased with metastatic 

cancer samples expressing the highest levels of SPARC (Figure 8B).  SPARC expression was 

most prominent in the epithelial and stromal compartments of the tumors analyzed. These 

immunohistochemical results are supported by data reanalyzed using Oncomine105 from Lapointe 

et al.102 (Figure 9), which also show increasing SPARC expression with prostate cancer 

progression.  
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Figure 9.  Microarray gene expression data shows SPARC expression is correlated with prostate cancer 
progression and metastasis.  Oncomine105 analysis of gene expression data originally obtained by Lapointe et al. 
illustrates that increasing SPARC expression correlates with increasing Gleason Grade.   
 

SPARC Expression Correlates with Cell Migratory Capacity 

Cell motility plays a key role in prostate cancer progression and metastasis,106 and we 

thus sought to quantitate a correlation between cell motility and SPARC expression.  We have 

chosen to work with LNCaPs, LNCaP-C42s, LNcaP-C42Bs, and DU145s, four cell lines that 

display a range of SPARC expression.78  C42s and C42Bs are in vivo-derived sublineages of 

LNCaPs that mark cancer progression milestones:  C42s mark androgen independence and 

C42Bs mark bone metastasis.  Expression of the protein SPARC in each of the four cell lines 

was confirmed using immunoblotting (results not shown).  LNCaP, C42, and C42b cell lines 

exhibit increasing levels of SPARC expression respectively, while DU145s exhibit little to no 

SPARC expression and serve as an important negative control in this study. 
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Figure 10.  SPARC expression in prostate cancer cell lines is correlated with migratory potential.  Results 
from a static transwell assay plotted against SPARC expression (determined by immunoblotting) shows a correlation 
between cell motility and expression of SPARC for LNCaP, LNCaP-C42, LNCaP-C42B, and DU145 cell lines.  A 
linear fit of the data had an r2 value of 0.9995.   
 

Each cell line’s transmigration potential was studied using a static transwell assay (Figure 10).  

Transwell migration correlated closely with SPARC expression as determined by Western blot 

(results not shown); the linear fit shown in the graph in Figure 10 has an R2 of 0.995. 

 

Materials Characterization of the Imaging Agent 

In order to successfully translate imaging agents to the clinic it is important to have an 

understanding of the material properties of the agent.  We have thus characterized the 



Iron Oxide Nanoparticles for Medical Imaging 
 
 

76 

nanoparticle-based agent that we have developed for SPARC imaging. A schematic of the two 

types of nanoparticles used in this study is shown in Figure 11.   

 

 

 
Figure 11. Schematic of the targeted and control nanoparticles. 
 

The SPARC targeted nanoparticle (SPARC-NP) is conjugated to a SPARC-targeting peptide,88 

as well as a fluorophore at a wavelength of 680 nm for in vivo imaging.  The control 

nanoparticle (Control-NP) does not contain a targeting moiety and is conjugated to a fluorophore 

at a wavelength of 750 nm, allowing for ratiometric imaging of both control and targeted 

nanoparticles in the same animal and tumor in vivo.  The absorbance, fluorescence, and emission 

spectra of the two nanoparticles are shown in Figure 12. 
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Figure 12. Emission, excitation, and absorption spectra of aminoSPARK 680 (top) and aminoSPARK 750 
(bottom) nanoparticles. 
 

One of the main determinants of how a nanoparticle is trafficked in vivo is its size and 

shape.10  TEM of the aminoSPARK nanoparticles was used to examine the core size (Figure 13), 

and both dynamic light scattering and tapping mode AFM was used to examine the size and 

shape of the polymer coating (Figure 13).  
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Figure 13.  Hydrodynamic size and morphological characterization of the aminoSPARK nanoparticles. Left:  
Tapping AFM image of aminoSPARK nanoparticles on Au on mica.  Right:  Volume-weighted hydrodynamic size 
is determined to be 54 nm by dynamic light scattering of aminoSPARK nanoparticles. 
 

TEM images of the nanoparticles reveal a mean core diameter of 8.75 nm with a standard 

deviation of 2.49 nm, and the AFM height images show spherical nanoparticles of about 20-30 

nm in size.  Light scattering assesses the size of the polymer-coated nanoparticle in solution, 

which were determined to be 54 nm in diameter.  The difference in diameters between the AFM 

measurement and the light scattering measurement could be due to a combination of swelling of 

the polymer coating in solution during the light scattering measurement, and compression of the 

polymer coating during the tapping mode AFM measurement. 
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Figure 14.  TEM of aminoSPARK nanoparticles. Left:  TEM micrograph of aminoSPARK nanoparticles 
revealing the iron core of the nanoparticles to be approximately 9 nm.  Right:  Size distribution of nanoparticle cores 
(long diameter) as measured by ImageJ and by hand. 
 

The field-dependent magnetic behavior of the nanoparticles was assessed using a 

superconducting quantum interference device (SQUID) magnetometer (Figure 15) and compared 

with the reference nanoparticle CLIO.  The weight percent of iron in the solid aminoSPARK 

sample was determined to be 10.5% by a colorimetric iron assay, and using this information the 

magnetic response of the nanoparticles has been normalized to grams of iron.   When no field is 

applied the iron oxide crystallites that act as magnetic domains are randomly aligned, resulting in 

a net magnetization of zero.  At the relatively high magnetic fields used in this study there is no 

evidence of saturation, hysteresis or remanence in the aminoSPARK nanoparticles, meaning that 

the magnetic domains do not remain aligned after the field is removed. The linear dependence of 

the aminoSPARK nanoparticles’ magnetization on the magnetic field and the low magnetization 

values indicate that a few domains align with the applied field but the majority of the domains do 

not.  The aminoSPARK nanoparticles are thus paramagnetic, unlike the highly 

superparamagnetic CLIO, and would not have high enough contrast to use for magnetic 
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resonance imaging (MRI).  However, they are still well-suited for fluorescence imaging 

applications. 

 

 

Figure 15.  Magnetic characterization of AminoSPARK nanoparticles at 298K reveals their paramagnetic 
behavior. Magnetization measured on a SQUID magnetometer of reference superparamagnetic CLIO nanoparticles 
(blue) and paramagnetic aminoSPARK nanoparticles (red). 
 

X-ray Diffraction (XRD) was performed to investigate the chemical makeup and 

organization of the core of the nanoparticle (Figure 16).  The broad hump in the XRD spectrum 

indicates that the nanoparticles consist of either amorphous material or a coalescence of 

extremely small crystallites, which is in contrast with the other nanoparticles described in this 

work (see Table 1).  The lack of crystallinity displayed in the XRD spectrum of aminoSPARK 

explains that lack of coupling of magnetic moments as shown in the M-H curve in Figure 15.  
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Figure 16.  Powder XRD pattern of aminoSPARK nanoparticle shows lack of crystalline structure of the iron 
oxide core.   
 

In vitro cell uptake assays were used to determine specificity of the imaging agent for 

SPARC expression (Figure 17, left).  The EC50 of the SPARC-NP to SPARC expressing cell 

lines was in the hundred nanomolar range, while the EC50 of the SPARC-NP to SPARC-negative 

cell lines was extremely high.  By contrast, the Control-NP exhibited negligible binding to both 

cell types.  Flow cytometry data for SPARC-expressing and SPARC-negative cell lines 

incubated in 1 µM of SPARC-NP is shown in Figure 17 (right) and indicate that conjugation of 

the SPARC targeted peptide to the nanoparticle did not affect the peptide’s specificity. 

 

 



Iron Oxide Nanoparticles for Medical Imaging 
 
 

82 

 

Figure 17.  Flow cytometric analysis of SPARC-targeted aminoSPARK nanoparticle incubated with SPARC-
expressing and non-SPARC expressing cell lines shows specificity of SPARC-NP for SPARC-expressing cell 
lines.  EC50 values of SPARC-targeted (SPARC-NP) and non-targeted nanoparticles (Control NP) (left).  
Histogram showing cell data of targeted (purple) and non-targeted nanoparticles (green) (right). 
 
 
 
In Vivo Studies 

Tumor xenografts were grown in the flanks of Scid mice and SPARC-NP was injected to 

visualize the tumors using FMT and CT.  Control-NP was co-injected to control for differences 

in tumor volume, vascularity, and other differences. The preliminary data in Figure 18 shows 

increased uptake of the SPARC-NP in SPARC-expressing tumors. 
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Figure 18.  Imaging of SPARC in tumors using SPARC-NP.  Left: tumors expressing SPARC preferentially take 
up the SPARC-NP over tumors that do not express SPARC.  Right:  example image of a visualized SPARC-
expressing tumor.  Imaging and injections performed by Peter Waterman. 
 

 

4.8 Conclusion 

Prostate cancer affects millions of men worldwide and the current methods of 

prognostication are inaccurate.   Because physicians are unable to rely on the biopsy specimen to 

accurately reveal the tumor’s underlying aggressiveness, many men undergo the most invasive 

form of treament, radical prostatectomy, which is often unnecessary.107  In order to solve this 

clinical dilemma, we successfully developed a multimodal nanoparticle that has the ability to 

stage prostate cancer non-invasively using imaging methods.  Critically, this nanoparticle is able 

to both identify areas of prostate tumor and provide important biologic information; namely, the 

degree of SPARC expression. 

The immunohistochemical results from the tissue microarrays show that SPARC 

expression in prostate cancer is present not only in the tumoral compartment but also in the 
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stromal and epithelial compartments surrounding the tumor.  This result was expected as SPARC 

is a secreted matricellular protein and a known regulator of tumor-stromal interactions.  Indeed 

this finding has been corroborated in several other tissue microarray studies as well.108-112 

Increased SPARC expression in tissue microarrays has been correlated with increased tumor 

metastasis,113 and malignant prostate cancer has been shown to be induced by the stroma itself.114  

The overall goal of this imaging nanoparticle is to reduce the number of unnecessary 

radical prostatectomies and, conversely, to ensure that highly invasive tumors are treated 

aggressively.  Importantly, SPARC expression imparts prognostic information in other solid 

tumors as well and may become the target of future molecular therapeutics. Thus, the potential 

clinical applications of this novel imaging agent extends beyond prostate cancer to a variety of 

tumor types and therapeutic indications.  
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CH AP T E R 5 :   A  S C R E E N I N G 

P A R A D I G M  F O R  T HE  

O P T I M I Z A T I O N  O F  P OL Y M E R-

C O A T E D  S U P E R P A R A M A G N E T I C  

I R O N  O X I D E  N A N OP A R T I C L E S 

 

 

 

 

5.1 Summary 

Polymer-coated superparamagnetic iron oxide nanoparticles have been used for a variety 

of biomedical applications, including as MRI contrast agents, for the treatment of iron anemia, 

and for ex-vivo cell labeling of cells used in cell-based therapies so that they can be tracked by 

MRI.  In this project we describe a three-stage screening paradigm to develop high potency (i.e., 

high relaxivity), stable, polymer-coated superparamagnetic iron oxide nanoparticles.  Each 
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screen examined different facets of the interaction between iron oxides and polymers.  Polymers 

were first tested for their ability to iron oxide nanoparticles.  The synthetic procedure was then 

optimized for each potential coating.  Finally, nanoparticles were subjected to high temperatures 

as a final test of stability.  A carboxymethyl dextran-coated superparamagnetic iron oxide 

nanoparticle (CMD-NP) with a transverse relaxivity (R2) of  271 mM-1sec-1 and a diameter of 47 

nm by dynamic light scattering was obtained.  The CMD-NP is a polymer coated 

superparamagnetic iron oxide nanoparticle with improved relaxivity and high stability achieved 

without the crosslinking procedure used in the CLIO nanoparticle.  The coating of this 

nanoparticle is similar to the Feraheme nanoparticle, which is used in Chapters 6 and 7. 

 

5.2 Aims 

The aim of this project was to design a screening paradigm for the optimization of 

polymer-coated iron oxide nanoparticles and use it to synthesize a stable, high relaxivity 

nanoparticle.  The ultimate destination of the resulting nanoparticle would be the clinic, so 

efforts were made to use biocompatible methods and materials. 

 

5.3 Introduction 

The use of polymer-coated iron oxide nanoparticles as MRI contrast agents13 for the 

treatment of iron anemia115,116 and for ex-vivo cell loading and tracking by MRI117, 118 suggests 

that the continued development and optimization of these materials could impact some or all of 

the various areas in which they have been used.  Composed solely of iron oxide and a polymeric 

coating, polymer-coated iron oxide nanoparticles are currently the only magnetic NPs with a 
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well-understood and satisfactory toxicity, metabolism and elimination after injection into 

humans. 

 The association of dextran with iron oxide has led to its use as a coating for iron oxide 

nanoparticles for many decades.116, 119, 120   However, dextran or nanoparticles made with dextran 

can cause anaphylactic reactions.121, 122  A second limitation of dextran-coated iron oxides is the 

stability of the dextran coating, which may decrease when dextran is modified so that 

biomolecules can be attached.  To achieve better stability, the dextran coating of iron oxide 

nanoparticles has been crosslinked with epichlorohydrin, to yield cross-linked iron oxide 

(CLIO).  However, the cross-linking complicates nanoparticle synthesis and may impede the 

metabolism of the polymeric coating.  Nevertheless, the stability and use in diverse applications 

makes the CLIO nanoparticle a useful reference material for these studies.  A third limitation of 

dextran-coated iron oxides is their limited potency as MR contrast agents, where potency is 

expressed as their R2 or transverse relaxivity.  Newer nanoparticles have higher R2s than the 

older formulations of dextran iron oxide nanoparticles.45, 123 

 The goals of the current research were to obtain non-dextran based, polymer coated iron 

oxide nanoparticles which had a high potency (high R2) and which were highly stable.  To 

accomplish these goals, three screening methods were used in series.  First, an ion challenge 

stability method (Ion Challenge Screen) was used to assess the interaction between a polymer 

and surface of a non-polymer coated iron oxide. Second, a Synthesis Optimization Screen was 

employed.  Using polymers selected from the Ion Challenge Screen, the ferric/ferrous ion ratios 

and the amounts of polymer per iron were varied.  Finally, a heat stress test was performed to 

assess nanoparticle stability (Heat Stress Screen).  Here, stability was challenged by heating NPs 

to 90°C for 30 minutes. Using these screens we obtained a highly stable carboxymethyl dextran-
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coated nanoparticle (CMD-NP) with an R2 of 271 mM-1sec-1, a diameter of 47 nm.  A 

carboxymethyl polyvinyl alcohol-coated nanoparticle (CMPVA-NP) was also obtained, another 

useful nanoparticle for a variety of applications. 

 

5.4 Experimental 

 
Materials 

All reagents were from Sigma-Aldrich (St. Louis, MO) except T-10 dextran, which was from GE 

Healthcare (Newark, NJ). 

 

Syntheses 

Carboxymethyl polyvinyl alcohol 

To obtain carboxymethyl polyvinyl alcohol (CMPVA), 60g of polyvinyl alcohol (PVA, 6 

kDa, Aldrich) was dissolved in 280 mL water with heating.  After cooling to room temperature, 

200 mL 50% (w/w) NaOH was added.  Then 200 g bromoacetic acid in 100 mL water was added 

dropwise, keeping the temp below 35°C.  After standing overnight, the solution was neutralized 

with 6N HCl.  CMPVA was purified by precipitation from ethanol.  The final CMPVA had 6.5 

carboxyl groups per mole by titration. 

 

Superparamagnetic iron oxide nanoparticles 

 Ion-stabilized superparamagnetic iron oxide nanoparticles were synthesized as described 

previously.124  Briefly, 40 mL of 1M ferric chloride in 2M HCl was mixed with 10 mL of 2M 

ferrous chloride also dissolved in 2M HCl.  This mixture was added to 500 mL of a 0.7M 
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ammonium hydroxide solution, and the gelatinous precipitate was isolated by centrifugation.  

This precipitate was then resuspended in aqueous 1M tetramethyl ammonium hydroxide.  The 

resulting iron oxide particles were roughly 40 nm.  

 

Carboxymethyl dextran nanoparticle (CMD-NP) synthesis 

Based on our Ion Challenge and Matrix Optimization Screens, the following synthetic 

method was derived.  6.3 g of carboxymethyl dextran (10kDa, Sigma-Aldrich) was dissolved in 

10 mL water, and the pH was adjusted to 3 using HCl.  Ferric chloride (243 mg, 0.9 mmole) 

dissolved in 500 µL water was added to the CMD solution and cooled to 4°C.  A freshly made 

ferrous chloride solution (180 mg, 0.9 mmole in 1.2 mL water) was added dropwise while 

stirring.   Ammonium hydroxide (30%, 5 mL, 79 mmole) was added rapidly, and the resulting 

solution was heated to 75°C for 2 hrs.  The resulting material was passed though a 0.22 µm filter 

and then ultrafiltered using a 300 kDa MW hollow fiber cartridge to remove unbound CMD.   

 

Carboxymethyl polyvinyl alcohol nanoparticle (CMPVA-NP) synthesis 

To obtain CMPVA coated nanoparticles, 37 g of CMPVA was dissolved in 750 mL 

water, filtered using a 0.7 µm glass fiber filter and cooled under nitrogen.  Ferric chloride (1.86 

mL, 7.6 mmole Fe) was added to the polymer solution while stirring and cooled to 4°C.  Ferrous 

chloride tetrahydrate (1.02 g, 5.2 mmol) dissolved in 1 mL of degassed water was added to the 

cold mixture while stirring.  Cold ammonium hydroxide (30%, 15 mL, 295 mmole) was then 

added dropwise while stirring, and the resulting solution was heated to 80°C over 20 minutes and 

then held at 80°C for one hour.  The resulting material was filtered through successively smaller 
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filters (3 µm, 0.7 µm, 0.22 µm) and ultrafiltered using a 300 kDa MW hollow fiber cartridge to 

remove unbound CMD. 

 

Screening methods 

Ion Challenge Screen (Screen 1) 

Ion-stabilized nanoparticles (100 µg Fe/mL, 200 µL) were added to a 96-well plate.  

Polymer (200 µg/mL) was added in varying volumes to the nanoparticles, followed by addition 

of 20µL of 4M NaCl.  The plate was placed on a 96-well plate magnetic separator (Spherotech, 

Libertyville, IL) and the absorbance of each well was read at 405 nm with an EMax plate reader 

from Molecular Devices (Sunnyvale, CA). 

 

Synthesis Optimization Screen (Screen 2) 

Sixteen 1 mL solutions of 100 mg polymer were chilled down to 4°C with ice.  

Appropriate amounts of ferric chloride solution were added, and the solutions were degassed by 

bubbling nitrogen though them, while keeping the solutions chilled.  Freshly made ferrous 

chloride solutions were added, followed by 0.75 mL of 30% ammonium hydroxide (4°C) added 

in a dropwise fashion.  The solutions were then heated to 65°C while mixing for 2 hours, after 

which they were analyzed. 

  

Heat Stress/Stability Screen (Screen 3) 

Heat stress stability was determined by heating NPs (2 mg Fe/mL) at 90°C for 30 

minutes.  Stressed and non-stressed solutions were diluted to approximately 1-20 µg Fe/mL to 
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determine their size by dynamic light scattering and T2.  Stability was defined by the constancy 

of size and T2, where changes of more than 10% were considered significant. 

 

Characterization 

Iron concentration was determined by dissolving 10 µL of the nanoparticle solution in 

990 µL of 6N HCl with 3 µL of 30% hydrogen peroxide for one hour using ferumoxides as an 

iron oxide standard. R1 and R2 were measured at 0.47 T at 40 °C using a Bruker MiniSpec 

(Billerica, MA).  The number of iron atoms per nanoparticle was determined by the 

viscosity/light scattering (VLS) method.39 Size in solution was determined by dynamic light 

scattering (DLS) using a Zetasizer (Malvern Instruments, Marlboro, MA).  Transmission electron 

microscopy (TEM) was conducted on a JEOL 2011 instrument at 200 kV.  A dilute nanoparticle 

solution (in solutions of 1:1 water:ethanol or 1:1 water:100mg/ml dextran) was spotted onto a 

copper carbon film TEM grid (Electron Microscopy Sciences, Hatfield PA).  Magnetization was 

determined using an AC and DC Superconducting Quantum Interference Device (AC/DC 

SQUID, Quantum Design, San Diego, CA) with a field scan range of ± 50,000 Oe at 298K.  X-

ray diffraction (XRD) studies used a Rigaku RU300 diffractometer (Tokyo, Japan). Crystallite 

size was determined from peak full width at half maximum (FWHM) using the Scherrer equation 

and a William-Hall plot.  All analyses were performed in Jade software (Materials Data Inc., 

Livermore, CA). 

 
 
 
 

5.5 Results and Discussion 
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Figure 19.  Flow scheme for polymer evaluation as coatings of iron oxides.  The three screens employed were 
the Ion Challenge Screen (Screen 1), the Synthesis Optimization Screen (Screen 2), and the Heat Stress/Stability 
Screen (Screen 3).   

 

The three-stage screening strategy to obtain a high potency, polymer-coated 

superparamagnetic iron oxide nanoparticle is summarized in Figure 19.  A summary of the data 

obtained with the Ion Challenge Screen, the Synthesis Optimization Screen, and the Heat 

Stress/Stability Screen is provided in Table 2, where results from each screen are denoted as 

either negative (No) or positive (Yes).  
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Table 2.  Summary of screening paradigm used to obtain high relaxivity, stable polymer-coated iron oxide 
nanoparticles.   
 

Ion Challenge Screen (Screen 1) 

This screen determines whether there is a strong or weak interaction between a polymer 

and an uncoated superparamagnetic iron oxide. The Ion Challenge Screen was based on the 

observations that (i) an ion-stabilized superparamagnetic iron oxide NP (diameter = 40 nm) 

precipitated when its charge-induced stability was challenged by the addition of NaCl, (ii) the 

addition of the polymer dextran resulted in stabilization of the ion-stabilized NP as shown in 

Figure 20A, and (iii) dextran-coated iron oxide NPs like MION or CLIO did not aggregate upon 

NaCl addition.  Figure 20B shows the increase in size due to the formation of NP aggregates 

after addition of NaCl, where size was measured by laser light scattering.  Increasing 
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concentrations of T10 dextran are also shown to antagonize the NaCl-induced size increase of 

the ion-stabilized NP (Figure 20B).  We reasoned that it would be possible to develop a high-

throughput screening version of the ion challenge method if NP size could be measured by 

absorbance rather than light scattering, since absorbance measurements can be readily performed 

in a microtiter plate format.  We also reasoned that a side-pull magnet would attract large 

aggregates of NPs to the side of a vessel container, leaving dispersed NPs in solution (Figure 

20C).  As shown in Figure 20D, we employed a side pull magnetic separator to remove 

aggregated magnetic nanoparticles from 96-well microtiter plates, a situation which permitted 

405 nm light to traverse the solution from the bottom of the well to the top.  Increasing 

concentrations of T10 dextran, the positive control polymer, prevented NaCl-induced 

aggregation, maintained the dispersed state of the nanoparticle, and resulted in brown, light-

absorbing solutions that reduced light transmission.  The ability of the polymer to associate with 

and thus stabilize NPs was measured as absorbance after magnetic separation of aggregates.  The 

microtiter plate format allows for the screening of large numbers of polymers in a parallel, high-

throughput fashion. 
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Figure 20.  Description of Ion Challenge Screen (Screen 1). (A) A charge-stabilized iron oxide NP was prepared.  
Upon addition of NaCl it promptly aggregated.  However, if a polymer that coats the surface of the NPs was also 
added, NaCl failed to aggregate the NPs.  (B) Size increase seen upon addition of NaCl when no polymer was 
present and inhibition of aggregation (i.e., stabilization) upon addition of increasing concentrations of dextran.   (C) 
Application of a magnetic field caused separation of the large, NaCl-induced nanoparticle aggregates.  Smaller, 
polymer-coated, stabilized NPs were not separated out of solution by the magnetic field.  (D) Adaptation of the 
method shown in (A)-(C) to a high-throughput, microtiter plate screening format.   Charge-stabilized NPs and NaCl 
were added to wells with increasing concentrations of six different test polymers.  A side pull magnetic separator 
was employed to move NaCl induced aggregates, with results were read visually or on plate reader.   Horizontal 
arrows on the magnetic separator denote the positions of the magnets. 
 

Synthesis Optimization Screen (Screen 2) 

This screen determines whether those polymers that associated with superparamagnetic 

iron oxides in the Ion Challenge Screen (described above) can be used in a synthesis of polymer-

coated superparamagnetic iron oxides.  The need to create a matrix of varying synthetic reactions 

reflects the fact that there is no single procedure for synthesizing polymer-coated iron oxides that 
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can be used to evaluate chemically diverse polymers.  The general synthetic method used was 

based on our synthesis of MION; here polymers and iron salts were mixed and cooled to less 

than 10°C, base was added, and the mixture was heated to 60-80°C.  The R2 and size of the NPs 

were then determined without the removal of excess polymers, since both R2 and dynamic light 

scattering (DLS) measurements are performed at low concentrations of iron and polymer.  

Polymers and syntheses giving high R2s (greater than 100 mM-1sec-1) and small particle size (20- 

100 nm) had excess polymers removed by ultrafiltration, and the syntheses with optimal 

conditions for a given polymer were repeated three times (Figure 21).  

 Several polymers that passed the Ion Challenge Screen (thus showing that they interacted 

with iron oxides) formed insoluble mixtures during acidic or basic conditions of the Synthesis 

Optimization Screen and were rejected (e.g., dextrin, polyacrylic acid and heparin).  Polymers 

that produced NPs with sizes (by DLS) between 20 to 200 nm and R2s greater than 50 mM-1 sec-1 

were starch, carboxymethylpolyvinyl alcohol (CMPVA), hydroxyethylstarch (HES) and 

carboxymethyl dextran (CMD) (Table 2). 
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Figure 21.  A typical Synthesis Optimization Screen (Screen 2) for determining whether polymers can yield 
high R2 nanoparticles.  The ratio of ferrous to ferric iron and ratio of polymer to iron were varied to determine the 
combination yielding the highest R2. 
 

  

Heat Stress/Stability Screen (Screen 3) 

 
Nanoparticles that passed the Synthesis Optimization Screen were then tested for stability 

using a heat stress method, which provided a measure of tightness of binding between the 

polymer and the surface of an iron oxide.  The attachment of biomolecules to the polymer 

coating, a necessity for many of the intended applications of these polymer-coated nanoparticles, 

requires very tight binding.  Of all the NPs assessed in this study, only the CMD-NP displayed a 

satisfactory stability upon heat stress.  The heat stress employed (90°C for 30 minutes) was 

extreme, though the crosslinked dextran-coated CLIO, which served as our positive control 

nanoparticle, had been shown to pass this test.  Although the CLIO nanoparticle, widely used for 

biomolecule-based targeting applications,125-128 possesses the required heat stress stability, it 

achieves that stability by crosslinking the polymeric dextran, which complicates the 
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manufacturing process and may affect the elimination of the dextran after injection in vivo.  

Based on our screens, the carboxymethyl dextran-coated nanoparticle CMD-NP was the best 

choice for future studies using polymer-coated iron oxide nanoparticles.  The carboxymethyl 

polyvinylalcohol-coated nanoparticle, CMPVA-NP, was also a good choice due to its small size 

and high relaxivity, for although it failed the extreme conditions of our Heat Stress Screen it 

might prove satisfactory in many applications where sustained exposure to high temperatures is 

not required.   

 

Figure 22. Characterization of nanoparticles. (A) Diffraction patterns for CLIO, CMPVA-NP and the CMD-NP.  
All were composed of magnetite and/or maghemite.  (B) Magnetization of the CMPVA-NP, CMD-NP, and CLIO 
NPs.  Saturation magnetizations of CMPVA-NP, CMD-NP, and CLIO were 62, 68, and 59 emu/g Fe respectively.  
(C) TEM micrographs of NPs and histograms for the CMPVA-NP, CMD-NP and CLIO, Mean sizes were 7.2 ± 1.9 
nm, 18.9 ± 3.8 nm, and 4.6 ± 1.0 nm (±1 SD), respectively. 
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 The magnetic properties and sizes of CMD-NP and CMPVA-NP, along with a CLIO 

reference, were characterized in Figure 22 with values summarized in Table 3.  Notable is the 

fact that CMD-NP had a higher R2 than CLIO or CMPVA-NPs, consistent with its substantially 

larger size by all sizing methods.  Outer relaxation sphere theory predicts that as NP size 

increases R2 increases; for a discussion see Hong et al.129   

 
Table 3:  Physical Properties of Polymer Coated Superparamagnetic Iron Oxide Nanoparticles 

NP Polymer 
coating 

Diameter, 
DLS, 
(nm) 

R1 
(mmole 
/sec)-1 

R2 
(mmole 
/sec)-1 

VLS 
(Fe/NP),  

(nm) 

XRD 
(nm) 

TEM 
(nm) 

Satur-
ation 

Magne-
tization 
(emu/g 

Fe) 

CLIO 
 

Cross-linked 
dextran 

 

29.8* 
 

23.1* 
 

54.9* 
 

8000,** 
3.6 

 
4.7 4.6 ± 1.0 62 

CMD-NP Carboxymethyl 
dextran 

47.0 ± 4.6 
*** 

 

16.0 ± 
5.8 
*** 

 

271 ± 26 
*** 

 

62000, 
14.2 

 
10.7 18.9 ± 3.8 68 

CMPVA-
NP 

Carboxymethyl 
polyvinyl 
alcohol 

37.1 ± 1.4 
*** 

 

47.3 
± 2.6 
*** 

 

119.2 ± 
2.4 
*** 

 

8900, 
3.7 

 
5.1 7.2 ± 1.9 59 

 

Table 3.  Physical properties of polymer-coated superparamagnetic iron oxide nanoaprticles obtained by the 
screens, compared with the reference NP CLIO.  *** Values shown indicate means and standard errors from at 
least three syntheses. * from reference 5, ** from reference 39. 
 
 
 The sizes of CMD-NP, CMPVA-NP and CLIO were characterized by four different 

methods that employ widely different physical assumptions in their calculations. They were 

transmission electron microscopy or TEM, X-ray diffraction or XRD, viscosity/light scattering 

or VLS and dynamic light scattering or DLS.  DLS provides the size of NPs in solution, 

inclusive of the polymeric coating and independent of the size and nature of the iron oxide core, 

which can be polycrystalline or monocrystalline.  DLS also provides information on the 
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distribution of sizes in solution, i.e., the polydispersity.  All three NPs examined had size 

distributions typical of monodisperse MION and CLIO reference materials, with polydispersities 

less than 0.5 as calculated by the software provided on the Malvern Zetasizer DLS instrument.  

(An example of polydisperse NPs with widely varying sizes by light scattering is ferumoxides.4)  

XRD provides information on the chemical nature of the crystalline core and the size of the core 

crystals, irrespective of whether they are present as monocrystalline or polycrystalline NPs in 

solution.  The peaks seen with XRD indicated all three cores could be either gamma ferric oxide 

(γ-Fe2O3) or magnetite (Fe3O4), which give similar XRD patterns with small crystals.  The 

superparamagnetic iron oxide cores of NPs are therefore termed "non-stoichiometric magnetite," 

with an oxygen ratio between that of magnetite and γ-ferric oxide.4  Crystallite size was 

estimated from the peak widths using the Williamson-Hall equation  

 

  

where K is the Scherrer constant, 

! 

"  is the wavelength of the X-rays,  and L is the peak width, 

while deconvoluting broadening effects due to the instrumental profile and microstrain. 

 TEM provides a measure of iron oxide core size, with polycrystalline cores giving larger 

values than monocrystalline cores.  Thus, the larger core size of the CMD-NP as determined by 

TEM compared to the core size as determined by XRD indicated the CMD-NP was 

polycrystalline.  However, the width of distribution of CMP-NP (standard deviation = 3.8 nm) 

relative to its mean (18.9 nm) was no broader than that of the monodisperse CLIO (mean = 4.6, 

standard deviation = 1.0 nm).  In addition, the polydispersity of CMD-NP by DLS  was less than 

0.5 and typical of monodisperse materials (see above).  Thus, the CMD-NP featured a 
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polycrystalline core with size distributions by TEM and DLS typical of homogeneous, 

monodisperse materials.  

 Our viscosity/light scattering (VLS) method uses the partial volume of particles in 

solution from viscosity measurements and the NP volume from dynamic light scattering (DLS) 

to obtain the number of iron cores in solution at a given iron concentration. VLS results were 

first expressed as the numbers of iron atoms per NP.  Then, using the assumption that the iron 

oxide core was magnetite (Fe3O4, MW =232, density = 5.21 gm/cc), and the equation for the 

volume of a sphere (Volume = 4/3πr3), the diameters of the iron oxide cores were determined 

(Table 3).  Very similar diameters from the VLS method were obtained if the iron oxide was 

assumed to be γ-Fe2O3.  It can be seen that the diameters from the VLS and TEM methods were 

comparable.  Unlike TEM, VLS provides a measure of NP core size based on the behavior of 

NPs in solution. 

A variety of screening approaches have been used to select and optimize NPs and 

polymers for biological applications.  Our screens were designed to measure different facets of 

interactions of polymers with the surfaces of iron oxides, with the goal of determining an "ideal" 

polymeric coating for a superparamagnetic iron oxide NP.  A screening approach with a similar 

objective, i.e. obtaining molecules that bind to an inorganic surface, employed phage display to 

obtain the sequences of high affinity, surface-binding peptides (this method is described in more 

detail in Section 4.3.1).130, 131 Other NP- and polymer-based screening approaches employ 

bioactivity rather than the affinity for surfaces to evaluate their individual synthetic components.  

In this bioactivity-based screening approach, NPs have been modified with a variety of different 

functional groups, and screened for their selective interactions with different types of cells.132  A 
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different bioactivity screening approach employed a library of polymers and screened for their 

ability to assist in gene transfection.133  

It should be noted that our work involves optimizing the properties of NPs that are 

comprised solely of a polymeric coating and core of iron oxide.  A variety of other approaches 

can be employed to obtain high R2 NPs, such as using metals other than iron in the design of 

metal oxides.123 Another approach is the use of metallic iron in the design of NPs, since metallic 

iron has a higher saturation magnetization than the oxides of iron.  However, metallic iron is 

susceptible to oxidation by oxygen.  Furthermore, as noted above polymer coated iron oxide NPs 

have a uniquely broad history of safe clinical use for a variety of applications. 

 
 

5.6 Conclusion 

We describe a three-step screening paradigm for obtaining potent, stable, non-crosslinked 

polymer coated, superparamagnetic iron oxide nanoparticles.  Our screens resulted in the 

development of a carboxymethyl dextran coated nanoparticle (CMD-NP) that featured a high R2 

and very high stability.  CMD-NP had a polycrystalline core but had a range of sizes by DLS and 

TEM that was typical of the monodisperse reference nanoparticle CLIO.  Thus CMD-NP is an 

example of a highly uniform, highly stable, polycrystalline material.  Its biocompatible 

components make it an ideal NP for biomedical applications, and its superparamagnetic nature 

lends itself to MR imaging applications.  Its coating can provide options for bioattachment of 

biomolecules for targeting and reporting, but it is unclear whether the carboxy groups in the 

coating are interacting with the iron oxide core or are actually free for conjugation. 
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CH AP T E R 6 :   

B I O C O N J U G A T I O N  S T R A T E GI E S 

T O  F E R A H E M E,  A  

C O M M E R C I A L L Y  A V A I L A B L E  

FDA-A P P R O V E D  

S U P E R P A R A M A G N E T I C  I R O N  

O X I D E  N A N O P A R T I C L E 
 

 

 
 
 
 
 
 
 

6.1 Summary 

The discontinuation of the widely used iron oxide nanoparticle Feridex has left many 

researchers without a commercially available superparamagnetic polymer-coated iron oxide 

nanoparticle with which to perform a wide variety of experiments, from cell labeling to targeted 
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in vivo imaging.  In Chapter 5 it was determined that carxboxymethyl dextran is an ideal coating 

for iron oxide nanoparticles in order to achieve both stability and high relaxivity.  The 

commercially available nanoparticle Feraheme is coated with a carboxymethyl dextran and has 

excellent magnetic properties for imaging.  In this project, we outline a procedure for modifying 

purchased Feraheme into an amine-functionalized version of Feraheme called amino-FH, which 

has at least 4-6 amine groups available for bioconjugation.  All of the reagents used are readily 

available and relatively inexpensive.  Fluorescent Ferahemes introduced here include rhodamine-

conjugated Feraheme FH-Rho and Cy5.5-conjugated FH-Cy5.5, each with 3-5 

fluorophores/nanoparticle.  The multifunctional single-attachment point (MSAP) reagent DTPA 

Lys(CyAl5.5)-Cys(NHS) that was developed by Garanger et al.134 was also successfully 

conjugated to Feraheme. 

 

6.2 Aims 

The aim of this work was to chemically modify Feraheme into a versatile nanoparticle 

platform.  Free amine groups are one of the most common routes for bioconjugation, and are 

widely used for their linkage stability and their reactivity in aqueous solutions.  Furthermore, 

amine groups are present on proteins, and the decades of work that have been put into 

developing bioconjugation strategies to proteins and antibodies can be applicable to the amine-

functionalized Feraheme (amino-FH).  A variety of versions of Feraheme are created by 

conjugating ligands to amino-FH, showing that it is a versatile platform nanoparticle for a variety 

of applications. 
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6.3 Experimental 

 
Reagents included Feraheme (AMAG Pharmaceuticals, Lexington, MA), the NHS ester 

of tetramethyl rhodamine (Molecular Probes, Eugene, OR), and clinical injectable protamine 

sulfate (American Pharmaceutical Partners, Schaumburg, IL).   Other chemicals were from 

Sigma-Aldrich (St Louis, MO).  Separations used PD-10 columns (GE Healthcare, Piscataway, 

NJ) and 100 kDa NMWL Amicon centrifugal filter units (Catalog # UFC910024 Millipore, 

Billerica, MA).  Light scattering and zeta potential was measured with a Nano-ZS zetasizer 

(Malvern, Medford, MA).  Relaxivity measurements used a 20 MHz MiniSpec (Brucker Systems 

Billerica, MA). DTPA Lys(CyAl5.5)-Cys(NHS) was synthesized by Dr. Hushan Yuan (Center 

for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital).   

 

Concentration Determination 

Iron and fluorescent conjugate concentrations were determined spectrophotometrically 

using 94,000 L/ml-cm as the extinction coefficient for rhodamine at 555 nm,135 157,000 L/ml-cm 

as the extinction coefficient for CyAl at 674 nm, and 250,000 L/ml-cm as the extinction 

coefficient for Cy5.5 at 678nm.  

 

Synthesis of amino-FH 

Feraheme nanoparticles were incubated with 3.72 mol ethylene diamine per mol iron, 

0.49 mol 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) per mol iron, 

and 0.21 mol hydroxybenzotriazole (HOBT) per mol iron in 0.1M MES buffer pH 6.0 for 1.5 

hours at 50°C.    In a typical reaction, 6 mg Fe of FH was reacted with 1 mg EDC and 0.2 mg 
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HOBT, then reacted with 40 ul of 1M ethylene diamine dihidrychloride solution, and purified 

using a PBS PD-10 column.  Amino-FH was stable at 4°C for months. 

 

Synthesis of FH-based materials 

Amino-FH was reacted with an excess of Rhodamine NHS ester, NHS Cy5.5, DTPA Lys 

(CyAl5.5)-Cys(NHS), overnight at 4°C, a typical reaction using 6 mg Fe of amino FH and 1 mg 

of Rhodamine NHS ester (0.018 mol rhodamine/mol iron).  To make ProRho-FH Amino-FH (6 

mg) was reacted with EDC (1 mg, 0.48 mol per mol Fe), NHS (0.2 mg, 0.21 mol per mol Fe), 

and an excess of ProRho (1 mg) at 70°C for 30 minutes.  Unreacted reagents were removed by 

filtration with a 100,000 NMWL cutoff Amicon spin column, eluting with PBS several times 

until the eluent runs clear. 

 

Characterization 

Nanoparticles were exchanged by dialysis into 5 mM Tris buffer pH 7 and characterized 

by zeta potential. Light scattering and absorbance measurements were performed in PBS.  R1 

and R2 were determined by measuring the T1 and T2 using a 0.47 T minispec at a range of 

concentrations. 

 
 

6.4 Results and Discussion 

Polymer coated superparamagnetic iron oxide nanoparticles have served as the basis for 

clinically useful MR contrast agents,13, 136-138 for the treatment of iron anemia,116, 139 for the 

design of targeted pre-clinical targeted MR contrast agents,125, 132, 140 and for ex-vivo labeling and 
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cell tracking by MR.126, 141, 142  Examples of polymers employed as nanoparticle (NP) coatings 

include dextran, carboxymethyldextran, carboxydextran and many others.  A variety of 

conjugation chemistries have been developed to attach biomolecules to the hydrophilic 

polymeric coatings of such NPs including crosslinking, amination and reductive amination. 

The Feraheme nanoparticle (FH), also known as ferumoxytol (AMI-228), was recently 

(June 30, 2009) FDA approved for iron anemia treatment and targeted at patients with chronic 

kidney disease (CKD).  It has a molecular weight of 731 kD and a hydrodynamic diameter of 30 

nm and its chemical formula is Fe5874O8752-C11719H18682O9933Na4142.  One of the advantages of FH 

over other iron oxide NP formulations is that there is very little free iron present, allowing large 

amounts of it to be injected (510 mg of FH has been administered safely in as little as 17 seconds 

for a rate of 30 mg/sec) at a rate faster than other available injectable irons.   Since FDA 

guidelines are very stringent we consider amino-FH to be a very safe material.  

The coating of FH consists of a carboxylated polymer very similar to the CMD-NP 

described in Chapter 5. Although the coating of the Feraheme contains a number of carboxy 

groups it is not initially clear how many are available for bioconjugation and how many are on 

the inner part of the coating, interacting with the iron oxide core.   We found here that while 

many of these carboxy groups are interacting with the iron core and thus not exposed, there are 

sufficient free carboxy groups for modification. 
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Figure 23.  Schematic of synthesis of amino-FH and conjugation of various molecules to create new 
functionalities for FH. 
 

Amino-FH was made by conjugating ethylene diamine to the free carboxyl groups on the 

Feraheme nanoparticle using CDI chemistry, and a schematic of this reaction is shown in Figure 

23.  The presence of amine groups was verified by conjugation to various molecules with NHS 

esters, and the confirmation that these amine-reactive molecules do not spontaneously associate 

with regular Feraheme, which does not contain amine groups.  Amino-FH is highly stable, and 

can be stored at 4°C for months.  The creation of this amine-functionalized version of Feraheme 

is extremely useful because it opens up many strategies for bioconjugation of a variety of amine-

reactive molecules to the Feraheme nanoparticle.   By modifying Feraheme to form amino-FH 

and using it as a versatile superparamagnetic nanoparticle platform, many types of fluorescent 

and multifunctional Ferahemes have been synthesized.   
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Table 4.  Physicochemical properties of Feraheme and Feraheme-based materials. 
 

Table 4 shows the various versions of Feraheme that have been synthesized thus far along 

with their physicochemical properties.  FH-Rho was created by reacting NHS rhodamine with 

amino-FH and purifying using an Amicon spin filter unit.  DTPA Lys(CyAl5.5)-Cys(NHS) is a 

multifunctional single attachment point (MSAP) reagent134 obtained using diversity oriented 

synthesis (DOS) that contains a chelator and a fluorochrome.143  In each case, the number of 

ligands attached per nanoparticle was determined using UV-vis abosrbance, and the average 

number of ligands for each formulation is shown in Table 4.  It was verified that these ligands do 

not react with regular Feraheme, which only contains free hydroxyl and carboxyl groups on its 

surface. 

There are some limitations of these conjugation strategies to NP coatings.  First, in some 

instances it is desirable to attach targeting biomolecules that are hydrophobic (some drugs and 

peptides have a high density of hydrophobic amino acids) to the hydrophilic polymeric coatings 

of the NPs.   If the density of hydrophobic targeting biomolecules is kept low, the hydrophilic 
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polymeric coating can endow the targeting NP with reasonable aqueous solubility.  However, the 

conjugation of these molecules necessitates finding a solvent where both the NP (and its 

hydrophilic polymeric coating) and the targeting biomolecule are soluble.   Although some of the 

reaction conditions were determined to maximize the number of ligands of the nanoparticle, 

others were specifically limited to prevent too many ligands from being attached.  This is 

because we observed a decrease in long-term stability when more than ~6 ligands were attached 

to the FH surface.    

 

6.5 Conclusion 

There are a multitude of possible ligands that one could attach to amino-FH, from 

radioactive isotopes to targeting ligands to fluorophores.  The chemical conjugation possibilities 

in combination with the superparamagnetic properties, as well as the fact that Feraheme already 

has FDA approval, make amino-FH an extremely useful platform nanoparticle for medical 

imaging applications.  We discuss one possible functionalization of amino-FH and its application 

to cell labeling in Chapter 7. 
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CH AP T E R 7 :   P R OT A M I N E -

F U N C T I O N A L I Z E D  F E R A H E M E  A S 

A  M A GN E T O F L U O R E S C E N T  C E L L  

L A B E L I N G  A G E N T 

 

 

 

 

7.1 Summary 

We synthesized a fluorescent cell-labeling nanoparticle by combining two commercially 

available, FDA-approved compounds: protamine, an arginine-rich protein with membrane 

translocating properties, and Feraheme (FH), a carboxymethyl dextran-coated iron oxide 

nanoparticle that is superparamagnetic.  We have converted the free carboxyl groups on 

Feraheme into amino groups to make a material that we call amino-FH, a  nanoparticle that is 

amenable to a variety of bioconjugation strategies (Chapter 6).  We then synthesized a 
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fluorescent version of protamine by conjugating it with rhodamine, and conjugated the 

protamine-rhodamine compound (ProRho) to amino-FH.  The resulting Feraheme-protamine-

rhodamine material (ProRho-FH) is highly stable, fluorescent, superparamagnetic, and readily 

enters cells in short time frames.  Both U87 glioma cells and MMSCs (mouse mesenchymal stem 

cells) internalized a high enough amount of nanoparticles to contain sufficient iron for MR 

detection.  This work is particularly timely considering the discontinuation of Feridex, an iron 

oxide nanoparticle that has been used extensively for its superparamagnetic properties and for a 

variety of cell labeling applications.  Unlike the literature on Feridex and protamine, which relies 

on non-covalent ionic interactions between protamine and Feridex, we show here a covalent 

conjugation of protamine that is reproducible and characterizable.  The biocompatibility of the 

materials used to make ProRho-FH suggest that it could serve as a nanoparticle for labeling and 

tracking of cells in the clinic.    

 

7.2 Background on Glioblastoma Multiforme  

There are many potential applications for nanoparticles that can label cells for MR 

imaging, but one of the most promising areas is in new therapies for cancers of the central 

nervous system.  These types of tumors are difficult to treat but new cell-based treatment 

strategies have shown encouraging results.  For this reason we have chosen to work in the model 

of gliomas, which are cancers of the glial cells, most often found in the brain. 

Malignant gliomas are one of the most lethal cancer types, and the median survival rate 

for glioblastoma multiforme (the most common type) is less than 1 year. Most glial tumors are 

highly invasive, making complete resection of the tumor extremely difficult,144 and the inherent 
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dangers of cranial surgery make removal of the recurrent tumors problematic.  In the vast 

majority of glioma cases (more than 95%), the tumors return after surgical resection, both in 

proximity to the resection cavity and at satellite sites.  Often the treatment plan is an approach 

combining chemotherapy, radiation therapy, and surgical resection.  One of the main issues in 

systemically treating gliomas is solving the problem of crossing the blood brain barrier.  Stem 

cells have the ability to cross this barrier and home to tumors and other pathologies145-147 and 

even to metastases distinct from the primary tumor, making them useful as imaging agents or as 

delivery vehicles for therapeutic agents.   

  

7.3 Background on Cell Labeling Agents 

The ability to non-invasively label and track cells in vivo is becoming increasingly useful 

for a variety of applications.  As imaging technologies improve, it is possible to follow cell 

migration patterns in vivo to better understand the biological mechanisms of disease.  Cell 

tracking is also essential for the development of cell-based therapies, a promising treatment 

strategy that is rapidly becoming a viable reality.  The use of magnetic resonance (MR) is a 

particularly attractive imaging method due to its non-invasiveness and its excellent soft tissue 

and spatial resolution.  There are a variety of contrast agents available for MR but 

superparamagnetic iron oxide nanoparticles have long been an obvious choice for a variety of 

reasons including the fact that they are extremely safe and non-toxic, are relatively inexpensive, 

significantly affect the T2(*) relaxation time, and have coatings that can provide many possible 

strategies for bioconjugation.  For a more complete discussion, see section 2.3. 

The goals of the current work were to develop a NP for cell labeling and tracking that 

would be amenable to clinical translation by virtue of the materials and chemistries used. The 
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discontinuation of the iron oxide nanoparticle Feridex, perhaps the most widely used 

nanoparticle in the cell labeling literature, makes the development of the iron oxide nanoparticle 

Feraheme as an effective cell labeling material particularly timely. 

 

 

7.3.1 Cell Imaging and Cell-based Therapies 

The use of cells for therapeutic applications has wide-ranging possibilities in a variety of 

diseases including cancer, cardiovascular disease, diabetes, HIV, and a variety of hereditary 

diseases.  Below is a table showing different cell types and examples from the literature that have 

covered different methods used to track cells used in therapy. 

 
 

Cell based therapies and Cell tracking by MRI 

Cells Cell based 
therapy 

Recent Reviews 
Of Therapeutic Utility 

MRI Based Cell 
Tracking 

Dendritic cells 
 

Cancer 
immunotherapy 

148 149 150 

T cells Cancer 
immunotherapy 

151 152 117, 153, 154  

Stem Cells  Restore 
damaged 
myocardium 

155 

Neuroprogenitor 
cells 

Restore 
damaged CNS 

159 

41, 156-158 

Islet cells Type I diabetes 151, 160 161 
Chondrocytes Joint repair 

&regeneration 
162  

 
Table 5.  Brief review of imaging of cell-based therapies in the literature. 
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7.3.2 Transfection agents 

Some cell tracking techniques use labels that attach to the cell surface and remain 

external to the cell; however this strategy risks the label interfering with cell surface interactions 

or detaching from the cell membrane.163  We have thus chosen to engineer nanoparticles that will 

enter the cell.  There are several routes to achieving cell internalization, the simplest being 

incubating cells with the nanoparticles, capitalizing on the natural mechanisms of pinocytosis 

and phagocytosis.164  However, this strategy is not easily generalizable to different cell types as 

only certain cells are intrinsically phagocytic.  It is possible to increase internalization rates by 

disruption of the cell membrane, which can be achieved by the addition of transfection agents in 

solution,165, 166 or by techniques such as electroporation.  Another strategy is to attach a molecule 

that facilitates internalization to the nanoparticle coating itself, such as a cell penetrating peptide 

like the HIV tat (trans-activator of transcription) peptide167 to promote membrane translocation, a 

dendrimer to induce membrane bending and then endocytosis,41 or an anti-transferrin receptor 

monoclonal antibody to promote receptor-mediated endocytosis.168  Although these are all viable 

solutions, it is worth noting that the use of a monoclonal antibody for internalization could be 

problematic for clinical applications due to current FDA regulations.  

A delicate balance of charges is necessary to maintain a dispersion of the nanoparticles in 

aqueous solution, and the disruption of this balance by the conjugation of transfection agents to 

the nanoparticle coating can sometimes lead to nanoparticle precipitation.  Poly-L-lysine has 

been successfully complexed with Feridex nanoparticles but it can cause uncontrollable 

nanoparticle aggregation; furthermore, nanoparticle-poly-L-lysine complexes can bind 

nonspecifically to the cell surface and cause cellular aggregation.169  Another study comparing 

the transfection agents protamine, poly-lysine, and lipofectamine also found that Feridex 
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agglomeration is a large problem.166   The polydispersity (10-1000 nm) of Feridex further 

complicates its use as a labeling agent because larger diameter nanoparticles tend to remain at 

the cell surface and not internalize; this kind of interaction could lead to an undesirable immune 

response or in other ways interfere with cell surface interactions.170  Furthermore, there has been 

some evidence that there are unwanted biological side effects of the poly-L-lysine-Feridex 

combination.171 

Protamine sulfate, the transfection agent used in the work described here, is a low 

molecular weight, naturally occurring transfection agent that has already been FDA approved as 

a heparin antagonist and is also used as an excipient in insulin injections.  It is an arginine-rich 

nuclear protein whose natural function is to stabilize and bind DNA into a compact form in 

sperm nuclei.  When combined with ferumoxides it has been shown to have no effect on cell 

proliferation, viability, or differentiation.172  Protamine has a higher therapeutic window and is a 

far more effective transfection agent than poly-L-lysine,173 and it has a similar or even superior 

membrane-translocating ability to the HIV tat peptide.126  Another advantage of protamine is that 

it has a single reactive amine at the N-terminus and a single carboxyl group at the C-terminus, 

facilitating bioconjugation strategies.  It is commercially available as a clinical injectable agent, 

benefiting from the large-scale pharmaceutical production and quality control, and is 

inexpensive.  For these reasons, protamine was chosen as the transfection agent to attach to 

Feraheme as a cell internalization agent. 

Although the exact mechanism of cell internalization is not completely understood, it is 

thought that arginine-rich peptides such as protamine and HIV tat are membrane-permeable174 

and able to shuttle cargo into cells.  Some studies have shown that this process is not the result of 

an endocytotic mechanism,175 although there are conflicting opinions.  Protamine is known to 
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interact with the highly negatively-charged glycosaminogycan heparin, and is used in the clinic 

for this very purpose.  It also interacts with extracellular and cell-surface glycosaminoglycans,176 

and probably the lipid bilayer itself.177 However, it is not clear what the affect of conjugation to a 

large nanoparticle will have, and it is possible that internalization is the result of a combination 

of factors. 

 

7.4 Aims 

In this chapter we describe how to make a cell labeling and tracking agent that is the 

chemical combination of two commercially available, FDA-approved drugs. There is a lack of 

consistency in the cell labeling literature when it comes to the protocols used for cell labeling, 

making it difficult to compare across studies. Ideally, a cell labeling method should be 

biocompatible, biodegradable, and have little to no effect on cellular function.  In this study we 

create and fully characterize a long-circulating, non-toxic nanoparticle that can be used as a 

contrast agent to image cells non-invasively using magnetic resonance (MR) imaging. 

Based on these criteria a simple, reproducible chemical approach was developed to yield 

stable iron oxide nanoparticles attached to protamine via an amide linkage. Protamine (about 4 

kDa) is more than 75% arginine and endows NPs with membrane translocating activity.  

Feraheme (FH, a full list of abbreviations used in this work is shown in  

Table 6) is an carboxylated polymer-coated iron oxide nanoparticle that is commercially 

available as an injectable solution.    This work describes how to chemically combine two FDA-

approved compounds, protamine and Feraheme, to yield a magnetofluorescent cell labeling 

nanoparticle that can be stored at 4°C indefinitely and used to label a variety of types of cells.  
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7.5 Experimental 

Feraheme (AMAG Pharmaceuticals, Lexington, MA) and protamine sulfate (American 

Pharmaceutical Partners, Schaumburg, IL) were from the MGH pharmacy.  The NHS ester of 

tetramethyl rhodamine was from Molecular Probes (Eugene, OR).  Other chemicals were from 

Sigma-Aldrich (St Louis, MO).  Separations used PD-10 columns (GE Healthcare, Piscataway, 

NJ) or 100 kDa Amicon spin concentrator (Catalog # UFC910024 Millipore, Billerica, MA). 

Light scattering and zeta potentials were measured with a Nano-ZS zetasizer (Malvern, Medford, 

MA).  Relaxivity was determined on a 20 MHz MiniSpec  at 40°C (Brucker Systems Billerica, 

MA).  Flow cytometry was on a BD FACSCaliber (BD Biosciences, Mansfield, MA).  Mass 

Spectrometry was performed at the Tufts University Core Facility (Boston, MA).   Microscopy 

was performed on an Olympus IX51 inverted research microscope (Center Valley, PA).  Cell 

lines were obtained as a generous gift from Dr. Khalid Shah (Molecular Neurotherapy and 

Imaging Laboratory, Harvard Medical School).  Cells were counted using a Reichert brightline 

hemocytometer (Hausser Scientific, Hersham, PA). Fluorescent images of the agar phantoms 

was obtained using a KODAK In-Vivo Multispectral System FX (Carestream Health, Rochester, 

NY).  MR imaging was performed on a 40-cm bore Bruker Advance 4.7T scanner  for the agar 

phantom imaging and a 4.7T Bruker Pharmascan MRI scanner (Bruker Biosciences, Billerica, 

MA) for the in vivo imaging. 

 

Concentration Determination 

Iron, rhodamine and ProRho concentrations were determined spectrophotometrically5 

using 94,000 L/ml-cm as the extinction coefficient for rhodamine at 555 nm.135  
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Cell culture 

U87 cells were grown in DMEM fortified with 10% fetal bovine serum and 1% pen-

strep.  MMSCs were cultured in DMEM mixed with 10% fetal bovine serum, 1% l-glutamine, 

10% Horse Serum, 1% antibiotic-antimycotic.  Cells were split from 75 cm2 flasks into 24 well 

plates and grown to 90% confluency. 

 

Synthesis of amino-FH 

Feraheme nanoparticles were incubated with 3.72 mol ethylene diamine per mol iron, 

0.49 mol 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) per mol iron, 

and 0.21 mol hydroxybenzotriazole (HOBT) per mol iron in 0.1M MES buffer pH 6.0 for 1.5 

hours at 50°C.    In a typical reaction, 6 mg Fe of FH was reacted with 1 mg EDC and 0.2 mg 

HOBT, then reacted with 40 ul of 1M ethylene diamine dihidrychloride solution, and purified 

using a PBS PD-10 column.  Amino-FH was stable at 4°C for months. 

 

Synthesis of FH-Rho 

Amino-FH was reacted with an excess of Rhodamine NHS ester overnight at 4°C, a 

typical reaction using 6 mg Fe of amino FH and 1 mg of Rhodamine NHS ester (0.018 mol 

rhodamine/mol iron).  Unreacted rhodamine was removed by filtration with a 100,000 NMWL 

cutoff Amicon spin column, eluting with PBS several times until the eluent runs clear. 

 

Synthesis of ProRho 
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This synthesis was described in detail in.126  Briefly, rhodamine NHS ester (0.5 mg) was 

dissolved in 100 µL DMSO and added to 5 mg (0.5 mL) protamine and 100 µL PBS.  The 

solution was allowed to react overnight at room temperature, then the protamine was precipitated 

with ethanol.  The precipitate was resuspended in water and purified by HPLC reverse phase C18 

(flow conditions) to produce protamine-rhodamine (ProRho), which was characterized by 

MALDI-MS.   ProRho was lyophilized and could be stored at -20°C indefinitely. 

 

Synthesis and Characterization of ProRho-FH 

Amino-FH (6 mg) was reacted with EDC (1 mg, 0.48 mol per mol Fe), NHS (0.2 mg, 

0.21 mol per mol Fe), and an excess of ProRho (1 mg) at 70°C for 30 minutes, and unreacted 

ProRho and other reagents were removed with a 100 kDa NMWL Amicon spin column using 

repeated additions of PBS.  Longer reaction times can lead to more ProRho per nanoparticle, and 

more than 4-6 ProRho/NP can lead to precipitation. The resulting ProRho-FH formulations were 

characterized by light scattering, absorbance, zeta potential, and dilutions of the nanoparticle 

were measured for T1 and T2 to determine relaxivities. 

  

Covalent Binding of ProRho to Amino-FH Using Heparin Ion Exchange Affinity Column 

A heparin affinity column was purchased (HiTrap Heparin HP, GE Healthcare, 

Piscataway, NJ) and different formulations of ProRho-FH were exchanged into binding buffer 

(10 mM phosphate buffer pH 7) and flowed through the column using binding buffer as well as 

elution buffer ((10 mM phosphate buffer pH 7 + 1 or 2 M NaCl).  Fractions were collected and 

analyzed spectrophotometrically for iron (absorbance at 300 nm) and rhodamine (absorbance at 

555 nm). 
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Cell labeling 

U87 and mouse mesenchymal stem cells (MMSCs) were grown to approximately 90% 

confluency in 24-well plates.  Cells were incubated with ProRho-FH at varying concentrations in 

modified DPBS for two hours to measure concentration dependence, or for a varying time period 

to examine uptake kinetics.  Cells were washed three times with DPBS, then either detached in 

sheath fluid for FACS analysis or lysed with 1% triton X-100 in PBS for relaxivity analysis.  

Standards for the relaxivity experiments were made by spiking lysates of untreated cells with 

ProRho-FH.  One well was trypsinized and the cells counted with a hemocytometer to normalize 

uptake data to a per cell basis.  Microscopy was performed by treating the cells as described 

above, washing with heparinized PBS (15 mg/ml), and then adding Hoechst stain to visualize 

cell nuclei.  All experiments controlled for basal uptake by each cell line by concurrently doing 

each experiment with FH-Rho, the fluorescent version of the Feraheme nanoparticle that does 

not have a membrane translocating moiety.  The optimal labeling conditions were determined to 

be 25 ug/ml Fe for 2 hours at 37°C. 

 

Iron Stain 

Cells were fixed in 4% paraformaldehyde in PBS and then incubated with 2% potassium 

ferrocyanide and 3.7% hydrochloride acid (Prussian Blue staining, a.k.a. Perl’s Reagent) for 30 

minutes.  For diaminobenizidine-enhanced staining (DAB-enhanced), after Prussian Blue 

staining cells were incubated with DAB solution (Sigma, St. Louis, MO) for 10 minutes and 

washed with PBS. 
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Toxicity 

ProRho-FH was assayed for toxicity with three different methods.  Cells were incubated 

with varying concentrations of ProRho-FH and then assessed by trypan blue exclusion.  Cells 

were also assessed by flow cytometry and Sytox dead cell staining.  A positive control was 

obtained by disrupting cell membranes using repeated cycles of freezing and thawing.  Finally, 

Cytotox-One, a homogenous membrane integrity assay measuring the release of lactate 

dehydrogenase (LDH) fluorometrically, was performed 24 hours after cell loading.  A lysed cell 

control was used to calculate percent cytotoxicity. 

 

MR Phantom Imaging 

ProRho-FH was loaded into U87s and MMSCs by incubating them for 2 hours at 37°C in 

a solution of 25 ug/ml Fe of ProRho-FH in modified DPBS.  Loaded cells and unloaded controls 

were embedded in 1% agar at a range of densities from 150,000 cells/ml to 15,000,000 cells/ml 

in a 384-well format.  The phantom sample was placed in a 40-cm bore Bruker Avance 4.7 T 

MRI scanner equipped with a 10 cm inner diameter birdcage resonator radiofrequency coil and 

26 G cm-1 triple axis gradients, and imaged using a T2-weighted pulse sequence with echo time 

(TE) of 180 ms and repetition time (TR) of 4000 ms at ambient temperature. Phantom samples 

were also imaged by fluorescence using a Kodak In-Vivo Multispectral Imaging System. 

 

In vivo MR Imaging 

 ProRho-FH was loaded into MMSCs by by incubating them for 2 hours at 37°C in a 

solution of 25 ug/ml Fe of ProRho-FH in modified DPBS.  Cells were implanted stereotactically 

into brains of female nude mice at a range of cell concentrations.  MR imaging was performed 
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with a mouse brain coil under respiration-monitored isofluorane gase anaesthesia on a 4.7T 

Bruker Pharmascan MRI scanner (Bruker Biosciences, Billerica, MA).  T2-weighted images TR 

= 3500, TE = 75.1, matrix size 192 x 192, field of view 2.5 x 2.5 cm2, slice thickness 0.7 mm and 

16 sections were acquired. 

 

 

7.6 Results and Discussion 

A list of abbreviations used in this chapter is shown here: 

Material Abbreviation 

Feraheme FH 

Feraheme with its carboxyl groups converted to amine groups Amino-FH 

Protamine Pro 

Rhodamine Rho 

Protamine covalently conjugated to Rhodamine (at the N terminus) ProRho 

Feraheme covalently conjugated to Rhodamine FH-Rho 

Feraheme covalently conjugated to protamine that has been conjugated to 
rhodamine (ProRho) ProRho-FH 

Feraheme non-covalently (electrostatically) associated with protamine 
conjugated to rhodamine (ProRho) ProRho+FH 

 
Table 6.  List of abbreviations used. 
 

As described in Chapter 6, Feraheme is an FDA-approved material that can be injected in 

large amounts for iron anemia treatment.  We consider FH used for cell imaging and tracking to 

be a very safe material, since the doses used for iron anemia treatment far exceed the doses that 

would be used to track cells in cell-based therapies.   Protamine, the other major component of 
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the cell labeling agent described here, is also an FDA-approved material that is most often used 

as a heparin antagonist.  It consists of mostly arginine (60-70%) and has a molecular weight of 

about 4,200 daltons.  Its characteristics as a transfection agent are described in more detail in 

Section 7.3.2. 

 

 

Figure 24.  Schematic of synthesis of ProRho-FH.  Protamine and Feraheme (FH) are both commercially-
available, FDA-approved drugs.   

 

To create the protamine-rhodamine conjugate ProRho, protamine was reacted with NHS-

rhodamine as described previously.126  The product was purified using HPLC and the creation of 

the ProRho was verified using mass spectrometry.  The carboxy groups on the FH NP were 

converted to amines using EDC chemistry and ethylene diamine to make amino-FH as described 
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in Chapter 6.  Two types of nanoparticles were then made for the in vitro and in vivo 

experiments:  a control nanoparticle consisting of only rhodamine attached to the polymer 

coating (FH-Rho), and a cell-internalizing nanoparticle consisting of protamine and rhodamine 

attached to the polymer coating (ProRho-FH).  The control nanoparticle was used in various 

experiments to ensure that the cell internalizing behavior of ProRho-FH was not inherent to the 

Feraheme nanoparticle itself but a behavior conferred to it by the cell translocating agent 

protamine.  A schematic of these two nanoparticles is shown in Figure 25. 

 

Figure 25.  Schematic of the two nanoparticles used in the uptake studies.  Left:  ProRho-FH is the cell labeling 
nanoparticle.  Right:  FH-Rho is the fluorescent Feraheme used as a control. 
 

To achieve an amide bond between the amine on the amino-FH and the carboxy terminus 

of the protamine on the ProRho, CDI chemistry was used to form an amide linkage (Figure 23).   
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Table 7.   Table of physicochemical properties of nanoparticles used in this Chapter.   

 

 ProRho-FH was characterized by light scattering for size, by UV-Vis to determine the 

number of ProRho molecules per nanoparticle, and by relaxometry to determine the magnetic 

properties of the nanoparticle (Table 7).  The number of ProRho molecules per nanoparticle 

affected the long-term stability of ProRho-FH, so the synthesis was optimized to yield 

approximately 4-6 ProRho molecules/nanoparticle, which was enough to provide significant 

membrane translocating effects and fluorescence but not so many that the ProRho molecules 

affected the solubility and thus the stability of the ProRho-FH.  The attachment of ProRho to the 

nanoparticle was also verified using trypsin and light scattering measurements.  Trypsin is a 

serine protease that hydrolyzes the protamine so that the size of the ProRho-FH shrinks back to 

nearly the size of the original nanoparticle FH (Figure 26).    
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Figure 26.  Difference in hydrodynamic size due to conjugation of ProRho to Feraheme, and the reduction in 
size due to digestion of protamine by trypsin.  Measurement was performed using dynamic light scattering. 

 

ProRho is a highly positively charged molecule due to the guanidino functional groups in 

the protamine, which is essentially a poly-arginine molecule.  The carboxymethyl dextran 

coating on the FH is slightly negatively charged and has a zeta potential in 5mM Tris pH 7 of -38 

mV (Table 7).  Protamine and dextran have an attractive ionic interaction that has been exploited 

for a variety of applications.178   Indeed, many researchers have used a non-covalent protamine 

complex with polymer-coated iron oxide nanoparticles as a cell labeling material.  To address 

whether it would be sufficient to simply non-covalently associate protamine to the Feraheme 

nanoparticle using ionic interactions, a series of experiments were performed with a heparin ion 

exchange affinity column.  Protamine complexes strongly with heparin, thus this column was a 

useful tool for assessing the tightness of binding between the FH and the ProRho. The 
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experiment was performed using three different formulations each of covalently bound ProRho-

FH and non-covalently associated ProRho+FH, and typical results are shown in Table 1. 

Initial tests of the heparin column were performed with amino-FH only and ProRho only.  

The amino-FH was immediately eluted with the binding buffer in the low-salt fraction because it 

has no attractive interaction with heparin.  In contrast, the ProRho bound tightly with the binding 

buffer and did not come off with the addition of 1M NaCl to the buffer; it was only eluted with 

the addition of 2M NaCl.  Formulations of covalently bound ProRho-FH and non-covalently 

associated ProRho+FH were prepared and run through the heparin column.  The A300 bars 

correlate with the presence of iron (i.e., FH), and the A555 bars correlate with the presence of 

Rhodamine (i.e., ProRho).  It is obvious in the case of the covalent version of ProRho-FH that 

since FH is retained almost entirely until elution with 2M NaCl, eventually coming out around 

the same time as the ProRho, that the FH is tightly bound to the ProRho.  In other words, FH and 

ProRho co-elute in the case of the covalent ProRho-Fh.  For the noncovalent case, most of the 

iron is eluted with the binding buffer and only a small amount is retained and eluted with 2M 

NaCl, showing that there is some minimal association of iron to the ProRho but not to a great 

extent.  Additionally in the noncovalent case, although most of the ProRho elutes at the salt 

concentration required to elute ProRho alone (2M NaCl), a significant amount of ProRho elutes 

earlier than usual (binding buffer, 1M NaCl), suggesting that a portion of the ProRho is 

associating with the FH and is dragged out by the nanoparticle.  In other words, it is possible that 

some of the ProRho is not retained in the column due to complexation and aggregation effects 

with the FH. 

These results seem to show that ProRho covalently bound to FH has a much tighter 

binding interaction than the non-covalent association between ProRho and FH.  Nevertheless, it 
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is true that even in the covalent case it is likely that both covalent and non-covalent associations 

are present at the same time.  

 
Table 8.  The covalent interaction between ProRho and amino-FH was demonstrated using heparin-
sepharose chromatography.  Percentage of total eluted shown in black (iron absorption) and white 
(Rhodamine absorption).  ProRho-FH (covalent) maintained its association (integrity) with heparin-sepharose 
chromatography, with ProRho and amino-FH co-eluting primarily in the high salt (2M NaCl) fraction (i).  On the 
other hand, ProRho + FH (non-covalent) dissociated on the column, with much of the iron eluting at low salt (PBS) 
conditions (ii).  The elution of ProRho (iv) and amino-FH (iii) by themselves were also obtained as controls.  
Binding Buffer consists of 10 mM phosphate buffer at pH 7. 
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Another confirmation of the necessity of covalent interaction was determined by 

measuring cellular uptake by relaxometry.  Tracking fluorescence by flow cytometry or 

microscopy would not be of use here because these methods follow the fluorescent ProRho and 

not the iron.   Uptake of covalent and non-covalent ProRho-FH nanoparticles were compared in a 

series of in vitro relaxometry experiments.  It is clear from Figure 27 that there is significant 

concentration-dependent uptake for the covalently bound ProRho-FH and little to no uptake of 

iron into the cells when incubated with non-covalent ProRho+FH. 

 

Figure 27.  Covalent binding between ProRho and Feraheme is necessary for uptake into cells, as shown by 
relaxometry data of iron uptake covalent and non-covalent ProRho-FH.  Cells were incubated with covalently 
bound ProRho-FH and non-covalently associated ProRho-FH for 2 hours at 37°C, then washed and lysed and 
measured by relaxometry.  Relaxation times were compared to standards. 
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Purification of the nanoparticles had to be meticulous and thorough due to the charged 

nature of the ProRho.  Both ProRho and rhodamine alone were filtered through an Amicon 

centrifugal filter unit in order to prove that both molecules flow freely through the filter; this was 

achieved by verifying using UV-Vis that the retentate and eluent had the same concentration of 

material after filtration.  The rhodamine was able to flow freely through the 50,000 NMWL filter 

unit, while protamine-rhodamine required the larger-pored 100,000 NMWL filter unit due to 

noncovalent associations between ProRho molecules. 

 

Figure 28.  Concentration dependence of uptake of ProRho-FH into U87s (top) and MMSCs (bottom) as 
determined by flow cytometry. FH-Rho with and without the addition of free protamine were used as a 
control. Cells were incubated with ProRho-FH for 2 hours at 37°C at a range of concentrations. Experiment was 
performed in triplicate.  Concentration dependence of ProRho-FH uptake appears to be exponential.  Covalent 
attachment of protamine to the nanoparticle is necessary for uptake, since no significant uptake is observed with FH-
Rho with and without incubation with free protamine. 
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Although the nanoparticle is superparamagnetic and can be visualized by MR, it is very 

useful to enable fluorescent tracking of the nanoparticle as well and this is achieved by 

conjugating rhodamine to the protamine.  Fluorescent microscopy and flow cytometry are useful 

in vitro methods of characterization of uptake.  A schematic of the cell labeling nanoparticle 

ProRho-FH as well as the control fluorescent nanoparticle without protamine is shown in Figure 

25.  Cell loading as a function of cell type and concentration as assessed by flow cytometry is 

displayed in Figure 28.  Cell loading increases with increasing concentration of agent, and does 

not exhibit a dose-response curve that would be typical of a receptor-ligand interaction.  Neither 

FH-Rho (the fluorescent FH nanoparticle without the protamine) nor FH-Rho plus free 

protamine were taken up by cells at all, suggesting that protamine bound to the FH nanoparticle 

is necessary for transfection into cells.  Time dependence of uptake is shown in Figure 29. 

 

Figure 29.  Time dependence of uptake of ProRho-FH into U87s and MMSCs by flow cytometry.  Cells were 
incubated with 10 µg Fe/ml ProRho-FH in DPBS for a range of times, washed and then assessed for fluorescence by 
flow cytometry. 
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Although there is appears to be a continuous increase in uptake with time, a balance must be 

found between ease of experimentation, the amount of nanoparticle agent used, and the cells’ 

tendency to deadhere over very long incubations in DPBS.  A 2-hour incubation was chosen 

based on the effectiveness of labeling as well as literature values. 

 
 

 
 

Figure 30.  Fluorescence microscopy of U87 and MMSC after loading with ProRho-FH.  The cells have been 
incubated with 25 ug/ml Fe of ProRho-FH for 2 hours at 37°C.  Nuclei were visualized using Hoescht staining.  
Top:  Cells were imaged using fluorescence microscopy immediately after the 2 hour incubation.  Bottom:  After the 
2 hour incubation cells were washed 3 times, allowed to proliferate in media for 24 hours, then re-imaged.  Scale bar 
= 50 µm. 
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Uptake of ProRho-FH into U87s and MMSCs was also visualized using light microscopy 

(Figure 30).  The nanoparticles reside within vesicles of the intracellular compartment and are 

excluded from the nuclear compartment, and appear to remain in the endosomes even after 24 

hours.  The slight difference in intracellular distribution of ProRho-FH from ProRho alone126 

could be due to the fact that it is conjugated to the large, slightly negatively-charged FH 

nanoparticle.  When acid is added to the cells, the pattern of fluorescence switches to the nucleoli 

and nuclei (results not shown), indicating that the amide bond between the ProRho and the FH 

has been hydrolyzed and the ProRho is acting alone. 

 

Uptake of ProRho-FH into U87s and MMSCs by Relaxometry 

Cell Type Fe/cell [pg] Fe Conc./cell [g/L] Cellular Fe [mM] Cellular T2 [msec] 

U87 9.66 ± 0.45 4.02 ± 0.19 72.09 ± 3.4 0.0095 ± 0.011 

MMSC 3.1 ± 0.93 1.29 ± 0.38 23.11 ± 6.91 0.00352 ± 0.0026 

 

Table 9.  Uptake of ProRho-FH into U87s and MMSCs by Relaxometry.  Cells were incubated with 25 ug/ml 
ProRho-FH for 2 hours at 37°C.  Cell volume was estimated to be 2.4 pl. 
 

The superparamagnetic nature of FH allows uptake to be assessed by relaxometry as well 

(Figure 27, Table 9). The concentration dependence of uptake shows a similar curve when 

assessed by relaxometry as when assessed by flow cytometry.  Incubation with 25 ug/ml Fe of 

ProRho-FH at 37°C yields cells with approximately 3-10 picograms of iron per cell, which is 
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sufficient for MR detection as it has been shown that only subpicomole quantities of iron are 

required for detection by micro-MRI.179   

 

 

Figure 31.  Staining for iron in U87s and MMSCs using Prussian Blue (DAB-enhanced and non-DAB 
enhanced).  Cells were incubated for 2 hours at 37°C with 0 ug/ml, 10 ug/ml, and 25 ug/ml of ProRho-FH and then 
stained with Prussian Blue with (rows 2 and 4) and without DAB enhancement (rows 1 and 3). Scale bar = 50 µm. 
 

Cells were also stained for iron using non-DAB enhanced and DAB-enhanced Prussian Blue 

staining.  Formation of an insoluble precipitate in the presence of Perl’s Reagent occurred to a 

much lesser extent for ProRho-FH than for FH, most likely because the protamine chelates the 
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iron (results not shown).  Nevertheless, cells labeled with ProRho-FH were stained with Prussian 

Blue even though the assay may have been somewhat inhibited by the presence of the protamine.  

Cells that were not incubated with ProRho-FH showed no staining while cells that were 

incubated with ProRho-FH showed intense staining with nearly 100% of cells being labeled.  

  

 

Figure 32.  Toxicity assays of ProRho-FH into U87s and MMSCs.  A.  Cells were loaded with ProRho-FH at 
varying concentrations, washed and assayed for lactate dehydrogenase release 24 hours later.  B.  Cells were loaded 
with ProRho-FH at varying concentrations, and assessed for sytox staining by flow cytometry 24 hours later.  A 
freeze-thaw control is shown for comparison. 
 

It is important that the materials used for cell labeling minimally affect the cells they are 

attempting to label.  We have assessed toxicity of ProRho-FH using trypan blue exclusion, flow 

cytometry using Sytox staining, and using an LDH membrane integrity assay (Figure 32).  After 

incubation with ProRho-FH cells were trypsinized and then analyzed by trypan blue to test cell 

viability.  No increase in the number of cells stained by trypan blue was found for cells incubated 

in 25 ug/ml Fe nor 100 ug/ml Fe of ProRho (data not shown).  For the Sytox staining assessment 

cells were incubated in a range of concentrations of ProRho-FH for 2 hours at 37°C and stained 

by Sytox.  There was a small increase in Sytox staining by flow cytometry from unlabeled cells 

but a part of that could be due to imperfect compensation of the rhodamine from the Sytox FL1 
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channel.  There seems to be little evidence of concentration-dependent toxic response.  Toxicity 

was also assessed using an LDH homogenous membrane assay.  LDH is an enzyme found in cell 

cytoplasm and is released from the cell if the cell membrane is damaged.  The release of LDH 

into the surrounding media is detected by the conversion of resazurin to the fluorescent resorufin 

and is a measure of cell membrane integrity and cell viability.  There was no statistical difference 

in cytotoxicity between control cells and cells loaded with ProRho-FH.  Nevertheless, we chose 

25 µg/ml as the optimal concentration for subsequent cell loading experiments, since there was 

effective loading at that concentration without toxicity. 

 

Figure 33.  MR and fluorescence imaging of an agar phantom.  An agar phantom was prepared with varying 
densities of loaded and unloaded cells.  T2 darkening is observed in the T2 images using an echo time of 180 ms 
(left).  Fluorescence is observed in the same sample in the rhodamine channel (right). 
 

MRI in vitro phantom experiments were performed by preparing a range of 

concentrations of loaded and unloaded cells suspended in agar (Figure 33).   Signal intensity 

reduction for MMSCs was observed for as few as 7.5x104 cells/50 µl.  The rhodamine on the 
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coating of ProRho-FH allows the agar phantom sample to be imaged using fluorescence in 

addition to MRI, where signal brightening indicates the presence of rhodamine. 

  

 

Figure 34.  In vivo MRI of ProRho-FH-loaded MMSC stereotactically implanted into a mouse brain.  The 
white arrow indicates the location of the implantation. 
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MMSCs were loaded with ProRho-FH and stereotactically implanted in the brains of mice.  A 

range of numbers of cells were used and even the lowest number of cells, 4,000 cells, are clearly 

visible on the MR image.  Cells did not migrate after 1 week because no tropic factor was 

introduced (Figure 34).   

 

7.7 Conclusion 

Although Feraheme is FDA-approved for iron anemia treatment, it has 

superparamagnetic properties and has been used in many studies as an MR contrast agent.  Its 

versatility as a nanoparticle has been greatly enhanced by the development of amino-FH, the 

amine-functionalized version of Feraheme, the production of which has been outlined in Chapter 

6 of this dissertation. Amino-FH was covalently combined with protamine here to make a probe 

that efficiently loads a variety of cell types ex-vivo with superparamagnetic iron oxide for MRI 

tracking.  The cell labeling material ProRho-FH consists of a carboxymethyl dextran 

superparamagnetic iron oxide nanoparticle with a protein-based membrane translocating agent 

affixed to a fluorescent dye.   Both protamine and FH are FDA approved materials, and short-

term acute toxicity studies of cells loaded with versions of these materials have indicated a 

general lack of toxicity, even at very high concentrations.   Protamine was chosen as a membrane 

translocating agent due to its low cost, proven safety record, and availability in large quantities 

as GMP approved material.  It has previously been reported that protamine combined with 

Feraheme (ferumoxytol) cannot label cells efficiently,180 however these studies were performed 

without the covalent chemistry that is used here.  We have also showed that although there is a 

non-covalent ionic association between protamine and Feraheme, it is not sufficient to shuttle 
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Feraheme into cells.  We have also shown in vitro and in vivo that these cells can be visualized 

using MRI. 

Although this work is situated in a glioma model because of the great promise of cell 

therapies in treating cancers of the central nervous system, the potential uses of ProRho-FH is far 

wider.  In this study two commercially available, FDA-approved pharmaceuticals have been 

covalently coupled to form a cell labeling agent than can be used for a wide range of biological 

and pathological investigations as well as for the development and evaluation of any disease 

treatments that involve cell transplantation.  
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CH AP T E R 8 :   F U T U R E  W O R K 
 
 

The SPARC-targeted aminoSPARK nanoparticle described in Chapter 4 shows that it is 

possible to target SPARC in vivo and differentiate between prostate cancer subtypes that are 

more likely or less likely to metastasize.  The next step would be to alter the nanoparticle 

platform to a more clinically relevant nanoparticle such as Feraheme.  This should be a relatively 

simple task given the chemical handle of the SPARC-targeting peptide and the proven chemical 

modification possibilities of Feraheme. 

The creation of an amine-functionalized Feraheme opens up many possibilities of 

conjugation to a variety of amine-reactive molecules and many of these will be explored.   

Among those include FMT imaging using FH-Cy5.5, and combined PET-MRI with DTPA-

CyAl5.5-FH.  Further experiments with ProRho-FH, the cell-loading nanoparticle, include 

loading of cells transfected with luciferase so that both bioluminescent and MR imaging can be 

compared.  Various experiments involving the homing properties of the mesenchymal stem cells 

to regions of pathology can also be carried out.  ProRho-FH can play a role in biological 

investigations of cell migration and development of cell-based therapeutics.   Potential 

drawbacks include the dilution of signal upon cell division, inability to determine the viability of 

cells from the iron label, and inability to determine whether the iron is still within the cell.  
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CH AP T E R 9 :   C O N C L U S I O N S 

A N D  S U M M A R Y  O F  W O R K 
 

This dissertation employs several formulations of polymer-coated iron oxide 

nanoparticles for medical imaging applications.  All nanoparticles were either synthesized in-

house or purchased and then modified for specific targeting or reporting functionalities.  General 

chemical methodologies with wide applications to nanomaterial development are presented  here 

alongside an agent for targeting a particular biological protein, showing a large scope of work 

from creating broadly applicable toolkits to addressing specific clinical problems. 

A wide range of medical imaging applications of polymer-coated iron oxide 

nanoparticles have been presented in this dissertation.  Conjugation of a targeting ligand to a 

nanoparticle that can then find the target is shown as a way to stratify an aggressive form of 

prostate cancer, a major clinical need.  A screening method was presented for optimizing the 

formulation of polymer-coated iron oxide nanoparticles for maximal relaxivity and stability 

given the constraints of working with raw materials that are biocompatible to achieve clinically 

relevant preparations of nanoparticles.  The optimal nanoparticle resulting from the screen, a 

carboxymethyl dextran-coated nanoparticle, was similar in composition to Feraheme, a recently 

FDA-approved commercially available superparamagnetic polymer-coated iron oxide 

nanoparticle.  An amine-functionalized version of Feraheme was created to facilitate 

bioconjugation and a variety of different Feraheme-based nanoparticles were synthesized as 

examples, although there are a multitude of possibilities for other amine-reactive molecules to be 
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attached to Feraheme.  A cell-labeling nanoparticle comprised of Feraheme and protamine, 

another safe FDA-approved injectable drug, was synthesized.  It was shown that this ProRho-FH 

nanoparticle readily labels cells and can be visualized by both optical methods and MR imaging.  

ProRho-FH is safe and effective and is an excellent replacement for Feridex-based cell labeling 

formulations, given that Feridex has recently been discontinued.   

It is our hope that this cross-disciplinary contribution will be beneficial to physical 

scientists, chemists, materials scientists, biologists, medical imaging professionals, and 

biomedical researchers as they all strive to improve medical imaging technology.  Advances in 

nanoparticle imaging agents will facilitate diagnoses, prognoses, aid in the development of new 

diagnostic and therapeutic agents, and ultimately improve patient care.
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