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Abstract

The versatility of computational design as an alternative @ design by nanofabrication
has made computers a reliable design tool in nanophotonidSiven that almost any
2d pattern can be fabricated at infrared length scales, therexists a large number of
degrees of freedom in nanophotonic device design. Howewverrent designs are ad-
hoc and could potentially bene t from optimization but there are several outstanding
issues regarding PDE-based optimization for electromagisn that must rst be
addressed: continuously and accurately deforming geometobjects represented on
a discrete uniform grid while avoiding staircasing e ectsieducing the computational
expense of large simulations while improving accuracy, mging the breakdown of
standard absorbing boundary layers for important problemsnding robust designs
that are impervious to small perturbations, and nally distinguishing global from
local minima. We address each of these issues in turn by deyghg novel subpixel
smoothing methods that markedly improve the accuracy of smhations, demonstrate
the failure of perfectly matched layers (PML) in several imprtant cases and propose
a workaround, develop a simple procedure to determine the lidity of any PML
implementation and incorporate these and other enhancentsninto a exible, free
software package for electromagnetic simulations based the nite-di erence time-
domain (FDTD) method. Next we investigate two classes of digg; problems in
nanophotonics. The rst involves nding cladding structures for holey photonic-
crystal bers at low-index contrasts that permit a larger chss of materials to be used
in the fabrication process. The second is the development afliabatic tapers for
coupling to slow-light modes of photonic-crystal wavegueas that are insensitive to
manufacturing and operational variability.
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Education is Not the Filling of a Pail but the Lighting of a Fire.

- William Butler Yeats
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exponential. Filter-diagonalization requires many fewewptical periods

than the decay timeQ, whereas curve tting requires a simulation long
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5-11 Root-mean-square error in elds in response to a constdrequency
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resonator (inset," = 11:56), for frequency-domain solver (red squares,
adapted from Meep time-stepping code) vs. time-domain metk (ma-
genta triangles, running until transients decay away). Gren diamonds
show frequency-domain BICGSTABL: solver for ve times more stor-
age, accelerating convergence. Blue circles show time-@gmmethod
for a more gradual turn-on of source, which avoids excitinghg-lived

resonances at other frequencies. . . . . ... .. ... ... .....
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scripting interface (the Scheme language). . . . ... ... .. ... 139
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6-8 Scaling of the absorption suppression factor ( versus core radius
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amenable to brute-force computation for veri cation purpses. . . . . 169

7-2 Top. A taper coupling uniform and slow-light waveguide structtes.

Bottom. Its taper shape functions. . . . . . .. ... .. ... .... 170

7-3 A piecewise-linear taper shapewith n = 4, with grid points ug;:::; u,.
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7-7

7-8

Comparison of coupled-mode theory and brute force vecation method
(CAMFR [21, 22]) for a linear taper from length of 1 taper pend
through 100. The excellent agreement between the fast coagimode
theory semi-analytical solver (blue circles) and the mucHawver brute-
force method (red squares) to compute the objective functigpermits

use of the former to quickly explore a large parameter space ihe
robust optimization. . . . .. .. .. ... ... 183
Comparison of brute force computation (solid circles)nal coupled-
mode theory (hollow circles) of re ections from nominal tapr designs
optimized for each taper length. The performance of the nomal taper

is clearly ruined by the slight pixellization e ects introduced by the
brute-force solver. . . . . . ... 184
Brute force computation of re ections from linear (gree), nominal
(blue) and robust (red) taper designs for each length. The perior
performance of the robust tapers, showing an exponential ctease of
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solver's pixellization. . . ... ... ... ... ... ... ....... 18
Taper pro les of linear (green), nominal (blue) and robst (red) designs

for taper length of 20. The slow-light, periodic waveguidetisicture is

at u = 0 on the left and the standard, strip waveguide is on the righ

of the axis. Note the delicate features of the nhominal taperhich arise
from sensitive interference e ects. The robust taper pro¢ varies more
gradually and has superior performance under the slight @Xizations

e ects of the brute-force solver. . . . . . . . . . . ... ... ... .. a7
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Chapter 1

Introduction

Progress in nanophotonics has been inextricably linked withe development of novel
numerical modelling and design tools. These tools have beesed to study photon
modes whose solution are almost always non-analytical ankdus necessitate a com-
putational approach. Some common methods include nite-dirence time domain
(FDTD) [215], nite element (FE) [41], frequency domain planewave expansion eigen-
solvers [107], transfer matrix [22] and boundary element43]. Each approach has its
own advantages and disadvantages and is well suited for patlar tasks: FDTD is
commonly employed to compute scattering spectra, cavity senances and for visual-
ization of eld patterns; FE is especially useful for problms involving metals where
length scales vary greatly in di erent media; planewave exmsion of Bloch modes for
computing dispersion relations of photon modes; and traresf matrix and boundary
element methods for scattering phenomena over large dist@s. These computational
tools are increasingly being used to study light-matter irgractions in new and novel
regimes.

Photonic crystals (PhC) are periodic dielectric structure for which there exists
a photonic bandgap when the wavelength of light is comparablto the lengthscale
of the periodicity. These nanoscale structures were rst gtlied in one dimension by
Lord Rayleigh in 1887 who used wave scattering phenomenondescribe their prop-
erties. It was not until one hundred years later that analoges for higher dimensions

were proposed for inhibiting spontaneous emission of atorf#&11] and localization of
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light [100]. Among the many applications for PhCs are deviceomponents for inte-
grated optics: waveguides [66], Iters [67], switches [2D@nd optical bu ers [243].
The vast and growing body of literature in the last twenty yeas is a testament to the

versatility of PhCs in molding the ow of light with unprecedented control.

The ability to fabricate almost any 2d and increasingly 3d pierns at infrared
length scales permits a huge number of degrees of freedomamaphotonic device de-
sign. Researchers have hitherto made use of this in simpleinpitive structures mainly
by using apriori knowledge to guide initial design but more rad more are turning to
optimization as a means to explore the design space. Unfontately optimization
requires solving a large PDE that can take several hours fonabjective function
that is both nonlinear and highly non-convex. Furthermore lhere remains several
outstanding issues related to this PDE-based optimizatiothat need addressing: con-
tinuously deforming parameters represented on a discretaitorm grid, resolving the
breakdown of conventional absorbing boundary layers for portant problems, nd-
ing robust designs that are insensitive to fabrication andperational variabilities and

nally discriminating between local and global minima.

One area of computational design that is becoming increagiy important given
recent experimental advances in nanophotonics is that oflvast optimization. Ow-
ing to delicate interference e ects of scattered electrongaetic waves with dielectric
structures, slight perturbations arising in device fabriation or operation conditions
may signi cantly deteriorate nominal performance. Such sesitivity mandates robust
designs that are insensitive to such irregularities. In ralst optimization, one must
simultaneously optimize potentially thousands of designgsameters while pessimizing
uncertainties (optimizing the worst case) and thus a singleptimization-based design

may require the PDE to be solved thousands or even tens of trgands of times.

Signi cant improvements can potentially be gained by expliting intrinsic features
of robust optimization: the holy grail would be to marry the gtimization and the
pessimization with the iterative PDE solver. This would inwlve updating the design
parameters and pessimizing the uncertaintieduring iterations of the PDE solver

based on the inexact solution; and would provide the bene tfonding an optimal
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solution at a cost of iteratively solving the PDE once.

A well-known bottleneck for non-convex problems is that laad methods routinely
get stuck in local optima; to address this, the optimizations usually repeated numer-
ous times with di erent initial conditions and the best-peiforming design ultimately
chosen. There are a variety of global optimum approaches btiley become ex-
ponentially expensive in higher dimensions. A heuristic ntteod we call successive
re nement, however, seems to circumvent the issue of getgnstuck in poor local
minima, nding a simultaneously more robust and more global solution. Successive
re nement consists of solving a sequence of design problemish successively ner

resolution starting from the previous coarser design in dacase.

When actually solving the PDEs, impediments to computatioal photonics can act
as serious bottlenecks especially when optimizing over ada design space requiring
numerous iterations. Two major aspects of computational @tromagnetism relevant
to nanophotonics that markedly increase computational cosre the ne resolution
required to model objects with intricate geometries and tha@eed for minimally re-
ective absorbing boundary layers for inhomogeneous medidhe rst is related to
the question of how best to model arbitrary dielectric strutures on a discrete grid
and the second with how best to design absorbing boundary &g with the least

numerical footprint.

A major challenge of computational electromagnetism withidcrete, uniform grids
is in the modelling of non-orthogonal dielectric interface not aligned with the grid.
This issue is also prevalent in device optimization studieshere some shape is contin-
uously varied and accuracy is required to monitor a given ojgtl property (e.g., cavity
quality factor, bandgap, transmitted/re ected ux, etc.) without strange jumps from
numerical artifacts in the data. Typically such \staircasng" e ects often arise in
nanophotonics and signi cantly degrade the accuracy of FDD simulations. Chap-
ters 2 presents a novel subpixel material averaging schemeisotropic and anisotropic
materials based on rigorous analytical arguments derivedom perturbation theory
that greatly improve the accuracy of FDTD simulations. We deonstrate its superior

performance by comparing it to other previously publishedubpixel averaging meth-
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ods. With this new method, researchers can now use modest guting resources to

obtain high accuracy for large simulations.

A standard and popular approach to simulate open boundariesith minimal nu-
merical artifacts in computational electromagnetism is th perfectly matched layer
(PML). PMLs are absorbing boundary layers that surround thecomputational cell
and are theoretically re ectionless. However, in Chapter 3ve show that PMLs ir-
recoverably fail when overlapping inhomogeneous mediagg.photonic crystals) and
lead to large re ections. We then demonstrate a simple rept@ment solution involv-
ing adiabatic absorbers that typically perform just as wellas PMLs and establish
the basic link between the re ections from these absorbersa their correspond-
ing absorber pro le. In Chapter 4, we introduce a simple pradure to validate the
correctness ofany PML formulation by providing analytical insights into key char-
acteristics of PMLs. These ndings will now make simulatios of photonic crystals
and other inhomogeneous media more accurate using FDTD anayaother numerical

methods that use PMLs.

Our developments in subpixel averaging and PML in additiond a number of other

improvements have been incorporated into our exible, fresoftware package for elec

tromagnetic simulations by the FDTD method known as Meep (am@acronym for MIT
Electromagnetic Equation Propagation) detailed in Chapte5. The current range of
Meep's functionality permits simulations in 1d, 2d, 3d or cyndrical co-ordinates of a
large class of electromagnetic phenomena involving arkity anisotropic, nonlinear,
dispersive, active and conductive materials. Meep is alsollfy parallelized so that it
can run on supercomputers for large applications.

Next, we demonstrate the utility of optimization in nanophdonics by focusing on
two important design problems.

Chapter 6 describes a new class of holey photonic-crystalets. These are bers
with a 2d photonic crystal in the cladding where the complet@d bandgap extended
over a range of axial propagation wavevectors acts to con reow light to the waveg-
uide core which is either solid or air. The principal aim of tls research was to

determine how low an index contrast could be found for vari@u2d photonic crystal
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geometries so as to enable a larger class of materials for fabrication of such bers
for slow-light applications. The challenge here is that themaller the index contrast,
the more di cult the problem becomes of nding a structure with a complete bandgap
so we decided to use an optimization strategy to guide the dgs. We were able to
nd designs for an index contrast as low as 2.6:1 which now peits for the rst time
the use of an important class of materials known as chalcogeéa glasses to be used
in the ber drawing process.

Chapter 7 focuses on designing waveguide tapers that can b&ed to couple an
optical mode from a standard dielectric (or strip) waveguid into the slow-light mode
of a photonic-crystal waveguide. Slow-light optical modeare important for the in-
vestigation of a number of interesting physical phenomenauch as nonlinearities,
gain, tunability and magneto-optics. The principal aim of his project was to de-
sign waveguide couplers with maximal transmission of phate over a narrow range
of frequencies near the band edge that are also insensitive fabrication imperfec-
tions. The latter point related to robustness is key as slowght optical modes are
strongly a ected by any irregularities or disorder in the deice. This work was con-
ducted in collaboration with the optimization research grap of Professor Stephen
Boyd at Stanford University where we combined our group's meophotonic design ex-
pertise and semi-analytical numerical tools for electrongametism with their advanced
optimization toolbox. We have been successful in designingaveguide tapers for a
number of di erent 2d structures that operate in the challeging slow-light regime,
were designed with rigorous optimization methods and had mesmall re ections (less

than 1%) suitable for telecommunication applications.
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Chapter 2

Sub-pixel smoothing for dielectric

media

2.1 Summary

Finite-di erence time-domain (FDTD) methods su er from reduced accuracy when
modelling discontinuous dielectric materials, due to thenherent discretization (\pix-
ellization"). We show that accuracy can be signi cantly impgoved by using a sub-pixel
smoothing of both the isotropic and anisotropic dielectridunction, but only if the
smoothing scheme is properly designed. We develop such aessh based on a cri-
terion taken from perturbation theory, and compare it to otker published FDTD
smoothing methods. In addition to consistently achievinghe smallest errors, our
scheme is the only one that attains quadratic convergence tviresolution for arbi-
trarily sloped interfaces. Finally, we discuss additionadi culties that arise for sharp

dielectric corners.

2.2 QOverview

A popular numerical tool for photonics is the nite-di erence time-domain (FDTD)
method, which discretizes Maxwell's equations on a grid ipace and time [215]. Here,

we address di culties in representing a discontinuous perittivity ( ") on such a grid,
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by reviewing previously proposed anisotropic sub-pixélsmoothing schemes adapted
from spectral methods [107,124,153]. The work in this chaptprovides a clear jus-
ti cation for the second-order convergence of prior propesl schemes for isotropic
media in terms of perturbation theory. It enables extensioto anisotropic media and
clari es the role of sharp corners. We show that our method osistently achieves
the smallest errors compared to previous smoothing schenies FDTD [56,110,160].
Subpixel smoothing has an additional bene t: it allows the imulation to respond
continuously to changes in the geometry, such as during optization or parameter
studies, rather than changing in discontinuous jumps as iatfaces cross pixel bound-
aries. This technique additionally yields much smoother cwergence of the error
with resolution, which makes it easier to evaluate the accacy and enables the pos-
sibility of extrapolation to gain another order of accuracy[235]. Unlike methods
that require modi ed eld-update equations [57] or larger gencils and complicated
position-dependent di erence equations for higher ordercauracy [255], our method
uses the standard center-di erence expressions and is edeyimplement requiring

only preprocessing of the materials (free code is availaljliE76]).

The presence of material discontinuities in degrading theraer of accuracy of
underlying nite di erences has been prevalent in a number foother computational
schemes involving solid, uid and heat equations [78,1343]. Here we investigate
the e ects of such discontinuities in computational electmagnetism. When" is
represented by \pixels" on a grid (or \voxels" in 3d), two di culties arise. First, a
uniform grid makes it more di cult to model small features or to optimize device
performance by continuous variation of geometric paramate Second, the pixellized
" may be a poor representation of the dielectric function: dgonal interfaces produce
\staircasing,” and even interfaces aligned with the grid mya be shifted by as much
as a pixel. This increases the computational errors, and caven degrade the rate
of convergence with the grid resolution|as was pointed out n Ref. 57," interfaces
actually reduce theorder of convergence from the nominal quadratic (error  x2)
of standard FDTD to only linear (error X). We address both of these di culties

in this chapter.
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2.3 Designing subpixel smoothing algorithms with

perturbation theory

Our basic approach is to smooth the structure to eliminate t& discontinuity before
discretizing, but because the smoothing itself changes tgeometry we use rst-order
perturbation theory to select a smoothing with zero rst-oder e ect. For isotropic
materials, this approach makes rigorous a smoothing schethat had previously been
proposed heuristically [132,153] and we can now explain gecond-order accuracy.
Advances in perturbation theory have enabled us to extend ik scheme to interfaces
between anisotropic materials, initially for a planewave ethod [124]. Here, we adapt
the technique to FDTD, combined with a recent FDTD scheme wit improved stabil-
ity for anisotropic media [235]. Although this chapter focaes on the case of isotropic
and anisotropic electric permittivity ", exactly the same smoothing and discretiza-
tion schemes apply to magnetic permeabilities due to the equivalence in Maxwell's

equations under interchange of/ and E/H.

There are many ways to formulate perturbation techniques ielectromagnetism.
One common formulation, analogous to \time-independent pirbation theory" in
guantum mechanics [48], is to express Maxwell's equations @ generalized Hermitian
eigenproblenr r E = ! 2'E in the frequency! and electric eld E (or equivalent
formulations in terms of the magnetic eld H) [99], and then to consider the rst-
order change ! in the frequency from a small change " in the dielectric function

"(x) (assumed real and positive), which turns out to be [99]:

R
E  "Ed%

37E Ewx T O (2.1)

whereE and! are the electric eld and eigenfrequency of thenperturbed struc-

ture ", respectively, and denotes complex conjugation.

As was shown by Johnson et al. [105], eq. (2.1) is not valid whe " is due to a
small change in the position of a boundary between two dieteic materials (except in

the limit of low dielectric contrast), but a simple correcton is possible. In particular,
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Figure 2-1: Schematic of an interface perturbation: the i®rface between two ma-
terials "2 and "® (possibly anisotropic) is shifted by some small positioneppendent
displacementh.

let us consider situations like the one shown in Fig. 2-1, wieethe dielectric boundary
between two materials"? and "° is shifted by some small displacement (which
may be a function of position). Directly applying eq. (2.1),with " = ("2
"b) in the regions where the material has changed, gives an im@rt result, and in
particular !=h (which should ideally go to the exact derivatived!=dh) is incorrect
even forh'! 0. The problem turns out to be not so much that " is not small, but
rather that E is discontinuous at the boundary, and the standard method ithe limit
h! 0 leads to an ill-de ned surface integral oE over the interfaces. Forisotropic
materials, corresponding tcscalar "#P, the correct numerator instead turns out to be

the following surface integral over the boundary as shown kjohnson et al. [105]:

z
E "E d®x !
zZ

na ||b 2 1
= =

iD-j> h dA; (2.2
where E¢x and D, are the (continuous) components oE and D = "E parallel

and perpendicular to the boundary, respectivelylA points towards"°, and h is the

displacement of the interface from'@ towards "".

In our previous work spearheaded by Chris Kottke [124] whicls briey re-
viewed here, we generalized eq. (2.2) to handle the case vehttrte two materials are

anisotropic, corresponding to arbitrary 3 3 tensors"? and "° (assumed Hermitian
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Figure 2-2: Schematic 2d Yee FDTD discretization near a dettric interface, showing
the method [235] used to compute the part of Fthat comes from B, and the locations
where various" ! components are required.

and positive-de nite to obtain a well-behaved Hermitian egenproblem). In the gener-
alized case, it is convenient to de ne a local coordinate fn@e (X1; X2; X3) at each point
on the surface, where thex; direction is orthogonal to the surface and theX>; x3)
directions are parallel. We also de ne a continuous eld \vetor" F = (Dy; E;; E3)
so that F; = D, and F,.3 = Eg. The resulting numerator of eq. (2.1), generalizing
eg. (2.2), Kottke et al. showed to be:

z7
F ) "b  Fh dA; (2.3)

where (") isthe 3 3 matrix in eq. (2.6) which reduces to eq. (2.2) wheh is a
scalar multiple " of the identity matrix. (Our assumption that " is positive-de nite
guarantees that",; > 0).

We de ne an interface-relative coordinate frame as in Fig.-2, so that the rst
component \1" is the direction normal to the interface. Prevously, for an interface

between twoisotropic materials "® and "®, Meade et al. [153] showed (without rigor-
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ous analytical arguments) that the proper smoothed permitvtity (in this coordinate

frame) at each point is:

0 1
4!t o o

'L—:% 0 H'i og; (2.4)
0 0 Hi

whereh i denotes an average over one pixel. Equation (2.4) uses theamét'i
for the surface-paralleE components and the harmonic meah' 1i ! for the surface-
perpendicular component. For an interface betweeanisotropic materials, Kottke et
al. [124] showed that the following subpixel smoothing same is the appropriate

choice (having zero rst-order perturbation) [124]:

no__ 1 my:1.
~= h (")il; (2.5)
where (") and its inverse are de ned by
0 1
1 12 "13
"11 1 "1
"y = " n "1 m "21"13 .
( ) % "1 22 "11 23 "11 § ’ (26)
"31 " "31"12 0w "31"13
"11 32 "11 33 "11
0 1
1 12 13
11 11 11
r1= 21 21 12 2113
[ ] % 1 22 1 23 1 § (2'7)
A, 31 12 33 31 13

11 11 11
The derivation of this result is nontrivial and is explainedin Kottke et al. [124]
and we will not repeat it here, but we point out that eq. (2.4) $ now obtained as the

special case for isotropit.

2.4 Analysis of smoothing perturbation

Here we review work rst outlined by us for isotropic media [8] and later generalized

by Kottke et al. to anisotropic media [124]. In any numericalmethod involving the
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Figure 2-3: TE eigenfrequency error vs. resolution for a Bgg mirror of alternating
air and " = 12 (inset).
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solution of the full-vector Maxwell's equations on a discte grid or its equivalent, such
as the planewave method above [107] or the nite-di erenceihe-domain (FDTD)
method [215], discontinuities in the non-discretized diettric function” (and the cor-
responding eld discontinuities) generally degrade the aaracy of the method, typi-
cally reducing it to only linear convergence with resolutio [57,107]. Unfortunately,
piecewise-continuous is the most common situation for computational simulations
so a technique to improve the accuracy (without switching t@an entirely di erent
computational method) is desirable. One simple approach @h has been proposed by
several authors is tasmooththe dielectric function, or equivalently to set the" of each
\pixel" to be some average of' within the pixel, rather than merely sampling” in a
\staircase" fashion [56,107,110,132,153,160,166]. Udnately, this smoothing itself
changes the structure, and therefore introduces errors. &tproblem is closely related
to perturbation theory: one desires a smoothing df that has zero rst-order e ect,
to minimize the error introduced by smoothing and so that theunderlying second-
order accuracy can potentially be preserved. At an interfacbetween two isotropic
dielectric materials, the rst-order perturbation is given by eq. (2.2), and this leads
to an anisotropic smoothing: one average$ ! for eld components perpendicular to
the interface, and average$ for eld components parallel to the interface, a result

that had previously been proposed heuristically by severauthors [107,132,153].

In this section, we generalize that result to interfaces beten anisotropic materi-
als, and illustrate numerically in the following sectionshat it leads to both dramatic
improvements in the absolute magnitude and the convergencate of the discretiza-
tion error. In the anisotropic-interface case, a heuristisubpixel smoothing scheme
was previously proposed [107], but Kottke et al. [124] shodi¢hat this method was
suboptimal: although it is better than other smoothing schmmes, it does not set the
rst-order perturbation to zero and therefore does not minnize the error or permit
the possibility of second-order accuracy. Speci cally, atiscussed more explicitly be-
low, a second-order smoothing is obtained by averaging") and then inverting (")
to obtain the smoothed \e ective" dielectric tensor. Becawse this scheme is analyti-

cally guaranteed to eliminate the rst-order error otherwse introduced by smoothing,
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Figure 2-4: TE eigenfrequency error vs. resolution for a sgre lattice of elliptical air
holes in" =12 (inset).
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we expect it to generally lead to the smallest numerical em@ompared to competing
smoothing schemes, and there is the hope that the overall a@ngence rate may be

guadratic with resolution.

First, let us analyze how perturbation theory leads to a smdhing scheme. Sup-
pose that we smooth the underlying dielectric tensot(x) into some locally aver-
aged tensor" (x), by some method to be determined below. This involves a chg@

" =" " which is likely to be large near points wheré is discontinuous (and,
conversely, is zero well inside regions whefeis constant). In particular, suppose
that we employ a smoothing radius (de ned more precisely b@k) proportional to
the spatial resolution x of our numerical method, so that " is zero [or at most
O( x2?)] except within a distance x of discontinuous interfaces. To evaluate
the e ect of this large perturbation near an interface, we mst employ an equivalent

reformulation of eq. (2.3):
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Figure 2-6: Eigenfrequency error vs. resolution for a cubiattice of " = 12 ellipsoids
in air (inset).

! F F d®x; (2.8)

where = (™ ("). Itis sucient to look at the perturbation in !, since
the same integral appears in the perturbation theory for manother quantities (such
as scattered power, etc.). If we lex; denote the (local) coordinate orthogonal to the
boundary, then thex; integral is simply proportional to dx;+ O( x?): since
F is continuous and = 0 except near the interface, we can pulF out of the x;
integral to lowest order. That means, in order to make the rsorder perturbation
zero for all eldsF, itis su cient to have R dx; = 0. This is achieved by averaging

as follows.

The most straightforward interpretation of \smoothing" would be to convolve"

R
with some localized kernebk(x), where s(x) d®x = 1 and s(x) = 0 for jxj greater
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than some smoothing radius (the support radius) proportioal to the resolution X.
That is, "(x) = " s = R (y)s(x y)dd. For example, the simplest subpixel
smoothing, simply computing the average df over each pixel, corresponds te = 1
inside a pixel at the origin ands = 0 elsewhere. However, this will not lead to the

R
desired = 0 to obtain second order accuracy. Instead, we employ:

Z
)= () sl= * Is(x y)dy (2.9)

where ! is the inverse of the (") mapping, given by egs. (2.7) and (2.6) re-
spectively.

The reason why eq. (2.9) works, regardless of the smoothingrkel s(x), is that

Z Z Z
d*x = d® ()] s(x y)dly "(x)
7 Z
dy ["(y)]  s(x y)dy 1

—0: (2.10)

This guarantees that the integral of is zero over all space, but above we re-
quired what appears to be a stronger condition, that the lodainterface-perpendicular
integral R dx; be zero (at least to rst order). However, in a small region wére
the interface is locally at (to rst order in the smoothing r adius), must be a
function of x; only by translational symmetry, and therefore eq. (2.10) iplies that

dx; = 0 by itself. Although the above convolution formulas may lok compli-
cated, for the simplest smoothing kerne$(x) the procedure is quite simple: in each
pixel, average (") in the pixel and then apply ! to the result. (This is not any
more di cult to apply than the procedure implemented in Ref. 107, for example.)

Strictly speaking, the use of this smoothing does not guartee second-order ac-
curacy, even if the underlying numerical method is nominallsecond-order accurate
or better. For one thing, although we have canceled the rsbrder error due to

smoothing, it may be that the next-order correction is not seond-order. Precisely
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this situation occurs if one has a structure with sharp dietdric corners, edges, or
cusps, as discussed in Ref. 105: in this case, smoothing $&mla convergence rate
between rst order (what would be obtained with no smoothingy and second order,
with the exponent determined by the nature of the eld singudrity that occurs at

the corner. This is discussed in more detail in Ch. 2.8 below.

2.5 Stable FDTD eld-update implementation

An additional di culty for anisotropic material tensors occurs in FDTD: to accu-
rately discretize the spatial derivatives, each eld compment is discretized on a
di erent grid. In the standard Yee discretization for grid wordinates [;j;k] =
(i x;j y;k 2z), the E, and Dy, components are discretized ati [+ 0:5;]; k] while
Ey/Dy are at [1;j +0:5;k] and E,/D, are at [i;j;k + 0:5] [215]. At each time step,
E = " 1D must be computed, but any o -diagonal parts of' couple components
stored at di erent locations. For example, a nonzero“(,) ! means that the com-
putation of E, requiresDy, but the value of Dy is not available at the same grid
point as E4, as depicted in Fig. 2-2. One approach is to average the foudjacent
D, values and use them in updatings,, along with ("4,) * at the E4 point [69,235].
This approach, however, is theoretically unstable and leado divergences for a long
simulation [235]. Instead, a modi ed technique was recentlshown to satisfy a nec-
essary condition for stability with Hermitian " [235]: as depicted in Fig. 2-2, one rst
averagesDy at [i;j  0:5k] and multiplies by ("x,) * at [i;j; k ], and then averages
the two results at [;;j;k ] and || + 1;j;k] to update E« at [i + 0:5;j;k]. (Although
Ref. 235 derives nsu cient condition for stability with inhomogeneous media once
the Yee time discretization is included, this method has beestable in all numerical
experiments to date.) We use this scheme here, and nd that greatly improves sta-
bility compared to the simpler scheme from the previous chégr [69]. The subpixel
averaging is performed as follows. At th&, point [i +0:5;]; k] (orange dot in Fig. 2-
2), the smoothed*is computed by eq. (2.5), averaging over the pixel centered that

point. Then, *~is inverted to obtain (* 1), which is stored at theE, point. The
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subpixel averaging* is also performed for a pixel centered at the;|; k ] point (blue
dot) halfway between twoD, points (red dot), and (*~ %), is computed and stored
at that point. Similarly for other components. (Note that the *~tensor from eq. (2.5)
must be rotated from the interface-normal to Cartesian codiinates at each point.)
Thus, for each Yee cell in three dimensions, the subpixel agging is performed four
times, obtaining (~ 1)x at[i+0:5;j;k], (*~ 1),y at[i;j +0:5;k], (*~ 1), at[i;j; k +0:5],
and all o diagonal components are atifj; k ][in other words, we apply the same
averaging procedure eq. (2.5) to pixels centered around drent points/corners in the
Yee cell, and then for each point we store only the component$" * necessary for
that point. Each component of" ! need only be stored at most once per Yee cell,
S0 no additional storage is required compared to other antsopic FDTD schemes.

After this smoothing, the anisotropic FDTD scheme proceedsithout modi cation.

2.6 Numerical performance of methods for isotropic

media

To evaluate the discretization error, we compute an eigemfguency! of a periodic
(square or cubic, period) lattice of dielectric shapes with 12:I' contrast, a photonic
crystal [99]. In particular, we compute the smallest for an arbitrarily chosen Bloch
wavevectork (not aligned with the grid), so that the wavelength is compaable to
the feature sizes. We perform an FDTD simulation with Blochperiodic boundaries
and a Gaussian pulse source, analyzing the response with #erkdiagonalization
method [145] to obtain the eigenfrequency. This is compared to the \exact"!
from a planewave calculation [107] at a very high resolutigrplotting the relative
error j! I oj=!o versus FDTD resolution. ! is a good proxy for other common
computations, because both the change in the frequency anuetscattered power for
asmall " goas "jEj?to lowest order [108]. We compare to three other smoothings.
The simplest is to use the scalar medtfii for all components, [56] which is incorrect for

the surface-normal elds. Kaneda [110] proposed an anisopic smoothing that leads
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to diagonal*~ ! tensors. We also consider the \VP-EP" scheme, [160] whicheésactly

the diagonal part of eq. (2.4) fors = 1. Both Kaneda and VP-EP are equivalent to

eg. (2.4) for at interfaces oriented along the grid Xyz) directions, but they do not

satisfy the perturbation criterion for diagonal interfaces. Yet another method [166]
was found to be numerically unstable for our test cases, whigrevented us from
evaluating it; however, it is equivalent to eq. (2.4) only fo at x=y=z interfaces.

Other schemes, not considered here, were developed for @etrtonductors [215, 249]
or for non-Yee lattices in 2d. [164]

To start with, we look at a 1d case in Fig. 2-3 where Kaneda, VEP, and Nadobny
are equivalent to our method: a distributed bragg re ector DBR) along the x direc-
tion, with a k vector in the xy plane so that the eigen eldE has components both
parallel and perpendicular to the interfaces. We nd that b¢h the no-smoothing

and simple mean- cases both have only linear convergence, whereas the newhoelt
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(and Kaneda and Nadobny) have quadratic convergence.

Since Kaneda, VP-EP, and our method are equivalent for grigarallel interfaces
(and we obtain quadratic convergence for all these methods)e focus instead on
a more complicated case: a square lattice of elliptical airoles shown in the inset
of Fig. 2-4, for the TE polarization (E in the 2d plane). Our new method (hollow
squares) has the smallest errors by large margin, while theaeda and VP-EP meth-
ods are actually worse than no smoothing. As mentioned abowal methods except
ours converge linearly, whereas we expect our method to begmptotically quadratic.
As a trick to make the quadratic convergence of our method memapparent, we dou-
ble the smoothing diameter tos = 2 (lled squares), at the expense of increasing the
absolute error.

The TM polarization (E out of the plane) is shown in Fig. 2-5, but is less interest-

ing: all the smoothing methods are equivalent to the simple ean", all decrease the
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error compared to no smoothing, anall methods (including no smoothing) exhibit
guadratic convergence. Sinck is everywhere continuous, TM is the \easy" case for

numerical computation (and perturbative methods [105, 108

In three dimensions, we used a cubic lattice 6f= 12 ellipsoids, with an arbitrary
orientation, in air. The results in Fig. 2-6 again show that he new method has the
smallest error, and is again quadratic. Notice that the ordéng of the other methods

has changed, and in general we observe them to yield erraticcaracy.

2.7 Numerical performance of methods for anisotropic

media

To illustrate the discretization error for the anisotropicsmoothing algorithm of egs. (2.6)
and (2.7), we repeat similar numerical experiments where vempute an eigenfre-
guency! of a periodic (square in 2d or cubic in 3d, period) lattice of dielectric ellip-
soids made of2 surrounded by"?, a photonic crystal [99]. We choos&*® to be random
positive-de nite symmetric matrices with eigenvalues inhe interval [1; 5] (1.45, 2.81,
and 4.98) for"2 and in [9;12] (8.49, 8.78, and 11.52) fof®. We compute the lowest
I for an arbitrary Bloch wavevectork = (0:4;0:2; 0:3)%, giving wavelengths compa-
rable to the feature sizes. In an FDTD simulation with Blochperiodic boundaries
and a Gaussian pulse source, we analyze the response with @rddiagonalization
method [145] to obtain the eigenfrequency, obtaining the relative errorj! ! oj=!g
by comparison with the \exact" ! ; from a planewave calculation [107] at a high res-
olution. We looked at eigenvalue bands 1 and 15 (in 2d) or 1 ari8 (in 3d), where
the higher band is clearly nonplanewave-like (see inset @), to counter suggestions

that subpixel averaging may perform poorly for higher bandf235].

We compare the new smoothing technique of eq. (2.5) to the remoothed case
as well as to two simple smoothing techniques: using the medii [56] and also

1

the harmonic meanh' 1i ~. We do not compare to a previous heuristic that we

had proposed without the benet of perturbation theory [107, since the previous
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chapter already demonstrated that this heuristic (which des not yield zero rst-
order perturbation) is much less accurate than the new metlao[124], and rst-order
FDTD accuracy for that heuristic was also shown in Ref. 235 o did not examine

the isotropic case where eq. (2.4) remains correct].

Results from 2d and 3d simulations are shown in Fig. 2-7 anddri2-8, respectively.
In both cases, similar to our previous results for isotropicnaterials [69], the new
smoothing algorithm has the lowest error, often by an orderfanagnitude or more,
and is the only technique that appears to give second-ordecairacy in the limit of
high resolution. (The simple meart!'i does better than the harmonic meari' i '
probably because it treats roughly two of the three eld compnents correctly [69].)
Similar accuracy is obtained for both lower and higher (noplanewave-like) bands
at comparable resolutions per wavelength (although highdsands require greater
absolute resolution pera, of course, because their wavelengths are smaller). As we
have noted, apparent quadratic convergence obtained in angle structure [107] can
sometimes be fortuitous [124], but we have con dence in thesesults (obtained now
in multiple settings) because they are backed by a clear thgorather than an ad hoc

heuristic.

We repeat a similar experiment this time using a planewave ried consisting
of a preconditioned conjugate-gradient minimization of tb block Rayleigh quotient
from a free-software package [107]. As before, we rst coter a two-dimensional
example problem: a square lattice (period) of ellipses made of 2 surrounded by"®,
where we will nd the lowest! Bloch eigenmode. As above, we choose the dielectric
tensors to be random positive-de nite symmetric matrices ith random eigenvalues
in [2;12] for "2 and in [15] for "?, and the ellipses are oriented at an arbitrary
angle, at an arbitrary Bloch wavevectorka=2 = (0:1;0:2;0:3), to avoid fortuitous
symmetry e ects. (The vacuum wavelength corresponding to the eigenfrequencly
is =5:03a.) For each resolution x, we assign ar' to each pixel by computing ?
of the average of (") within that pixel. Then, we compute the relative error !=!
(compared to a calculation at a much higher resolution) as aifiction of resolution.

For comparison, we also consider four other smoothing teghoes: no smoothing,
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averaging" in each pixel [56], averaging ! in each pixel, and a heuristic anisotropic
averaging proposed by Ref. 107 in analogy to the scalar ca3ée results are shown in
Fig. 2-9 and show that the new smoothing technique clearlydds to the lowest errors

I=! . Also, whereas the other methods yield clearly rst-orderanvergence, the new
method seems to exhibit roughly second-order convergencehe no-smoothing case
has extremely erratic errors, as is typical for stair-casgnphenomena.

In Fig. 2-10, we also show results from a similar calculatioim three dimensions.
Here, we look at the lowest eigenmode of a cubic lattice (ped a) of 3d ellipsoids
(oriented at a random angle) made of 2 surrounded by"®, both random positive-
de nite symmetric matrices as above. The frequency, at an arbitrarily chosen
wavevectorka=2 = (0:4;0:3;0:1), corresponds to a vacuum wavelength = 3:14a.
Again, the new method almost always has the lowest error by ade margin, especially
if the unpredictable dips of the no-smoothing case are exded, and is the only one
to exhibit (apparently) better than linear convergence.

Our previous heuristic proposal from Ref. 107, while bettehan the other smooth-
ing schemes (and less erratic than no smoothing), is cleanhferior to the new method.
Previously, we had observed what seemed to have been quadratonvergence from
the heuristic scheme [107], but this result seems to have be®rtuitous|jas we
demonstrated recently, even non-second-order schemes sametimes appear to have
second-order convergence over some range of resolutiona fmarticular geometry [69].
The key distinction of the new scheme, that lends us greateoi dence in it than
one or two examples can convey, is that it is no longer heurist The new smoothing
scheme is based on a clear analytical criterion|setting the rst-order perturbative
e ect of the smoothing to zero|that explains why it should be an accurate choice in

a wide variety of circumstances.

2.8 Field singularities at sharp corners

Finally, we consider a qualitatively di erent case, in whith none of the methods

satisfy our zero-perturbation criterion: the presence of aharp corner leads to a
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new eld singularity. Figure 2-11 shows the error for a squar lattice of tilted air
squares in" = 12 (inset). Because our new method at least handles the atdges
properly, it still has lower error than other smoothing sches, although suboptimal
handling of the corner limits the dierences. Fits of this déa indicate that our
method seems to be converging asx*4, and in fact this can be predicted analytically.
Quite generally, any corner leads to a singularity wher& diverges asrP * for a
radius r from the corner, with p given by a transcendental equation in the corner
angle and"'s (here,p 0:702) [4]. This leads to a perturbation in the frequency
jEj?rdr rap ri404 ‘where r is the size of the perturbation (the pixel).
Other smoothing schemes, in contrast, are limited by the lear error from the at

interfaces.

2.9 Conclusion

We have described in this chapter a method for designing sukel smoothing algo-
rithms for dielectric media having zero rst-order e ect. We then used this method to
develop smoothing algorithms for isotropic and anisotropimedia and veri ed their
property of restoring the second-order accuracy of standhFDTD simulations. Be-
cause the new smoothing scheme greatly improves the accyrat FDTD simulation
for isotropic and anisotropic materials, without increasig the computational/storage
cost (other than a one-time preprocessing step), it shouldeban attractive technique.
A remaining challenge is to accurately handle objects withharp corners, where the
resulting eld singularities are known to degrade the accuacy to between rst- and
second-order once the smoothing eliminates the rst-orderror. We are hopeful that
an accurate smoothing can be developed for corners once tloeresponding pertur-

bation theory is derived.
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Chapter 3

The failure of perfectly matched

layers

3.1 Summary

Although perfectly matched layers (PMLs) have been widelysed to truncate numeri-
cal simulations of electromagnetism and other wave equatis, we point out important
cases in which a PML fails to be re ectionless even in the litnof in nite resolution.
In particular, the underlying coordinate-stretching ideabehind PML breaks down
in photonic crystals and in other structures where the mateal is not an analytic
function in the direction perpendicular to the boundary, lading to substantial re-
ections. The alternative is an adiabatic absorber, in whik re ections are made
negligible by gradually increasing the material absorptio at the boundaries, similar
to a common strategy to combat discretization re ections irPMLs. We demonstrate
the fundamental connection between such re ections and th@noothness of the ab-
sorption pro le via coupled-mode theory, and show how to olain higher-order and

even exponential vanishing of the re ection with absorberhickness.
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3.2 Overview

A perfectly matched layer (PML) is an arti cial absorbing medium that is commonly
used to truncate computational grids for simulating wave agations (e.g. Maxwell's
equations), and is designed to have the property that inteates between the PML
and adjacent media are re ectionless in the exact wave equan [17,215]. We de-
scribe important cases in which PMLfails to be re ectionless, even in the exact
(non-discretized) Maxwell equations, most notably in the ase of periodic media
(photonic crystals [99])|contrary to previous suggestions of photonic-crystal \PML"
absorbers [120, 122, 123, 224, 234]. In these cases (sinttaPML re ections due
to discretization error [39, 215]), the remaining approacko reduce re ections is to
\turn on" the absorption gradually, asymptotically approaching an \adiabatic" limit
of zero re ections [103] regardless of whether the mediumriias a true PML|here,
we provide a deeper understanding of all such adiabatic albbers by showing that the
re ection's dependence on the thickness of the absorbingyk is determined by the
smoothness of the absorption pro le, and can be predicted goupled-mode theory
approximations. For a xed absorption pro le (typically quadratic or cubic in pre-
vious work [215]), the re ection decreases with absorber itknessL proportional to
some characteristic power law determined by the smoothneg&sg. 1=L° for quadratic
absorption). (The same smoothness/re ection relation came applied to adiabatic
absorbers in boundary element methods where a true PML is mudess practical to
terminate in nite surfaces like waveguides even in cases eie it is theoretically possi-
ble [251].) As the absorber becomes thicker, smoother aljsttons become favorable,
and we show that it is even possible to obtain exponential dexase of the re ection
with L by new choices of the absorption pro le. The role of PML (wherit works),
compared to ordinary absorbing materials, is to improve theonstant factor in this
re ection convergence, rather than the functional form. Fohomogeneous materials
as in most previous analyses, although some attempts haveebemade to optimize
the PML pro le among various polynomial functions [36,109,49,190], a quadratic or

cubic pro le works so well [215] that further attempts at optmization are arguably
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super uous. On the other hand, for periodic mediajespecialy when operating in
modes with low group velocity|the required absorber thickness can become so large
that the choice of absorption prole becomes critical. We ab discuss the possi-
bility of other optimizations, such as balancing the \trangtion" re ection from the
absorber interface with the \round-trip" re ection due to t he nite absorption, but

these optimizations depend more sensitively on the incidewave medium.

3.2.1 Various PML Formulations

There are several nearly equivalent formulations of PML. Benger's original formula-
tion [17] split the wave solution into the sum of two new articial eld components. A
more common \UPML" (uniaxial-PML) formulation expresses he PML region as the
ordinary wave equation with a combination of arti cial anisotropic absorbing materi-
als [197]. Both of these formulations were originally demd by laboriously computing
the solution for a planewave incident on the absorber inteate at an arbitrary angle
and polarization, and then solving for the conditions in whdh the re ection is always
zero. Both formulations, however, can also be derived by armplex \stretched-
coordinate" approach [40, 189, 218]|this much simpler and nore elegant derivation
of PML reveals its underlying meaning and generalizes morasfly to inhomoge-
neous media, other wave equations, and other coordinate ®rss. In particular, the
coordinate-stretching approach derives PML by an analyticontinuation of Maxwell's
equations into complex spatial coordinates, where the ollating elds become expo-
nentially decaying [40,49,189,218]. (This description sahen be converted back into
a change of materials via a complex coordinate transformati [218,230]. A real co-
ordinate transformation would be suitable only for waves tht are already decaying,
but not propagating, as it would merely act to shorten the diance over which the
wave has decayed to some negligible amount.) By viewing PMk an analytic contin-
uation, it can be shown to be re ectionless even fanhomogeneousnedia such as in
Fig. 3-1(a) [88]: for a waveguide entering the PML perpenditarly, complex coordi-
nate stretching is still possible because the material paregeters (and hence Maxwell's

equations) are analytic functions (constants) in that diretion. The same derivation
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Figure 3-1: (a) PML is still re ectionless for inhomogeneasimedia such as waveguides
that are homogeneous in the direction perpendicular to the L. (b, c) PML is no
longer re ectionless when the dielectric function is disetinuous (non-analytic) in
the direction perpendicular to the PML, as in a photonic cry&l (b) or a waveguide
entering the PML at an angle (c).

of PML, however, also immediately points to situations wher PML is inapplicable
in any problem where the material parameters areot described by analytic func-
tions in the direction perpendicular to the boundary, a re &tionless absorber cannot
be designed by complex coordinate stretching. As discussedmore detail below,
this means that \PML" is not re ectionless for photonic crysals as in Fig. 3-1(b)
where the dielectric function varies discontinuously in ta direction perpendicular to
the boundary, or even in cases where a dielectric waveguidisithe PML obliquely
[Fig. 3-1(c)]. (In fact, even for rare cases in which an odaiting dielectric function
is analytic in the PML direction, we will explain that the analytic-continuation idea

still does not yield a useful PML absorber in the discretizedquations.)

3.2.2 PMLs in Photonic Crystals

Previous suggestions to apply PML to photonic crystals by siply overlapping a

\PML" anisotropic absorber with the periodic dielectric function [120, 122,123,224,
234] (including a similar suggestion for integral-equatiomethods [183]) were there-
fore not \true" PML media in the sense that the re ection will not go to zero even in
the limit of in nite resolution. In this thesis, we will refer to such an absorbing layer as

a pseudo-PML(pPML). (In the special case of an e ectively one-dimensial medium
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where there is only a single propagating mode, such as a seghiode waveguide sur-
rounded by a complete-bandgap medium, it is possible to amge an \impedance-
matched" absorber to approximately cancel that one mode [Bh or alternatively

to specify analytical boundary conditions of zero re ectin for that one mode [162].
More generally, in a transfer-matrix or scattering-matrixmethod where one explicitly
computes all propagating modes and expands the elds in thdtasis, it is possible to
impose analytically re ectionless boundary conditions (5, 182], but such methods
become very expensive in three dimensions.) These previ@ughors were neverthe-
less able to observe small re ections in a pPML only becauskeay overlapped the
pPML with many periods of the crystal and thereby turn on the f°ML very grad-

ually. As we explain below, such absorbing layers are moregperly understood as
adiabatic absorbergather than PML media, and indeed the \PML" property only

improves the constant factor in the long-wavelength limit ban e ective homogeneous
medium, or in any case where there are large homogeneous-enial regions compared
to the wavelength. Moreover, as we describe, the re ectionsorsen rapidly as the

group velocity decreases (e.g. as a band edge is approached)

Even in the case of a homogeneous medium (or one uniform in ttieection per-
pendicular to the boundary), where true PML applies, there i@ well-known numerical
re ections due to the nite discretization [39,215]. It is ®metimes claimed that the
solutions for a PML converge exponentially to the solution fothe open problem as
the PML thickness is increased [130,259]. This is true, buinty in the limit where
the discretization error is negligible. Once the discret@#ion re ections dominate,
we show in Ch. 3.7 that the convergence rate with PML thicknesdepends on the
smoothness of the PML pro le in the same way as for any other &@batic absorber,
and the rate is only polynomial for a xed polynomial pro le. That is, there is a uni-
versal relationship between smoothness and re ectivity foall adiabatic absorbers,
whether discrete or continuous and whether PML or non-PML. @er authors have
remarked that the numerical re ection seems to be dominatetly the discontinuity
in the pro le or its derivatives at the PML boundary [215], bu have not presented a

precise analysis of the relationship between convergencedamoothness.
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3.3 PMLs versus Adiabatic absorbers

The notion of an adiabatic absorber is an old idea. Anechoiha@mbers have been
used to provide minimally re ecting walls for echo suppregsn in acoustic and electro-
magnetic wave experiments [46]. The chamber walls are typity made of pyramid-
shaped pieces of lossy materials where the graded-geometrg le is a stand-in for
the continuously-varying conductivity pro le of numerical absorbing boundary layers.
Given that the wavelength of sound waves in air is commensueawith radio waves
in vacuum (i.e. centimeters), the same chamber design can hsed for both types
of waves (albeit constructed with di erent radiation absobent materials). Anechoic
chambers continue to be widely used for a number of applicatis including acous-
tic speaker testing, RF antenna design, and measurements radise radiation from

industrial machinery.

PMLs have also been used in a number of di erent areas outsidé computa-
tional electromagnetism: modelling acoustic waves in uoifm media [14, 113, 140],
uids [203], periodic media (phononic crystals) [128,15981,213] and even piezoelec-
tric crystals [33] as well as in simulating the Schrodingergeation [3,256]. However,
similar to electromagnetism, claims of PML for periodic aasstic media (phononic
crystals) [128,159,181,213] appear to be erroneous for Hane reason as for photonic

crystals in this chapter and are really just another examplef adiabatic absorbers.

The following chapter is structured as follows. We begin, i€h. 3.4, with a very
brief review of the derivation of PML in the simple case of onand two dimensions,
and de ne the key quantities. Then, in Ch. 3.6, we explain andemonstrate the failure
of PML for periodic media, even in the simplest case of onergensional structures
where only normal-incident, non-evanescent waves are peag and even when the
dielectric function varies analytically (sinusoidally). In fact, in this case, pPML may
do no better than an ordinary absorbing medium (e.g., a scalalectric conductivity).
Next, in Ch. 3.7, we analyze the relationship of the re ectio to the smoothness of
the absorption prole, and show via both 1d and 2d numerical aculations that

the asymptotic behavior is predicted by coupled-mode thegras well as the e ect
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of group velocity. In Ch. 3.8, we describe how the coupled-mie understanding of
this transition re ection points the way towards improved &sorbing layers|ideally,

layers whose re ection decreases exponentially with thinkss ot the case even for
true PML with a conventional quadratic pro le, as mentioned above). Finally, we

conclude with some remarks about future directions in Ch. 8.

3.4 Brief review of PML

3.4.1 Mathematical formulation

Consider Maxwell's equations in two dimensionsxy) for the TM polarization, in
which the electric eld (E) is in the z direction and the magnetic eld (H) is in the
Xy plane, for a current sourcel, and a dielectric function"(x;y) in natural units

"o = o=1), with time-harmonic elds (time-dependence e ™) are:

r H= % %'7:/: i"E (3.1)
%z iH (3.2)
%(: itH (3.3)

One can now derive a PML absorbing boundary in thg direction, assuming for now
that " is a function ofy only (e.g., the medium is homogeneous, or a waveguide in
the x direction, near the computational cell boundary). In this ase, one performs an
analytic continuation to complex x coordinates by the transformation:

@ 1 @

@x 1+i W @% (34

in terms of a PML prole (x), which plays the role of a conductivity or absorption
strength. The prole (x) can also be a complex function, where the imaginary part
corresponds to a real coordinate stretching and enhancesethttenuation of purely

evanescent waves [68, 215], but in this thesis we focus on tase of real and the
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absorption of propagating waves. Maxwell's equations themecome:

%( 1+ "_ %: i"E ,+ "E, (3.5)
%%: itH (3.6)
%(: iH ,+ H, (3.7)

Note the "E , and H , terms, which have the form of electric and magnetic con-
ductivities, respectively. The remainingi =! term becomes an integral or convolu-
tion in time-domain and is typically handled by integrating an auxiliary di erential
equation [215], but is trivial in frequency domain. The extesion to PMLs in other
directions is straightforward and is not reviewed here.

In a medium independent of, the wave solutions can be decomposed into normal
modes with x dependence expk4x) and k, > O for right-going waves in a right-
handed [58] medium (e.g. planewaves in a homogeneous medarwaveguide modes
in a waveguide). The point of this transformation (3.4) is tlat these normal modes
are thereby analytically continued to decaying solutionsx@[ik,x R (x9dxq
wherever > 0. The 1=! factor is desirable because, at least in a homogeneous
dispersionless medium, the attenuation factdk,=! is independent of frequency (but
not of incidence angle).

Outside the PML regions, where = 0, the wave equation and thus the solution
are unchanged, and it is only inside the PML (> 0) that the oscillating solution
becomes exponentially decaying with no re ections (in theg) no matter how fast
changes, even if changes discontinuously. After a short distanck in the PML, the
computational cell can then be truncated (e.g. with Dirichét boundaries), with an

exponentially smallround-trip re ection

R

k
47 o

Rround trip € (xo)dxo; (3.8)

where we have started the PML aix = 0, and the factor of 4 is because the re ection

is proportional to the round-trip (2L) eld squared.
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In the exact Maxwell equations, the PML could be made arbitnaly thin by making
very large, but this is not feasible in practice because, oa®&axwell's equations are
discretized (in a nite-di erence or nite-element scheme the re ectionless property
disappears. That is, it is not meaningful to analytically catinue the discretized
equations, and thus in the discretized system there amumerical re ections from
the PML boundary that disappear in the limit of high resolution. To reduce these
numerical re ections, most authors suggest that the PML beurned on gradually,
i.e. that (x) be a continuous function starting at zero, typically chose to grow

quadratically or cubically [215].

3.4.2 Absorption pro le

More precisely, let us de ne (x) in the PML (x 2 [0; L]) by a shape functions(u) 2
[0; 1]:
(X) = os(x=L) (3.9)

where the argument ofs(u) is a rescaled coordinates = x=L 2 [0;1] and ¢ is an
overall amplitude set to achieve some theoretical maximunound-trip absorption Rq
for normal-incident waves in a medium of indexi (k, = 'n ). Using eq. (3.8) forRy,

we de ne:
In Ro
n

I\l :
4n ;s(u9due

0=

(3.10)

For x < 0, outside the PML, =0, i.e. s(u< 0)=0. As L is made longer and longer
for a xed s(u), the PML prole turns on more and more gradually [both because
s(u) is stretched out and because, decreases], and the numerical re ections decrease.
Several authors have suggestes{u) = u? (quadratic) or s(u) = u® (cubic) turn-on

of the PML, which have discontinuities atu = 0 in the second and third derivatives
respectively [215]. In Ch. 3.7, we show that there is a simpt®rrespondence between
the smoothness o§(u) and the rate of decrease of absorption with, as a consequence
of the adiabatic theorem and coupled-mode theory. Note thahe smoothness o§(u)

is still relevant in a discretized system|with a xed resolu tion and wavelength, asL

is increased one samplex(x=L) more and more nely and a discrete version of the
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adiabatic theorem applies [61].

In fact, we will see that the same adiabatic theorem and the s rate of decrease
apply for any absorption, whether or not the absorbing material forms a PM For
example, if we only include on the right-hand-side of eq. (3.5), and neither on the
left-hand-side nor in egs. (3.6) and (3.7), it correspond®tan ordinary scalar electric
conductivity. As we see in Ch. 3.6, the advantage of PML overis ordinary con-
ductivity is not that the re ection decreases faster withL, but that this decrease is
multiplied by a much smaller constant factor (which decreas with increasing resolu-
tion) in the case of PML. This advantage mostly disappears fgeriodic media where
analytic continuation fails, but the same relationship beteen the rate of decrease
and the smoothness o$(u) applies.

In general, therefore, we will divide the re ections from PN into two categories:
the exponentially small round-trip re ections (above), am transition re ections from
the boundary between 6 0 and = 0 (which can arise either from numerical
discretization or from other failures of PML as described ithe next section). It is
possible to obtain exactly zero re ection by balancing theaund-trip and transition
re ections so that they destructively interfere, but this @ncellation can only occur
for isolated wavelengths (and incident angles) [109] andee is not useful in general.
Instead, we will begin by setting the estimated round-trip € ection R, to be negligibly
small (10 ?°) and focus on the transition re ection; we return to the queson of

balancing round-trip and transition re ections in Ch. 3.8.

3.5 Adiabatic theorems in electromagnetism

Adiabatic theorems have been widely used in quantum mechaaiinvolving time-
dependent Hamiltonians where at each temporal cross sectithe solution is expanded
as an eigenmode series [8,43,112,157,169,247]. Such ¢énephave also been applied
to electromagnetism for studying ordinary waveguides [1}18Johnson et al. [102] ex-
tended the adiabatic theorem to strongly-grated waveguide(photonic crystals) with

arbitrary index modulation by generalizing coupled-modehteory to handle arbitrary
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nonuniform gratings using an instantaneous Bloch-mode kbias The analysis yields
a continuous set of di erential equations for the basis coecients and the general
principal is that as the system is varied more and more gradillg these coupling
coe cients converge rapidly to constants (see Appendix A oRef. 102). We will be
returning to similar coupled-mode equations in later seaihs where we compute the

re ection coe cient from the absorbing boundary layer.

3.6 Failure of PML

3.6.1 Homogeneous & inhomogeneous media

To illustrate the failure of PML in periodic media, we considr a nite-di erence
frequency-domain simulation (FDFD, with a second-order{ecurate Yee grid) [44] of
the simplest possible case: a periodic dielectric functidx) in one dimension [so that
we only have theE, and H, elds in egs. (3.5) and (3.7)]. Given a point dipole source
at some position (outside the absorber), we then compute the ection coe cient
from a pPML of thicknessL as a function of bothL and resolution.

Here, pPML (pseudo-PML) is de ned by using egs. (3.5) and (3.7): exagtlthe
same equations as for an ordinary PML, but with an inhomogeoes" function over-
lapping the \PML" as in Refs. 120,122,123,224,234. For corapson, we also show
a non-PML absorber in which is included only in eq. (3.5) but not in eq. (3.7), i.e.
an ordinary electric conductivity only. We consider two dikectric functions: vacuum
(" = 1) for comparison, and a periodic dielectric function"(x) = 6 + 5sin(2 x=a)
that varies from 1 to 11 with perioda. Like all one-dimensional periodic structures,
this "(x) has photonic band gaps that prohibit propagation in certan frequency
ranges [99], but we operate at a vacuum wavelength a slightly below the rst
bandgap (at a wavevectork, = 0:9 =a and vacuum wavelength = 0:959&). The
re ection is computed as the squared amplitude of the re eetd Bloch wave, given by
the total eld minus the incident Bloch wave (computed by nunerically solving for

the Bloch waves of the discretized unit cell). Of course, the are two boundaries,
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at +x and x, but we make the latter re ection negligible by using an abstver of
thickness & on the left (and veri ed that further increasing the left-absorber thick-
ness does not change the result). In this section, we use a draic shape function

s(u) = u? for the absorber prole as de ned above.

The absorber, here, is a pPML because it i3ot derived by analytic continuation
of the dielectric function, and is instead formed by simply pplying the homogeneous-
PML equations on top of the inhomogeneous medium, leading tatrinsic re ections.
However, in this case the periodi¢(x) function is actually analytic in x, so in prin-
ciple onecould have derived atrue PML by using eq. (3.5) with the analytically
continued dielectric function"[x + ,'— R (x9dx9. Unfortunately, this introduces new
problems: the sine of a complex argument has an exponentatirowing real part,
causing the solutions to oscillate exponentially rapidly rad leading to a breakdown
of the discretization as the oscillation exceeds the Nyquifrequency. In practice
therefore, we nd that such a \true" PML with exponentially i ncreasing<["] leads to
large re ections that (at best) decrease extremely slowly it resolution. So, one still
cannot use a true PML in practice for the discretized problenfand the same is true
any analytical periodicity, via Fourier expansion of'). In any case, this possibility is
not applicable in the vast majority of practical periodic stuctures, which more com-
monly involve a discontinuous (non-analytic)", so we do not consider analytically

continuing " (x) further here and focus only on the pPML case.

Figure 3-2 shows the results of these one-dimensional FDFInslations, and the
di erence between the uniform medium (where PML works) andte periodic medium
(where it does not) is stark. In the uniform medium, the re etion from PML rapidly
goes to zero as resolution is increased (and in fact, goes &wa@quadratically with
resolution because FDFD's center-di erence discretizain is second-order accurate),
whereas the non-PML absorber in the uniform medium goes to@nstant nonzero
re ection (the Fresnel re ection coe cient from the exact Maxwell equations). For
the periodic medium, both the pPML and non-PML absorbers betve roughly the
same, going to a constant nonzero-re ection in the high-rekition limit: the pPML

is not re ectionless for the exact Maxwell equations.
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Figure 3-2: Re ection coe cient as a function of discretizaion resolution for both a

uniform medium and a periodic medium with PML and non-PML aberbing bound-

aries (insets). For the periodic medium, PML fails to be re etionless even in the
limit of high resolution, and does no better than a non-PML aborber. Inset: re ec-
tion as a function of absorber thicknesg for xed resolution  50pixels= : as the
absorber becomes thicker and the absorption is turned on neogradually, re ection

goes to zero via the adiabatic theorem; PML for the uniform ntéum only improves
the constant factor.
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3.6.2 Backward-wave structures

Here we identify and explain a fundamental failure of PMLs fobackward-wave struc-
tures. In particular, the stretched-coordinate derivatio of PML suggests that such
waves should be exponentiallygrowing in the PML, and we explain this physically
by pointing out that PML is an anisotropic \absorber" with gain in the longitudinal

direction, which dominates for backward-wave modes.

PML is re ectionless because it corresponds merely to a coteg coordinate
stretchingz ! (1 + ‘!—)z, so that propagating wavese'? are transformed into ex-
ponentially decaying waves'? ?7V» for some PML strength . From this perspec-
tive, an obvious problem occurs for backward waves: ¥, < 0 for vy > 0, then a
+z-propagating wave {4 > 0) will undergo exponentialgrowth for > 0. (This is
entirely distinct from the failure of PML in medium periodic in the z direction as
described in the previous section, which in that case is due the non-analyticity of

Maxwell's equations and lead to re ections but not instabity.)

We demonstrate this PML failure in the case of a backward-wawvaveguide made
of positive-index materials. For example, a hollow metalli waveguide containing
a concentric dielectric cylinder was shown to support baclkwd-wave modes [47].
More recently, the same phenomenon was demonstrated in diélectric (positive-
index, non-dispersive) photonic-crystal Bragg and holeybers, and in general can be
explained as an avoided eigenvalue crossing from a forcedjeleeracy at = 0 [90].
An example of such a structure is shown in the inset of Fig. 3-@&hich shows the cross-
section of a Bragg ber formed by alternating layers of refretive indicesny, = 4:6
(thickness 025a) and n, = 1:4 (thickness 075a) with period a. The central high-
index core has radius @5a and the rst low-index ring has thickness @32a. For this
geometry, one of the guided modes (with angular dependene® and m = 1) has
the dispersion relation! ( ) shown in the inset of Fig. 3-3: at =0, d?'=d 2 < 0,
resulting in a downward-sloping backward-wave region withyv, < 0. As the index
of the core cylinder is varied, this curvature can be changdtbm negative to positive

in order to eliminate the backward-wave region.
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The exponential growth of elds within the PML region is obseved for this struc-
ture as shown in Fig. 3-3. We simulated the backward-wave sicture of Fig. 3-
3(inset) with a nite-di erence time-domain (FDTD) simula tion in cylindrical coor-
dinates [176,215], terminated in the direction with PML layers. Both the forward-
and backward-wave modes were excited with a short-pulse cemt source, and the
elds in the PML region after a long time were t to an exponenial in order to deter-
mine the decay rate. Figure 3-3 plots this decay rate as a fuian of the curvature
@'=@ ?j _, as the core-cylinder index is varied from 2.6 to 5.0. The appence
of negative curvature, which indicates the appearance of aatkward-wave region,
precisely coincides with the decay rate changing sign to expential growth.

In the usual case in which group and phase velocities are otied in the same
direction, the overall rate constant is negative and this asses absorptive loss in the
PML. In the case of backward waves, however, the ratig,=\, is negative, and thus
the overall rate constant is positive, i.e., PML produces ga.

In a homogeneous backward-wave medium, this problem can ba&ved merely
by making < O in the negative-index frequency ranges [53,59]. This stbn is
impossible in the case of Fig. 3-3(inset), however, becausethe same! one has
both forward and backward waves|no matter what sign is chosen for , one of these

waves will experience exponential growth in the PML.

3.6.3 PMLs & adiabatic absorbers

One way of understanding why pPML is not re ectionless for a @riodic medium was
described in the previous section: the equations with \PML'absorption are no longer
derived via analytic continuation of Maxwell's equations,and so the fundamental
justi cation for PML disappears. This has nothing to do with either evanescent
waves or glancing-angle waves, neither of which are presémtone dimension, nor is
it a numerical re ection from discretization (since it doesnot vanish as resolution is
increased). Another way of understanding this is that the mpagating waves in a
periodic medium are Bloch waves [99], and consist of a supesfiion of re ections

from all interfaces (all places wheré' changes) in the medium|when we absorb
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Figure 3-3: Field decay rate within the PML vs. curvature of he dispersion relation
at =0, showing onset of gain forvy < 0 and loss forvy > 0. Inset. Dispersion
relation (of the rst TE band) with vy < O region at = 0, and cross-section of the
Bragg ber.

waves re ected from interfaces within the \PML," we have e ectively terminated the
periodicity and hence see re ections from this termination(Similar but even stronger
re ections are observed if one terminates the periodicitipeforeit enters the absorbing
region [155].)

However, the inset of Fig. 3-2 shows a way in which the re eans can still be
made small for the periodic medium: by increasing the thiclassL of the absorbing
layer. As L is increased, we see that the re ections imll four cases (PML and
non-PML, uniform and periodic) go to zero as 4L® asymptotically (although the
periodic media take longer to attain this asymptotic powerdw). The true PML in
the uniform medium is only di erent in that it has a better constant factor (which
depends on resolution). The reason for this, as describedie next section, is that all

transition re ections can be understood via the same coupglemode mechanism, and
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the 1=L° rate is a consequence of the second-derivative discontiguin s(u) = u?.
This reduction of re ection with L is adiabatic absorption distinct from the PML
concept, and it is such adiabatic absorption that one must Wer understand in order

to e ciently truncate periodic media.

With the understanding that the standard formulation of PML fails for backward
waves, we now turn to a discussion of what can be done instea&s pointed out above,
previous corrections for left-handed media [53,59] are m@alicable here because one
has forward and backward waves at the samle. Since the re ectionless property
of PML fundamentally arises from the coordinate-stretchig viewpoint, and gain is
predicted by coordinate-stretching above, we are led to tr@nclusion that PML must

be abandoned entirely for such backward-wave structures.h& alternative is to use a

71



scalar absorbing material, e.g. a scalar conductivity, which is absorbing for all eld
orientations and therefore cannot lead to gain (unlike in th previous example for
periodic media where an anisotropic \pseudo-PML" could dtibe employed). At the
interface of such a material, however, there will be re eatins. Such re ections can be
made arbitrarily small, however, by turning on the absorpton by a su ciently gradual
taper transition similar to our approach for an unrelated fdure of PML as described
in the next section. Even for PML, numerical re ections due ¢ discretization require
a similar gradual taper. In both cases, the re ectionR(L) goes to zero as the
absorber thicknessL is made longer (and more gradual), and the impact of PML
(when it works) is merely to multiply R(L) by a smaller constant coe cient. Even
without PML, the rate at which R(L) goes to zero can be made more rapid by
reducing the discontinuity in : for example, if (z=L)? (for z > 0) then its
second derivative is discontinuous at the transitiore = 0 and R(L) consequently
scales as 2L*, while if (z=L)® then R(L) 1=LS. Figure 3-4 shows how a scalar
conductivity can be used as a last-resort replacement for PML in the backsdawave
structure of Fig. 3-3(inset). The plot shows the di erencesquared of the magnetic
eld at a test point for absorber lengthsL and L + 1 (which scales asR(L)=L?)
versusL for various conductivity proles . Even with both forward and backward
waves excited, the re ection can indeed be made small for a siently thick absorber
(albeit thicker than a PML for purely forward-wave modes) ad displays the expected

scaling EL%4*2 for (z=L)9 discussed next.

3.7 Smoothness & Re ection

In this section, we demonstrate and explain the relationspibetween the smoothness
of the absorber prole's shape functions(u) and the dependence of re ection on
absorber thicknesd.. The basic principle is that, asL increases, the rate of change of
the absorption (PML or otherwise) becomes more and more graal|as it approaches
a perfectly uniform (or perfectly periodic) limit, there isan adiabatic theoremstating

that the re ections must go to zero. Such an adiabatic theora is the well-understood
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mechanism behind gradual waveguide tapers [186], and adaib theorems also hold
in periodic media with slowly varying unit cells [103], and here is also an adiabatic
theorem for slowly-varying discretized systems [61]. Mareer, as we discuss in the
next section, the rate at which the adiabatic (zero-re ecton) limit is approached is

determined by the smoothness of the transitios(u).

3.7.1 Numerical results

First, however, let us present the results of numerical expgments using second-order

FDFD discretization for four structures: uniform and periaiic media in one and
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two dimensions (with continuous and discontinuou$, respectively). The re ection
versus PML/pPML absorber lengthL in one dimension is shown for uniform media
in Fig. 3-5 and for a periodic medium (the same medium as fordri3-2) in Fig. 3-6,
for a variety of shape functionss(u) = u¢ for exponentsd 2 f 1;2;3;4;5g. In both
cases, there is a striking pattern: the re ection asymptotally follows a power law

1=L2%*2 'which we will explain analytically below in terms of the smothness ofs(u).

In two dimensions, we looked at the boundary re ection from goint source at
the center of the cell. In this case, de ning a single \re edon" coe cient is more
di cult because the point source emits waves at multiple antgs. Instead, we look at
the convergence of the electric eld a& is increased, and de ned aeld convergence

factor
ESE Y xay) B (xy))2

JER (X y)j2

in terms of the electric eld E, at a point (x;y) (chosen roughly halfway between the

(3.11)

point source and the absorbing layer) for two PML/pPML thicknessed. and L + 1.

This di erence should go to zero ad. ! 1 , assuming that the re ection goes to
zero in this limit (and hence the eld converges to the solutin for open boundaries).
Indeed, this adiabatic limit is observed for both the unifom medium (vacuum) in
Fig. 3-7 and for a periodic medium (a square lattice of widtl®:7a square air holes in
" =12) in Fig. 3-8. Again, there is a simple power-law relatioship evident in both

plots: whens(u) = ud, the eld convergence factor goes as=129+*

In 1d, we found that the re ection went as EL?>*? for s(u) = u¢, and in 2d
we found that the corresponding eld convergence factor weras 1=L?%**. These
two results are mathematically equivalent, for the followg reason. Suppose that
the re ection coe cient (for waves at any angle) goes asympitically as 1=L? for
some exponent ; it follows that the re ected electric eld goes as ¥L , and hence
EM(x;y) = EA)(x;y)+ O(1=L ). Substituting this expression into eq. (3.11) and ex-
panding in powers of £L, one nds that the eld convergence factor goes as=1.? *?,
exactly the di erence of 1=L2? that we observed above. [There is a subtlety in this

derivation: it implicitly assumes that the phaseof the O(1=L ) term, i.e. the re ected
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phase, goes to aconstant ds! 1 in order to expand in powers of 2L. This as-
sumption is con rmed by our numerical results, but it is alsopredicted analytically

by the coupled-mode theory result eq. (3.13) in the next seon.]

3.7.2 Analysis

The natural way to analyze waves propagating along a mediunhat is slowly vary-
ing in the propagation direction (sayx) is coupled-mode theory(or coupled-wave
theory) [103,148]: at eaclx, one expands the elds in the basis of the eigenmodes
(indexed by *) of a uniform structure with that cross-section in terms of gpansion
coe cients ¢ (x). (The eigenmodes havex-dependencee * for some propagation
constants -.) The expansion coe cientsc in this basis are then determined by a set
of ordinary di erential equations for dc=dx coupling the di erent modes, where the
coupling coe cient is proportional to the rate of change [hee, the derivative s{x=L)].
In the limit where the structure varies more and more slowlthe solution approaches
an \adiabatic" limit in which the ¢ are nearly constant (i.e. no scattering between
modes). Although coupled-mode theory was originally demded for media that are
slowly varying in the propagation direction [148], it has ben generalized to peri-
odic media with a slowly varying unit cell [103], in which vey similar coupled-mode
equations appear. A similar adiabatic limit has also been deed for slowly varying
discrete systems. Using coupled-mode theory, one can deria universal relation-
ship between the smoothness of the rate of chang{i)] and the asymptotic rate
of convergence to the adiabatic limit. This relationship, drived below, analytically
predicts the convergence rates of the re ection with absodn length observed in the

previous section.

Coupled Mode Theory

We omit the derivation of the coupled-mode equations hereheir general form is
considered in detail elsewhere [103,148]. We simply quotestresult: in the limit of

slow variation (largeL), the equations can be solved to lowest order in=L in terms
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of a simple integral. In particular, if the structure is smothly parameterized by a

shape functions(x=L) (e.g. the absorption pro le as given here), then the amplitde

¢ (corresponding to a re ected powejc j2) of a re ected mode is given to lowest-order
(for large L) by [103]:

Z,

G (L) = so(u)M[S(u)] gl e sl (3.12)
0 [s(u)]

Here,M is a coupling coe cient depending on the mode overlap betwadhe incident
and re ected eld (in the changing part of the structure) and 6 0 is the di erence

i + between the propagation constants of the incident and re ¢ed modes. Both
of these are some analytic functions of the shagéu). In general, there may be more
than one re ected mode, and in a periodic structure the coe @&nt even for a single
re ected mode is a sum of contributions of above form from thei erent Brillouin
zones [103], but it su ces to analyze the rate of convergena# a single such integral
with L. The basic reason for the adiabatic limit is that, ad. grows, the phase term

oscillates faster and faster and the integral of this osalling quantity goes to zero.

Convergence Analysis

There are many standard methods to analyze the asymptoticafigeL) properties of
such an integral. In particular, we apply a technique that ifommonly used to analyze
the convergence rate of Fourier series: one simply integeatby parts repeatedly until
a nonzero boundary term is obtained [26,152]. Each integrah by parts integrates
the e- i term, dividing the integrand by iL  (u), and di erentiates the s™M=
term. (If is real as in the case of waveguides but not absorbers then ves ¢urn
this expression into a Fourier transform, otherwise we have evaluate the expression
explicitly as shown next.) After integrating by parts d times, the boundary term at
u = 0 is zero if the corresponding derivatives(¥(0*) is zero, whereas the boundary
term at u = 1 is always negligible because of the absorption (leading &2 complex
and exponential decay), assuming a small round-trip re e@n Ro. The dominant

asymptotic term is the rst (lowest-d) u = 0 boundary term that is nonzero, since
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all subsequent integrations by parts have an additional faor of 1=L. [Here, we
have assumed thats is a smooth function in (Q1) so that there are never delta-
function contributions from the interior. In systems with purely decaying solutions
(e.g. elliptic equations), mapping the domain [@, Jto [0,1] requires some care since
if the wave oscillations vary too rapidly (exceeding the dgsete grid's Nyquist limit),
large re ections will arise [26].] The result is the followig asymptotic form forc, (L),
independent of the particular details of the geometry or thenodes:

o= s9e) AL ) ¢+ o @) (3.1
where s(¥(0%) is the rst nonzero derivative of s(u) at u = 0*, and integrating by
parts d times yielded a division by ( iL  )? (ipping sign each time). This result
corresponds to what is sometimes called \Darboux's prindgz" the convergence is
dominated by the lowest-order singularity [26], which herés the rst discontinuity
in the rate of changes{u) at u = 0. A similar result applies, for example, to the
convergence rate of a Fourier series: a function that has asdontinuity in the d-
th derivative has a Fourier series whose coe cients, decrease asymptotically as

1=n(®Y [26,152] (thed+1 instead of d is due to the fact that our integral starts with

s9.

Equation (3.13) would seem to imply that the re ection j ¢j? is O(L 29), but
this is not the case because there is a hidderrll factor in the coupling coe cient
M, thanks to the 1=L dependence of ( in eq. (3.10). The coupling coe cient M
is a matrix element proportional to the rate of change of the aterials [103], which
in this case is&; = squ) o 1=L. Therefore, the re ection scales ajMj*=L** =

O(L ©?9*2)) exactly corresponding to our numerical results above.

Other useful results can be obtained from eq. (3.13), and iragicular one can show
that the re ections due to nonuniformity worsen in a periodc structure as a at band
edge (o;! o) is approached [186]. As a quadratic-shaped band-edge !, ( 0)?
is approached, the group velocityy = g—' scales proportional to 0, While the

between the forward and re ected modes is 2( ) Vq. Also, the coupling
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coe cient M is proportional to 1=y, because of the constant-power normalizations
of the incident and re ected modes [103,186]. Hence, by iregion of eq. (3.13), the
re ection jc.j?> = O(vq (2d+4)). For example, the re ection isO(v, 6) for a linear taper
s(u) = u [186]. Because of this unfavorable scaling, an imperfectsaibing layer such
as a pPML is most challenging in periodic structures when opaing close to a band
edge where there are slow-light modes (in the same way thathet taper transitions

are challenging in this regime [186]).

Derivation of re ection coe cient

Here we show how eq. (3.13) is derived from eq. (3.12) usingtmethods of Fourier
analysis, speci cally the integration by parts method. We &rt with

Z,

ab)= s{u) [[S((u))]]éL o [suddu’yy (3.14)

where the upper bound of the integral can be extended tok since  [s(u9] =
2k + 21 (u) is itself complex owing to the absorption prole = (s(u) within the
\PML" region. Using this fact with slight rearrangement of the terms, we arrive at:

0( )M[S(U)] d h i

TN Is(u)l 0” [s(u9]du .
i B du du: (3.15)

G (L)

R R
Equation (3.15) is now in the standard form of udv = uv vdu and after one

iteration of integration by parts becomes:

" #0
M [s(u)] Z, M [s(u)]
0( u) T Is(u)l gl 0“ [s(u9]du J-l SO(U) [s(u)] gl Rou [s(uo)]du (3.16)

L s 5 L [s(u9]

c(L) =

The rst term with integral bounds is zero ass{0*) = 0 on the left boundary and
exponentially approaches zero on the right boundary. Thigdration repeats until a
discontinuity is reached whens(¥(0*) 6 0 resulting in:
+\ M(0%)
s ) Heos)

¢ (L) = W+o @y (3.17)

[ —
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3.7.3 Adiabatic theorems in discrete systems

There is one thing missing from the above analysis, and that the discretized-space
adiabatic case. In a slowly varying discrete system [i.e, m@ling some slow change
sn = s(n x=L) as L grows larger], there is still a proof of the adiabatic theora
(¢ ! 0), but the only published proof is currently for the losslescase (unitary evo-
lution) [61]. Also, an analogous integral form of the lowestrder re ection has not
been presented, nor has the rate of convergence to the adiabdmit been analyzed
in the discrete case. So, our prediction of the asymptotic Beergence rate is rigor-
ously proven only for the case of the continuous-space wavepagation. However,
our numerical results demonstrate that a slowly-changingistcretized system exhibits
exactly the same scaling (e.g. in the PML case for uniform media, wieethe only
re ections are due to discretization). (This seems analogs to the fact that the dis-
cretization error of a discrete Fourier transform convergeat the same rate as the
decay of the coe cients of the continuous-space Fourier ges [26].) In future work,
we hope to further validate our numerical result for the corergence rate in discretized

space with a proper generalization of the coupled-mode aysik.

3.8 Towards Better Absorbers

From the previous section, there is a close relationship lveten the smoothness of
the absorption pro le and the asymptotic convergence ratefahe re ections R(L)
as a function of absorber thickness: if the prole s(u) has a discontinuity in the
d-th derivative (e.g. for s = u%), then the re ection coe cient goes as ¥L?*? for a
xed round-trip re ection. This result raises several intaesting questions. Can one
do better than polynomial convergence? What is the optimalhepe s(u)? And what

if the round-trip re ection is not xed?
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3.8.1 Smoothness & C; functions

The above result relating smoothness and convergence hasagunal corollary: if s(u)
is C, , i.e. all of its derivatives are continuous, then the re edbn goes to zero faster
than any polynomial in 1=L. This is similar to a well-known result for the conver-
gence of Fourier series df; functions [26]; the exact rate of faster-than-polynomial
convergence again depends on the strongest singularity $(u). For example, for
s(u) = (tanh( u) + 1) =2, which goes exponentially to zero as ! 1 and to one
asu! +1 , the re ection should decrease exponentially with., as determined by
contour integration from the residue of the pole au = i= 2 that is closest to the
real axis (similar to the analysis for the convergence of a &der series for an analytic
function [26,63]). However, such an absorption taper woulgquire an in nitely thick
absorber in order to avoid discontinuously truncating the xponential tail of tanh(u).
To have aC; function with a nite absorber, with s(u) =0 for u 0, the s(u) func-
tion must be non-analytic; a standard example of such a furioh is s(u) = et =
for u > 0 (all of whose derivatives go to zero as! 0, where there is an essential
singularity). Becauses(u) = e! ¥V is C, , its re ection R(L) must decrease faster
than any polynomial. Exactly how much faster than polynomi&is determined by
asymptotically evaluating the integral of eq. (3.12) by a s@dle-point method [27,37]:
the result is that R(L) decays asymptotically ase "t for some constant > 0 [27].
This is con rmed by Fig. 3-9, which plots the PML/pPML re ect ion for the 1d uni-
form and periodic cases on a semilog scale ver:?uE, and results clearly approach a

straight line as expected.

Although s(u) = et ¥ yields an exponential convergence of the absorption in
Fig. 3-9, the constant factor and the exponential rate are alost certainly suboptimal
for this arbitrary choice of C; function. If we compare Fig. 3-9 to Fig. 3-5 for the
uniform case and Fig. 3-6 for the periodic case, we see thaisiC,; s(u) is superior
to the polynomial s(u) for the periodic case where PML is not perfect, but inferiofor
the uniform case until the re ection becomes inconsequeati( 10 2°). This is still

a useful result in the sense that one mainly needs to improvépiL for the periodic
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case, whereas PML is already good enough for uniform mediaowtver, one would
ideally prefer a shape function that is consistently bettethan the polynomial s(u),
regardless of the dielectric function, so further exploran of the space of possible
absorption pro les seems warranted. A possibility here wddi be to design a custom
absorber pro le with optimal performance that combines thesuperior constant factor
of quadratic absorbers at short taper lengths with the expantial convergence of
C, absorber at long taper lengths. The functiors(u) = u(e" 1)=(e 1) where
= 2L% is such a function and its performance is demonstrated for 1chiform (see
Fig. 3-10), 1d periodic (see Fig. 3-11) and 2d periodic medsee Fig. 3-12) comparing
to the simple C; prole s(u) = u! . In all three examples, the constant factor of
the more complicated custom absorber pro le is lower for sigaper lengths (since
it approximates a simple quadratic pro le in this regime) while both absorber pro les
clearly demonstrate the exponential convergence as the exdength is increased. This
is just a simple demonstration of the utility of custom absdver pro les for adiabatic

tapers and we hope further research will continue to improwvheir properties.

3.8.2 Balancing round-trip & transition re ections

Finally, in the above analysis we xed the round-trip re ection Ry, via the estimate
of eq. (3.8), to approximately 102° in order for our calculations to isolate the e ect
of the transition re ection. Obviously, in a real application, one is unlikely to require
such low re ections and one will setR, to a larger value, corresponding to a larger
o InRgin eq. (3.10). This will also reduce the transition re ectim [as seen from
eq. (3.13)], but only by a logarithmic constant factor. The lest choice to minimize
re ection for a given absorber length, in principle, is to SeR, to be roughly equal
to the transition re ection for that length. (Another reason to make them equal
is the possibility of destructive interference between theound-trip and transition
re ection [109], but such destructive interference is intrently restricted to narrow
bandwidths and ranges of incident angles and so we do not cent ourselves with
this possibility.) In order to make them roughly equal, one eeds an estimate of the

transition re ection; for example, one could simply numegally t the power law of
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Figure 3-13: Re ectivity vs. PML thicknessL for 1d vacuum (inset) at a resolution
of 50pixels= for s(u) = u?, with the round-trip re ection either set to Rq = 10 16
(upper blue line) or set to match the estimated transition resction from Fig. 3-5
(lower red line). By matching the round-trip re ection R to the estimated transition
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eg. (3.13). The result of such matching is shown in Fig. 3-18rfa quadratic pro le
s(u) = u? in 1d uniform media, and the overall re ection is reduced by dactor of
3{400 compared to a xedRy = 10 8. This is a signi cant reduction, but is not
overwhelming (especially for smallek) and changes the asymptotic convergence rate
eq. (3.13) only by a factor of IR, InL. The drawback of this optimization is that

it is dicult to determine the transition re ection analyti cally for inhomogeneous
media, and so one is generally forced to make a conservatiwtimate of Ry, which

reduces the advantage gained.

3.9 Conclusion

Perfectly matched layers are an extraordinarily powerfulégchnique to absorb waves
incident on the boundaries of wave-equation simulation, lbuhey are not a panacea.
In particular, for cases such as photonic crystals where tmeedium is not analytic in
the direction perpendicular to the boundary, the fundameral coordinate-stretching
idea behind PML breaks down, and the interface has intrinsice ections (even for
simple 1d cases with only normal-incident non-evanescenaves). However, one can
still obtain small re ections by gradually ramping up the \pseudo-PML" (pPML)
absorption, similar to the idea behind the quadratic PML prdes commonly used
to circumvent discretization-based re ections in uniformmedia, forming an adiabatic
absorber. In fact, for both cases (pPML in periodic media anB®ML in discretized
uniform media), we show that the basic mechanism behind thes ection is deter-
mined in the same way by the smoothness of the absorption pte, which can be
predicted analytically by coupled-mode theory. More genally, an adiabatic absorber
is applicable in any situation where a true PML is inconveni@ or impossible to im-
plement.

The same theory then predicts that arexponential absorberone whose re ections
decrease exponentially with some power of the absorber tkinessL, is possible, for
example by using an in nitely di erentiable absorption prole. (In contrast, ordinary

PML in a uniform medium with a quadratic pro le is not an exponential absorber: its
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numerical-discretization re ections decrease as=1°.) We gave a simpleC; example
pro le that led to such exponential absorption, but much fuure work remains to
be done in identifying pro les with both exponential absorgpion and good constant
factors. In particular, one possibility that we will examire in a subsequent manuscript
is an absorption pro le whose smoothness increases with so that it matches simple
qguadratic proles for small L but becomes exponentially smoother with large..

(Such L-varying pro les require a more careful convergence analgs however, in
order to ensure that they approach the adiabatic zero-re ¢ion limit. A closely

related mathematical idea is explored in Ref. 27.)
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Chapter 4

A simple validation scheme for

perfectly matched layers

4.1 Summary

We introduce a numerical method to verify the correctness @lerfectly matched layer
(PML) absorbing boundaries. Our method is straightforwardand can be applied
to any PML regardless of implementation. To demonstrate itatility, we derive a

correct uniaxial-PML formulation for lossless, non-dispsive, anisotropic media for
the nite-di erence time-domain (FDTD) method. Our formul ation consists of at
most four auxiliary variables and is as computationally e dent in storage as previous
implementations based on the split- eld approach. We numearally verify the validity

of our method and also demonstrate that certain previouslyeported formulations

are incorrect.

4.2 Overview

We introduce an e cient numerical method to verify the correctness of the perfectly
matched layer (PML) irrespective of the details of its implenentation. Our method
is both simple and intuitive, consisting of two parts: the rst requires that re ections

from the PML boundaries reduce to zero in the limit of increasg resolution and
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the second shows the re ection decreasing with absorber tkihessL proportional to
some characteristic power law determined by the smoothneg&sg. 1=L° for quadratic
absorption) when the round-trip re ection is xed [177]. This method is then used
to demonstrate the failure of at least one previously publied proposal for PML in
anisotropic media. We then derive our own e cient formulaton for an anisotropic

absorber for anisotropic media and verify its correctnessitiv this approach.

A perfectly matched layer (PML) is an arti cial absorbing medium that is com-
monly used to truncate computational grids for simulating \ave equations (e.g.
Maxwell's equations), and is designed to have the properthat interfaces between
the PML and adjacent media are re ectionless in the exact wavequation [17,215].
There are several nearly equivalent formulations of PML. Benger's original formu-
lation [17] split the wave solution into the sum of two new aiitcial eld components,
which while e ective as a nhumerical method for absorbing indent waves neverthe-
less does not reveal physical insights into its operation aonnection with Maxwell's
equations. Moreover implementation of split- eld PMLs typcally requires labori-
ously computing the solution for a planewave incident on thabsorber interface at
an arbitrary angle and polarization, and then solving for tle conditions in which the

re ection is always zero [74,179].

A more common \UPML" (uniaxial-PML) formulation expressesthe PML region
as the ordinary wave equation with a combination of arti cid anisotropic absorb-
ing materials [75, 197, 215, 221]. This modi cation of the pmittivity and perme-
ability material parameters, as Ward and Pendry clari ed [30], is equivalent to a
co-ordinate transformation of Maxwell's equations. In thecase of the UPML, this
\stretched-coordinate" corresponds to an analytic contination of real space into the
complex plane where oscillating elds become exponentialtlecaying [40, 189, 220].
UPML's principal advantage over split- eld PML is that itis based on the unmodi ed
Maxwell's equations (the absorption appearing as anisofpac material tensors or cti-
tious conductivity absorbers) which makes implementatiom numerical code straight-
forward. Several attempts have been made at UPML formulatics for anisotropic

materials [141,219, 220, 222,253] yet some, we will argues ancorrect as we demon-
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strate analytically and con rm with a numerical experiment while others lack the
full details of an FDTD implementation. Certain authors hawe proposed \material-
independent PMLs" containing conductivities p and g (instead of ¢ and ) in

the split- eld [252,254] and UPML [228, 253] formulations Wile failing to recognize
in the derivation equations that the Jacobian stretch matrces and full anisotropic

material (" or mu) tensors do not commute.

To illustrate the failure of incorrect PML formulations in anisotropic media, we
rst consider a frequency-domain simulation with a planewa expansion method
(PWFD) solved with an iterative bi-conjugate gradient algeithm [13] in two dimen-
sions (2d). Given a point dipole source at the center of the ltewe then wish to
compute the re ection coe cient from a surrounding absorbe of thicknessL as a
function of both L and resolution. De ning a single \re ection" coe cient is d i cult
because the point source emits waves at multiple angles, sstead we look at the

convergence of the electric eld by de ning aeld convergence factor

JESY (xy) B (xy))2
JEM (X y)j2

(4.1)

in terms of the electric eld E, at a point (x;y) (chosen directly adjacent to the
absorbing layer) for two PML thicknessed. +1 and L (L =1 in this example). This
di erence should go to zero as both resolution increases ahd 1  for a true PML,
assuming that the re ection goes to zero in this limit (and hace the eld converges

to the solution for open boundaries).

Figure 4-1 shows the results of these two-dimensional PWFDilations for uni-
form isotropic (* = 10) and anisotropic (" chosen to be a random positive-de nite
symmetric matrix with eigenvalues [8.4896, 8.7820, 11.58)) media; the di erence
between a correct PML and an incorrect Z-PML (from Ref. 253)ronon-PML (con-
ductivity absorber for the electric eld only) is stark. In the correct PML formulation
for isotropic and anisotropic media, the re ection from theboundaries rapidly goes
to zero as resolution is increased, whereas the Z- and non- Plelbsorbers asymptote

to a constant nonzero re ection.
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Figure 4-1: Results from 2d PWFD showing eld convergencedtor (a proxy for the
re ection coe cient) versus resolution in pixels= , for both isotropic and anisotropic
media with PML, Z-PML (from Ref. 253) and non-PML (conductivity absorber in
electric eld) absorbing boundaries. For the anisotropic mdium, Z-PML fails to
be re ectionless in the limit of high resolution. Inset: E eld prole of a point
source at the center of the 2d computational cell surroundeoy absorbing material
(blue/white/red = positive/zero/negative).

The inability to detect the failure of the Z-PML is a result of a common testing
procedure used by many researchers in the past who proposettious PML for-
mulations. The dominant veri cation method typically conssted of computing low
re ections from the PML absorbing regions as a function of & wave incident angle or
xed position in the non-absorbing region of the computatioal cell. Unfortunately,
this method is not a su cient condition to verify a true PML. T he key numerical
test to determine whether any absorber is a true PML, as justemonstrated, is to
show that re ections from the absorbing region decrease t@mw with increasing res-
olution. In other words, in the limit as the discretized waveequation approaches a
continuum, the re ections must reduce to zero (correspondg to that of a true PML

in a non-discretized system).
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Figure 4-2: Results from 2d PWFD simulation showing eld cowvergence factor
( reection=L?) vs. absorber thickness in units of vacuum wavelength_§ ) for
anisotropic media at a resolution of 9pixets , for various polynomial absorber func-
tions s(u) ranging from linear [s(u) = u] in blue to cubic [s(u) = u®] in green. As
the absorber becomes thicker and the absorption is turned anore gradually, re-
ection goes to zero via the adiabatic theorem. For referele¢ the corresponding
asymptotic power laws are shown as dashed lines. Fixing theund-trip re ection
yields similar scaling relationships and values betweendhhree types of absorbers.
Inset: <[E,] eld pattern for the (point) source at the center (blue/white/red =
positive/zero/negative).

Additionally, any absorber whether a PML or conductivity aksorber for one eld
having xed round-trip re ection, shows a characteristic €aling of the transition
re ections from the absorbing region with absorber lengthet by the smoothness
of the polynomial absorption pro le (i.e., 1=L?%** for a s(u) = u? pro le using the
eld convergence factor of eq. (4.1) [177]). The reason fohis is that all transition
re ections can be understood via the same coupled-mode maaism, and the EL8
rate is a consequence of the second-derivative discontiguin s(u) = u? [177]. Any
proposed PML formulation that satis es both conditions is hen guaranteed to be a

true PML.
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4.3 PML formulation for lossless, non-dispersive,

anisotropic media

We now present our implementation of UPML absorbing boundarlayers for FDTD
simulations. Itis assumed that the reader is already famdr with the basic stretched-
coordinate derivation of PML, as well as the general technig by which a coordinate
transformation can be expressed as a transformation dfand (see Appendix of
Ref. 124), leading to the so-called \UPML" formulation. Theformulation presented
below has been implemented in our popular free software page for FDTD [176].

The subtlety is that the transformations/materials of PML are frequency-dependent,
and so to express them in time domain involves the evolutionf @appropriate auxil-
iary di erential equations. (Equivalently, multiplicati on by a frequency-dependent
susceptibility corresponds in the time domain to a convolutn, leading to so-called
\convolutional PML" formulations [192].) The emphasis is @ keeping the number of
auxiliary di erential equations (and the resulting memory and computational costs)
to a minimum, while not making the PML region too complicatedcompared to the
non-PML regions.

Because the treatment of' and are identical except for interchange oD with
B and E with H (and a sign ip from Ampere's to Faraday's law), we only desdbe
the " and dD =dt equations (Ampere's law) here.

We proceed slightly di erently from the UPML as derived in eg. the Ta ove and
Hagness FDTD textbook [215]. As reviewed in the appendix, ig\standard” UPML
performs a matrix factorization that relies on" commuting with the PML Jacobian,
and this is not the case for an arbitrary anisotropic'. Our factorization, instead,
works for anisotropic"”, and turns out to have a nice property: the PML just adds
two auxiliary elds U and W with diagonal relationships to D and E, and allow
us to use the non-PML timestepping operationsinchangedexcept for the addition
of these diagonal ODE updates. In particular, we get a true PMfor anisotropic,
dispersive, media \for free" in the sense that the code for tise portions is unchanged

(although the case of conducting media necessitates an extauxiliary eld [139]).
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Figure 4-3: Results from 2d FDTD simulations showing eld cavergence fac-
tor eq. (4.1) vs. absorber thickness in units of vacuum waweigth (L= ) for
anisotropic media at a resolution of 20pixefs , for various polynomial absorber func-
tions s(u) ranging from linear [s(u) = u] in blue to [s(u) = u®] in green. Left inset:
eld convergence factor versus resolution in pixets, showing correct PML scaling
relationship. Top right inset: <[E,] eld pattern snapshot in time for the (point)
source at the center (blue/white/red = positive/zero/negaive).

This is nice because the timestepping for anisotropic mediaquires special care for
stability, and dispersive media may have complicated polamation-update equations,
and this way we don't need to modify any of that in the slightesfor the PML.
Our approach also makes a clean separation between theupdate equation (from
r H)andterms that a ect the E update equation (from the constitutive equations),

and correspondingly in the Meep code these are handled segialy in step _db and

update _eh, respectively.
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4.4 Non-PML materials in Meep

In Meep [176], we support dispersive medigq! ) of the form:
[
()= 1+ =2 [+ e

where p is a conductivity (which may be anisotropic, but must be diagnal in
Cartesian coordinates and hence commutes with), "; is a non-dispersive part of
the permittivity (which may be non-diagonal anisotropic) axd g(!) is some ad-
ditional dispersive part (possibly anisotropic) implemeted by auxiliary ODEs that
solveP = (! )E (currently, a sum of Lorentzians). This corresponds, in tire-domain,

to Ampere's law of the form:
@
K=r H=—+ pD; 4.2
= (4.2)
denotingr  H by K for later convenience, and a constitutive equation
D="1E+P;

whereP is time-evolved via a system of ODEs derived fro® = (! )E. (We don't
include free currentsJ here, since they have no impact on the PML equations, and

indeed one rarely puts free currents inside the PML anyway.)

In FDTD, we discretize these in space and time. Let us denotée time dis-
cretization by a superscript: D" denotesD (n t), and similarly for P" and E". The
magnetic elds are o set in time by half a time step, givingH"*%*®> and K"*%*5, To
time-step these elds in FDTD, we rst compute D"*! from D" and K"*°5 by the
curl equation, then computeE"*! from D"*! and P"*! by the constitutive equation,
and nally compute P"*2. (Note that, with Lorentzian dispersion, we can compute

P"*2 from P"*! and P" given E"*!,

Using the standard second-order center-di erence approrations, the equation
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for D becomes:

Kn+0:5: Dn+1 Dn + Dn+1 + Dn.

t 2
giving
t ! t
D"t = 1+ -0 1 —=— D"+ K" . (4.3)
2 2
The constitutive equation is simply:
E"™ ="t DM P (4.4)

(This is nontrivial to implement correctly for anisotropic media [235], and the details

have been covered in Ch. 2.5.)

4.5 PML formulation in frequency domain

PML is simplest to derive in frequency domain, where the el all have time-
dependence " . An ordinary PML in Cartesian coordinates is derived by a coplex
coordinate stretching, where each coordinate is stretchday a factor

i X;y;Z
. e 1 + Y .
Sx:y:z ! )

where! is the frequency and is the PML \conductivity." For example, to terminate
the cell in the x direction, only  is nonzero. These coordinate stretchings can be
absorbed into Maxwell's equations as a change fnand . The original permittivity

" in the PML region is replaced by an e ective tensot' given by

JT
detJ ’

whereJ =diag(s,*;s,';s,") is the Jacobian matrix of the coordinate stretching.
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In frequency domain, replacind'(! ) with +, eq. (4.2) becomes:

0
s 1

. X
. |
K=r H= ls,ss 1+!—D %

1

1 0
s, !
st %["1 + e(! )]% v %Ei
s, ! s, !

(4.5)
Although this is straightforward to implement in frequencydomain, where oné'(! )
is as good as another, in the time domain a frequency-depentiéerm requires care.
In time-domain, a frequency-dependent term can be thoughf as a convolution with
a lter (hence the viewpoint of a \convolutional PML" adopted by some authors),
where in the language of signal-processing we wish to nd aable recursive lter to
implement this convolution with as few taps as possible (to mimize the memory and
computational burden). Equivalently, the frequency depetience may be implemented
by auxiliary ordinary di erential equations (discretized ODE = recursive lter). The

most convenient ODESs to discretize are rst-order ODEs. Foexample,a = sb =

(+i=! )bgives ila = ilb + b, which corresponds to the rst-order ODE

So, before we proceed to time domain, we want factorize eq. (4.17) into terms
with only one factor of s (or =! ) each (or ratios of singles factors). In doing so, we
are free to change the de nition ofD and introduce new auxiliary elds as desired,

since the elds in the PML region are not physical. A key trickis the factorization:

0 1 0 10 1
sx:L SY Sz
wd e L. H. B

s, ! Sy Sy

Using this factorization, and de ning new auxiliary elds, C, U, and W, we can
factorize eq. (4.17) into the following equivalent form (giing the same relationship
betweenH and E): _

K=r H= il 1+-2 ¢ (4.6)



0 1
Syl
U :% s, ! %c 4.7)

s, !
0 1
s, !
D= % s, ! g U (4.8)
Syl
w="1D P) (4.9)
P= ¢(1)W (4.10)
0 1
Sx
E = % s, %W (4.11)
S

4.6 PML formulation in time domain

Given eqgs. (4.6{4.11), a time-domain formulation is nhow egdecause each equation
only includes rst-order factors in! (corresponding to rst-order time derivatives).
Moreover, all of the nontrivial equations, namely (4.6), (®), and (4.10), areexactly
the same as in the non-PML case, meaning that we can useactly the same code
except passing new eldsC and W instead of D and E. The other equations are
diagonal ODEs that are trivial to implement. It may seem wastful to have three
new auxiliary elds, but in many cases they can be omitted: eoept in corners of the
computational cell, one has PML only in one direction that oly one component of
Sxyz 1S 6 1, and in these cases one need only store one componentJofand one
component ofW (with the other components replaced byp and E, respectively);C
can be omitted in non-conducting materials (p = 0).

For completeness, we write out the equations here, in the adthat they would be

evaluated. TheC update from eq. (4.6) is identical to theD timestep from eq. (4.12)

1
t .
1 -2 Ccr+KMOS (4.12)

t
cMt= 1+ 2
2
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Each componentUy of U is updated from the corresponding component & by the
ODE dU=dt+ 4+ U = dCc=dt (where | ; is interpreted as a cyclic shift, e.g.

yil = 7z, z+1 = x), 9iving:

1

t t
kvl 1 X ur+c ot (4.13)

U|?+l 1+ > >

Each component ofD is then updated from the corresponding component &j by

the ODE dDy=dt+ | Dy = dU=dt, giving:

t ! t
DI 1+ "21 1 k21 DR+ UY Ut (4.14)

W is then updated fromD P exactly as in eq. (4.15):
wnt = 1 pnrtt pnrto (4.15)

Then, each component oE is updated from each component oW by the ODE

dEx=dt = dW,=dt+ (W, giving:
k t k t

w1 5

W (4.16)

Eft=Ef+ 1+

Finally, P"*2 is computed usingP® = g(! )W, exactly as for the non-PML case (but

with W replacing E).

Note that, in order to avoid having to save the elds from the pevious timestep
in yet more auxiliary arrays, theC, U, and D updates [egs. (4.12{4.14)] have to be
performed in a single loop body, while th&V/ and E updates [eqgs. (4.15{4.16)] must
be performed in another single loop body. [One cannot easityerge the two loops
because the o diagonal anisotropic terms iti; * combined with the staggered Yee grid
mean that eq. (4.15) is e ectively nonlocal in space, requitg D"** components at
several spatial points to determin@V "*1 . Separating the two loops has the additional
advantage that it reduces the combinatorial explosion of ganumber of material cases

that must be handled.]
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4.7 Review of isotropic, nondispersive PML

In this appendix, we review the standard \textbook™ UPML for isotropic nondisper-
sive media as found in, for example, Ta ove and Hagness [213 is important to
distinguish mere di erences in notation (the derivation inT&H is far less compact
than the one here) from substantive di erences, and in partular the usual UPML
corresponds to a di erent factorization of eq. (4.17) than ars. This textbook formu-
lation only works for isotropic (or at least diagonal)", because it assumes that an

arbitrary diagonal matrix commutes with ".

In particular, dropping the p and g terms (assuming nondispersive media), the

textbook PML formulation corresponds to the following refatorization of eq. (4.17):

1
Sy ™
K=r H= i % s, §1% o %E: (4.17)

Sy
Sz

This then factorizes into two equations:

0 1
Sy
K=r H= i!% ED;

S;
Sx

0 1

s,
E="11% S §D:

Sz
Sy

The former discretizes similarly to eq. (4.3), with the PML ., taking the place of
b, and the latter turns into the ODE dE,=dt+ | ;E¢ = ", [dDy=dt+ (D] which

is easily discretized.

Only two elds need be stored: D and E. If a conductivity p (or similar) is
included, however, one needs an additional auxiliary el@ (or similar). It turns out

that the case of a dispersivd® = g(! )E can also be handled with no additional
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storage compared to the non-PML case, at least for a Lorendzi ¢ that requires
both P"** and P" to be stored anyway. So, the main cost of the Meep formulatida
that two additional auxiliary elds U and W must be stored in the PML; however,
this is actually only a slight additional burden in storage mce for most PML regions
only one component ofU and W actually must be stored (see above). The main
problem with the textbook implementation is that it fails for anisotropic media (even
if one naively plugs a tensot'; ! into the E update, the re ection will not go to zero
with increasing resolution). This is especially importangiven the fact that, even for
nominally isotropic media, accurate subpixel averaging geires the discretization to

use e ective anisotropic media at material boundaries.

4.8 Concluding remarks

We have demonstrated a straightforward method to verify theorrectness of any PML
formulation. Our approach consists of two parts. The rst test involves computing
the quantity known as the eld convergence factor, relatedd the re ection from an
absorbing boundary, as a function of the resolution of the sirete computational
grid. A correct PML, equivalent to a complex co-ordinate setching of real space,
has re ections that decrease to zero with increasing resdilon. Any violation of this
property indicates a non-PML absorber. The second test casts of analyzing the
transition re ections that arise for waves entering the absrbing regions when the
absorber's round-trip re ection is xed. All absorbers with the round-trip re ection
properly set will show identical scaling relationships oftte re ection with absorber
length based on the smoothness of the absorber pro le. We denstrated the utility
of this method in showing that at least one previously propesi PML formulation
for anisotropic media was incorrect. We then derived our owRAML formulation and
veri ed its correctness using this scheme. The deeper anabal insights into the
PML that these ndings provide should now enable researcherto correctly develop

PML for a number of di erent media and co-ordinate systems Wi ease.
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Chapter 5

Meep: A exible free-software
package
for electromagnetic simulations by

the FDTD method

5.1 Summary

This chapter describes Meep, a popular free implementaticof the nite-di erence
time-domain (FDTD) method for simulating electromagnetisn. In particular, we
focus on aspects of implementing a full-featured FDTD packe that go beyond stan-
dard textbook descriptions of the algorithm, or ways in whic Meep di ers from
typical FDTD implementations. These include pervasive irgrpolation and accurate
modelling of subpixel features, advanced signal procegsisupport for nonlinear ma-
terials via Pace approximants, and exible scripting capailities.

Program Summary
Program title: Meep
Program summary URL: http://ab-initio.mit.edu/meep

Licensing provisions: GNU GPL
No. of lines in distributed program, including test data, et: 58000
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No. of bytes in distributed program, including test data, et: 734K

Distribution format: tar.gz

Programming language:C++

Computer: any computer with a Unix-like system and a C++ compiler; opti onally exploits
additional free software packages: GNU Guile [1], libctl inerface library [2], HDF5 [3], MPI
message-passing interface [4], and Harminv Iter-diagonkization [5]. Developed on 2.8 GHz
Intel Core 2 Duo.

Operating system: any Unix-like system; developed under Debian GNU/Linux 5.02

RAM: problem dependent (roughly 100 bytes per pixel/voxel)

Classi cation: Electrostatics and Electromagnetics

External routines/libraries: optionally exploits additional free software packages: GNJ
Guile [1], libctl interface library [2], HDF5 [3], MPI message-passing interface [4], and
Harminv lter-diagonalization [5] (which requires LAPACK and BLAS linear-algebra soft-
ware [6]).

Nature of problem: classical electrodynamics

Solution method: nite-di erence time-domain (FDTD) method

Running time: problem dependent (typically about 10 ns per pixel per timesep)

References:

1. GNU Guile, http://www.gnu.org/software/guile

2. Libctl, http://ab-initio.mit.edu/libctl

3. M. Folk, R.E. McGrath, N. Yeager, HDF: An update and future directions, in: Proc.
1999 Geoscience and Remote Sensing Symposium (IGARSS), Hanrg, Germany,
vol. 1, IEEE Press, 273{275, 1999.

4. T.M. Forum, MPI. A Message Passing Interface, in: Supercmputing '93, Portland,
OR, 878{883, 1993.

5. Harminv, http://ab-initio.mit.edu/harminv

6. LAPACK, http://www.netlib.org/lapack/lug
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5.2 Overview

One of the most common computational tools in classical etemagnetism is the
nite-di erence time-domain (FDTD) algorithm, which divi des space and time into a
regular grid and simulates the time evolution of Maxwell's @uations [64,127,212,215,
248]. This chapter describes our free, open-source impleration of the FDTD algo-
rithm: Meep (an acronym forMIT Electromagnetic Equation Propagation), available
online at http://ab-initio.mit.edu/meep . Meep is full-featured, including, for ex-
ample: arbitrary anisotropic, nonlinear, and dispersivelectric and magnetic media;
a variety of boundary conditions including symmetries and g@rfectly matched layers
(PML); distributed-memory parallelism; Cartesian (1d/2d/3d) and cylindrical coor-
dinates; and exible output and eld computations. It also includes some unusual
features, such as advanced signhal processing to analyzeonasit modes, accurate
subpixel averaging, a frequency-domain solver that exptsithe time-domain code,
complete scriptability, and integrated optimization faclities. Here, rather than re-
view the well-known FDTD algorithm itself (which is thoroughly covered elsewhere),
we focus on the particular design decisions that went into thdevelopment of Meep
whose motivation may not be apparent from textbook FDTD desiptions, the ten-
sion between abstraction and performance in FDTD implemeations, and the unique

or unusual features of our software.

Why implement yet another FDTD program? Literally dozens ofcommercial
FDTD software packages are available for purchase, but theeads of research often
demand the exibility provided by access to the source codead relaxed licensing
constraints to speed porting to new clusters and supercomeus). Our interactions
with other photonics researchers suggest that many groupgadcup developing their
own FDTD code to serve their needs (our own groups have usedeast three distinct
in-house FDTD implementations over the pastl5 years), a duplication of e ort that
seems wasteful. Most of these are not released to the publand the handful of
other free-software FDTD programs that could be downloadedhen Meep was rst

released in2006 were not nearly full-featured enough for our purposes. Smdhen,
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Meep has been cited in ovet00journal publications and has been downloaded over

10,000times, rea rming the demand for such a package.

FDTD algorithms are, of course, only one of many numerical tis that have been
developed in computational electromagnetism, and may peaps seem primitive in
light of other sophisticated techniques, such as nite-eteent methods (FEMs) with
high-order accuracy and/or adaptive unstructured meshe®8,198,245], or even radi-
cally di erent approaches such as boundary-element methedBEMS) that discretize
only interfaces between homogeneous materials rather thaalumes [25,41,188,225].
Each tool, of course, has its strengths and weaknesses, amde not believe that any
single one is a panacea. The nonuniform unstructured gridé BEMs, for example,
have compelling advantages for metallic structures whereitnometer wavelengths
may be paired with nanometer skin depths. On the other handhts exibility comes
at a price of substantial software complexity, which may nobe worthwhile for dielec-
tric devices at infrared wavelengths (such as in integratedptics or bers) where the
refractive index (and hence the typical resolution requi varies by less than a factor
of four between materials, while small features such as sacé roughness can be ac-
curately handled by perturbative techniques [105]. BEMSs,dsed on integral-equation
formulations of electromagnetism, are especially powelfior scattering problems in-
volving small objects in a large volume, since the volume reeaot be discretized and
no arti cial \absorbing boundaries" are needed. On the othehand, BEMs have a
number of limitations: they may still require arti cial absorbers for interfaces extend-
ing to in nity (such as input/output waveguides) [250]; any change to the Green's
function (such as introduction of anisotropic materials,mposition of periodic or sym-
metry boundary conditions, or a switch from three to two dimasions) requires re-
implementation of large portions of the software (e.g. sindar panel integrations
and fast solvers) rather than purely local changes as in FDTDr FEM; continuously
varying (as opposed to piecewise-constant) materials anmeeicient; and solution in
the time domain (rather than frequency domain, which is inagiquate for nonlinear or
active systems in which frequency is not conserved) with BENMequires an expensive

solver that is nonlocal in time as well as in space [25]. And ¢h, of course, there are
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specialized tools that solve only a particular type of elemtmagnetic problem, such as
our own MPB software that only computes eigenmodes (e.g. wayuide modes) [107],
which are powerful and robust within their domain but are nota substitute for a
general-purpose Maxwell simulation. FDTD has the advantag of simplicity, gen-
erality, and robustness: it is straightforward to implementhe full time-dependent
Maxwell equations for nearly arbitrary materials (includng nonlinear, anisotropic,
dispersive, and time-varying materials) and a wide varietpf boundary conditions,
one can quickly experiment with new physics coupled to MaxWes equations (such
as populations of excited atoms for lasing [19, 35,89, 16372), and the algorithm is
easily parallelized to run on clusters or supercomputers.his simplicity is especially
attractive to researchers whose primary concern is invegtting new interactions of
physical processes, and for whom programmer time and the iimang of new students
is far more expensive than computer time.

The starting point for any FDTD solver is the time-derivative parts of Maxwell's

equations, which in their simplest form can be written:

=71 E Jg (5.1)

=+r H J (5.2)

where (respectively)E and H are the macroscopic electric and magnetic eld®) and

B are the electric displacement and magnetic induction eld§94], J is the electric-
charge current density, andlg is a ctitious magnetic-charge current density (some-
times convenient in calculations, e.g. for magnetic-dip@lsources). In time-domain
calculations, one typically solves the initial-value prolem where the elds and cur-
rents are zero fort < 0, and then nonzero values evolve in response to some cursent
J(x;t) and/or Jg(x;t). (In contrast, a frequency-domainsolver assumes a time de-
pendence ok " for all currents and elds, and solves the resulting linearguations
for the steady-state response or eigenmodes [99, app. D].)e \Wefer to use dimen-
sionless units’'y = ¢ = ¢=1. From our perspective, this choice emphasizes both the

scale invariance of Maxwell's equations [99, chap. 2] andsalthe fact that the most
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meaningful quantities to calculate are almost always dimeionless ratios (such as
scattered power over incident power, or wavelength over sencharacteristic length-
scale). The user can pick any desired unit of distance (either an Sl unit such as
a=1 m orsome typical lengthscale of a given problem), and all dis\ces are given
in units of a, all times in units of a=¢ and all frequencies in units ot=a In a linear
dispersionless medium, the constituent relations afe = "E and B = H, where"
and are the relative permittivity and permeability (possibly tensors); the case of
nonlinear and/or dispersive media (including conductivies) is discussed further in
Ch. 5.6.

The remaining chapter is organized as follows. Chapter 5.3vgs a brief history
of Meep's development. In Ch. 5.4, we discuss the discretimen and coordinate
system; in addition to the standard Yee discretization [2]5this raises the question
of how exactly the grid is described and divided into \chunKsfor parallelization,
PML, and other purposes. Chapter 5.5 describes a central pciple of Meep's design,
pervasive interpolationproviding (as much as possible) the illusion of continuityn the
speci cation of sources, materials, outputs, and so on. Téied to the development of
several techniques unique to Meep, such as a scheme for syblpmnaterial averaging
designed to eliminate the rst-order error usually assoctad with averaging techniques
or stairstepping of interfaces. In Ch. 5.6, we describe andativate our techniques
for implementing nonlinear and dispersive materials, ingtling a slightly unusual
method to implement nonlinear materials using a Pace appramant that eliminates
the need to solve cubic equations for every pixel. Chapter7/describes how typical
computations are performed in Meep, such as memory-e cieftansmission spectra
or sophisticated analysis of resonant modes via harmonio/e@rsion. This section also
describes how we have adapted the time-domain code, almosthout modi cation,
to solve frequency-domain problems with much faster conggnce to the steady-
state response than merely time-stepping. The user inteda of Meep is discussed
in Ch. 5.8, explaining the considerations that led us to a sigting interface (rather
than a GUI or CAD interface). Chapter 5.9 describes some of ¢htradeo s between

performance and generality in this type of code and the specicompromises chosen
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in Meep. Finally, we make some concluding remarks in Ch. 5.10

5.3 Development History

Prior to Meep, the Ab Initio physics group of Professor John dannopoulos had
been using a custom-built FDTD software program written in Brtran by Shanhui
Fan (with contributions from other group members includingChiyan Luo) known as
\TD3D". This code, as its name implies supported only 3d simations, was used
extensively in the early years of the group's photonic cryat research throughout the
1990s and early 2000s. However its in exible user interfae@d unsuitability for sim-
ulating other co-ordinate systems, particularly cylindrcal, was becoming increasingly
evident as the research frontier evolved towards more exotmnaterial systems as well
as larger and more complicated geometries. In early 2003, Vith Roundy, then a
postdoctoral researcher in the Joannopoulos group, inited a new FDTD software
program written from scratch in C++ known as \Dactyl" as it wa s originally designed
to perform simulations in only 2d and cylindrical co-ordinges. David was soon joined
by graduate students Mihai Ibanescu and Peter Bermel workintogether to expand
its features to include polarization elds to model dispeligse dielectrics, third-order
Kerr nonlinearities, split- eld perfectly matched layers various symmetry and bound-
ary conditions with a C++ object-oriented interface. At the time, David, Mihai and
Peter were primarily interested in simulating ber structures that required cylindrical
co-ordinates and so this was where the initial emphasis wataped. The notion of
pervasive interpolation to create an illusion of continui for the end user was rst
conceived by David Roundy and made into a central design pb#ophy of the code.
Steven Johnson became involved in this nascent project laite 2003 and provided a
loop-in-chunks routine that greatly simpli ed calculations involving elds that were
spread out arbitrarily over the computational cell, paraleélization of the code using
chunks and a Scheme front-end interface that was bolted onofn another electro-
magnetics software he had developed (MPB). | started workinon Meep soon after

joining the group in Fall 2004 following FDTD research at théBM Almaden Research
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Center under the guidance of Dr. Geo rey W. Burr and have beenesponsible for:
implementing the subpixel averaging algorithm, implemeing anisotropic permittiv-

ity and permeability, implementing second-order Pockel'sonlinearity, rewriting the

entire time stepping portion of the code for improved stabily and to replace the
original unwieldy Haskell generated les, implementing uiaxial-PML to replace the
split- eld PML, implementing the frequency-domain solveramong many other xes
and improvements. The code, now renamed as Meep, graduallyokved to include
more functionality and was released as open-source softedam April 2006. The latest
release of Meep is currently version 1.1 and the project camies to mature with an
expanded feature set that now includes more than just classi electromagnetism
but also quantum Casimir phenomena through the work of Alejadro Rodriguez-
Wong and Alexander McCauley. Meep has now been made into stmd Debian
and Ubuntu packages and several researchers at Moscow Stdteversity and Ghent
University have developed their own freely available Pythointerface. 1 am con dent

that Meep will continue to be enhanced well into the future teentail an even broader

set of physical phenomena in optics-related research.

5.4 Grids and Boundary Conditions

The starting point for the FDTD algorithm is the discretization of space and time
into a grid. In particular, Meep uses the standardree grid discretization which stag-
gers the electric and magnetic elds in time and in space, wWiteach eld component
sampled at di erent spatial locations o set by half a pixel, allowing the time and
space derivatives to be formulated as center-di erence appximations [246]. This
much is common to nearly every FDTD implementation and is desibed in detalil
elsewhere [215]. In order to parallelize Meep, e ciently qaport simulations with
symmetries, and to e ciently store auxiliary elds only in certain regions (for PML
absorbing layers), Meep further divides the grid intachunksthat are joined together
into an arbitrary topology via boundary conditions. (In the future, di erent chunks

may have di erent resolutions to implement a nonuniform gl [18, 117,173, 258]).
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Furthermore, we distinguish two coordinate systems: one wsisting of integer co-
ordinates on the Yee grid, and one of continuous coordinatés \physical" space
that are interpolated as necessary onto the grid (see Ch. %.5his section describes
those concepts as they are implemented in Meep, as they fornfcaundation for the

remaining sections and the overall design of the Meep softwa

5.4.1 Coordinates and grids

The two spatial coordinate systems in Meep are described blge vec, a continuous
vector in RY (in d dimensions), and thevec , an integer-valued vector inZ¢ describing
locations on the Yee grid. Ifn is anivec , the correspondingvec is given by Q5 xn,
where X is the spatial resolution (the same along, y, and z)|that is, the integer
coordinates in anivec correspond tohalf -pixels, as shown in the right panel of Fig. 5-
1. This is to represent locations on the spatial Yee grid, wth o sets di erent eld
components in space by half a pixel as shown (in 2d) in the rigpanel of Fig. 5-1.
In 3d, the Ex and D, components are sampled atvec s (2 +1;2m;2n), E, and D,
are sampled ativec s (2';2m + 1;2n), and so on;H, and By are sampled ativec s
(2;2m+1;2n + 1), H, and B, are sampled ativecs (2 + 1;2m;2n + 1), and so
on. In addition to these grids for the di erent eld componerts, we also occasionally
refer to the centeredgrid, at odd ivec s (2 +1;2m+1;2n + 1) corresponding to the
\center" of each pixel. (The origin of the coordinate system is an arbitrary ivec
that can be set by the user, but is typically the center of the @mputational volume.)
The philosophy of Meep, as described in Ch. 5.5, is that as niuas possible the
user should be concerned only with continuous physical calimates (vecs), and the

interpolation/discretization onto ivec s occurs internally as transparently as possible.

5.4.2 Grid chunks and owned points

An FDTD simulation must occur within a nite volume of space, the computational
cell, terminated with some boundary conditions and possibly bylesorbing PML re-

gions as described below. This (rectilinear) computatiohaell, however, is further
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Figure 5-1: The computational cell is divided into chunks @ft) that have a one-
pixel overlap (gray regions). Each chunk (right) represesta portion of the Yee grid,
partitioned into owned points (chunk interior) and not-owned points (gray regions
around the chunk edges) that are determined from other chuskand/or via boundary
conditions. Every point in the interior of the computationd cell is owned by exactly
one chunk, the chunk responsible for timestepping that pdin

subdivided into convex rectilinearchunks On a parallel computer, for example,
di erent chunks may be stored at di erent processors. In ordr to simplify the cal-
culations for each chunk, we employ the common technique o&giding each chunk
with extra \boundary" pixels that store the boundary values [137] (shown as gray
regions in Fig. 5-1)|this means that the chunks are overlappingin the interior of
the computational cell, where the overlaps require commudation to synchronize the

values.

More precisely, the grid points in each chunk are partitioreeinto ownedand not-
owned points. The not-owned points are determined by communication with other
chunks and/or by boundary conditions. Theowned points are time-stepped within
the chunk, independently of the other chunks (and possiblyniparallel), and every

grid point inside the computational cell is owned by exacthne chunk

The question then arises: how do we decide which points withithe chunk are
owned? In order for a grid point to be owned, the chunk must ctain all the infor-

mation necessary for timestepping that point (once the nodbwned points have been
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communicated). For example, for éD, point (2°; 2m + 1;2n) to be owned, theH,
points at (2° 1;2m+ 1;2n) must both be in the chunk in order to computer H
for timestepping D at that point. This means that the Dy points along the left
(minimum-x) edge of the chunk (as shown in the right panel of Fig. 5-1gannot be
owned: there is noH, point to the left of it. An additional dependency is imposed
by the case of anisotropic media: if there is at, coupling Ex to D, then updating
Ex at (2" +1;2m,; 2n) requires the fourDy values at (2 +1 1;2m 1;2n) (these are
the surrounding D values, as seen in the right panel of Fig. 5-1). This means tha
the E« (and Dy) points along theright (maximum-x) edge of the chunk (as shown in
the right panel of Fig. 5-1) cannot be owned either: there isanD, point to the right
of it. Similarly for r D and anisotropic .

All of these considerations result in the shaded-gray regi@f Fig. 5-1(right) being
not-owned. That is, if the chunk intersectk +1 pixels along a given direction starting
at an ivec coordinate of 0 (e.g.k = 5 in Fig. 5-1), the endpoint ivec coordinates
0 and X« + 1 are not-owned and the interior coordinates from 1 to 2 (inclusive) are

owned.

5.4.3 Boundary conditions and symmetries

All of the not-owned points in a chunk must be determined by baundary conditions
of some sort. The simplest boundary conditions are when thetiowned points are
owned by some other chunk, in which case the values are simpglgpied from that
chunk (possibly requiring communication on a multiprocess system) each time they
are updated. In order to minimize communications overheadll communications
between two chunks are batched into a single message (by dogythe relevant not-
owned points to/from a contiguous bu er) rather than sendirg one message per point
to be copied.

At the edges of the computational cell, some user-selectedundary condition
must be imposed. For example, one can use perfect electricnoagnetic conductors
where the relevant electric/magnetic- eld components arset to zero at the bound-

aries. One can also use Bloch-periodic boundary conditignghere the elds on one
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side of the computational cell are copied from the other sidef the computational
cell, optionally multiplied by a complex phase factoe®: i where k is the propagation
constant in the i" direction, and ; is the length of the computational cell in the same
direction. Meep doesot implement any absorbing boundary conditions|absorbing
boundaries are, instead, handled by an arti cial material,perfectly matched layers

(PML), placed adjacent to the boundaries [215].

Bloch-periodic boundary conditions are useful in periodisystems [99], but this
is only one example of a useful symmetry that may be exploiteda boundary con-
ditions. One may also have mirror and rotational symmetries For example, if the
materials and the eld sources have a mirror symmetry, one nacut the computa-
tional costs in two by storing chunks only in half the computtional cell and applying
mirror boundary conditions to obtain the not-owned pixels djacent to the mirror
plane. As a more unusual example, consider an S-shaped stuwe as in Fig. 5-2,
which has no mirror symmetry but is symmetric under 180-dege rotation, calledC,
symmetry [93]. Meep can exploit this case as well (assumingetcurrent sources have
the same symmetry), storing only half of the computational @l as in Fig. 5-2 and
inferring the not-owned values along the dashed line by a 1-8@gree rotation. (In the
simple case where the stored region is a single chunk, thisane that the not-owned
points are determined by owned points in the same chunk, reilgung copies, possibly
with sign ips.) Depending on the sources, of course, the dk can be even or odd
under mirror ips or C, rotations [99], so the user can specify an additional signpi
for the transformation of the vector elds (and pseudovectoH and B elds, which
incur an additional sign ip under mirror re ections [94,99). Meep also supports
fourfold rotation symmetry (C,), where the eld can be multiplied by factors of 1,

1, or i under each 90-degree rotation [93]. (Other rotations, sucks threefold or
sixfold, are not supported because they do not preserve the@esian Yee grid.) In
2d, the xy plane is itself a mirror plane (unless in the presence of aatsopic mate-
rials) and the symmetry decouples TE modes (with elds E E,, and H,) from TM
modes (H, Hy, and E;) [99]; in this case Meep only allocates those elds for which

the corresponding sources are present.
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stored

+ C2
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Figure 5-2: Meep can exploit mirror and rotational symmetegs, such as the 180-degree
(C,) rotational symmetry of the S-shaped structure in this scheatic example. Al-
though Meep maintains the illusion that the entire structue is stored and simulated,
internally only half of the structure is stored (as shown atight), and the other half

is inferred by rotation. The rotation gives a boundary condion for the not-owned
grid points along the dashed line.

A central principle of Meep is that symmetry optimizations le transparent to the
user once the desired symmetries are speci ed. Meep maimigithe illusion that the
entire computational cell is computed|for example, the elds in the entire compu-
tational cell can still be queried or exported to a le, ux planes and similar com-
putations can still extend anywhere within the computatioml cell, and so on. The
elds in the non-stored regions are simply computed behinche scenes (without ever
allocating memory for them) by transforming the stored chuks as needed. A key en-
abling factor for maintaining this illusion e ciently is th e loop-in-chunksabstraction
employed by the Meep code, described in Ch. 5.9.

Meep also supports continuous rotational symmetry aroundgiven axis, where the
structure is invariant under rotations and the elds transform as€™ for somem [99],
but this is implemented separately by providing the option ¢ simulate Maxwell's
equations in the {;z) plane with cylindrical coordinates, for which operatorsike

r change form.

5.5 Interpolation and the illusion of continuity

A core design philosophy of Meep is to provide the illusion @bntinuous space and

time, masking the underlying discretization from the user @much as possible. There
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Figure 5-3: A key principle of Meep is that continuously varing inputs yield contin-

uously varying outputs. Here, an eigenfrequency of a photiancrystal varies continu-
ously with the eccentricity of a dielectric rod, accompliskéd by subpixel smoothing of
the material parameters, whereas the nonsmoothed result\stairstepped.” Speci -

cally, the plot shows a TE eigenfrequency of 2d square latiqperiod a of dielectric

ellipses (=12) in air versus one semi-axis diameter of the ellipse (inrgdations of
0:00%) for no smoothing (red squares, resolution of 20 pixeks), subpixel smoothing
(blue circles, resolution of 20 pixelsd) and \exact" results (black line, no smoothing
at resolution of 200 pixelsh)

are two components to this approach: the input and the outpw Continuously
varying inputs, such as the geometry, materials, and the sote currents, lead to
continuously varying outputs, as in the example of Fig. 5-3.Similarly, the value
of any eld (or any function of the elds) can be output at any point in space or
integrated over any region. Furthermore, the e ects of thesinputs and the resulting
outputs must converge as quickly as possible to the exact stbn as the resolution
increases. In this section, we discuss how this illusion adrtinuity is implemented
for eld outputs, current inputs, and geometry/materials.

Any eld component (or any combinations such as ux, energyand user-de ned
functions) can be evaluated at any point in space. In generaihis requires inter-

polation from the Yee grid. Since the underlying FDTD centedi erence algorithm
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has second-order accuracy, we linearly interpolate eldssaneeded (which also has
second-order accuracy for smooth functions). Similarly, evprovide an interface to
integrate any function of the elds over any convex rectiliear region (boxes, planes,
or lines), and the integral is computed by integrating the hear interpolation of the
elds within the integration region. This is straightforward, but there are two sub-
tleties due to the staggered Yee grid. First, computation afuantities like E H that
mix di erent eld components requires an additional interpolation: rst, the elds
are interpolated onto the centered grid (Ch. 5.4), then thentegrand is computed, and
then the linear interpolation of the integrand is integratel over the speci ed region.
Second, the computation of quantities likee H mixes two elds that are stored at
di erent times: H is stored at times o 0:5) t, while E is stored at timesn t [215].
Simply using these time-o set elds together is only rst-arder accurate. If second-
order accuracy is desired, Meep provides the option to temguily synchronize the
electric and magnetic elds: the magnetic elds are saved ta backup array, stepped
by t, and they are averaged with the backup array to obtain the magetic elds
atn t with O( t?) accuracy. (The elds are restored from backup before resting
timestepping.) This restores second-order accuracy at thexpense of an extra half
a timestep's computation, which is usually negligible becse such eld computa-
tions are rarely required at every timestep of a simulation|see Ch. 5.7 for how Meep

performs typical transmission simulations and other caldations e ciently.

The conceptually reversed process is required for speaifyi sources: the cur-
rent density is specied at some point (for dipole sources)rdn some region (for
distributed current sources) in continuous space, and themust be restricted to a
corresponding current source on the Yee grid. Meep perfornisis restriction us-
ing exactly the same code (the loop-in-chunks abstractiorf €h. 5.9) and the same
weights as the interpolation procedure above. Mathematitty, we are exploiting a
well-known concept (originating in multigrid methods) tha restriction can be de-
ned as the transposeof interpolation [223]. This is illustrated by a 2d examplen
Fig. 5-4. Suppose that the bilinear interpolationf (blue) of four grid points (red) is
f =0:32%,+0:48 ,+0:08 3+ 0:12f 4, which can be viewed as multiplying a vector of
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Figure 5-4: Left: a bilinear interpolation of valuesf.,.3.4 on the grid (red) to the
valuef at an arbitrary point. Right: the reverse process isestriction, taking a value
J at an arbitrary point (e.g. a current source) and convertinginto values on the
grid. Restriction can be viewed as the transpose of intergailon and uses the same
coe cients.

those elds by the row-vector [032 0:48; 0:08; 0:12]. Conversely, if we place a point-
dipole current sourcel (blue) at the same point, it is restricted on the grid (red) to
valuesJ, = 0:32], J, = 0:48], J3; = 0:08J, and J4 = 0:12) as shown in Fig. 5-4,
corresponding to multiplying J by the column vector [032 0:48;0:08,0:12]".1 Such
a restriction has the property of preserving the sum (integd) of the currents, and
typically leads to second-order convergence of the resalji elds as the resolution
increases (see below). An example of the utility of this canuous restriction process
is shown in Fig. 5-5 via the phenomenon of Cerenkov radiatigh29]: a point chargey
moving at a constant velocityv with a magnitude 1:05c=nexceeding the phase velocity
c=nin the medium emits a shockwave-like radiation pattern, anthis can be directly
modelled in Meep by a continuously moving current sourcé= vq (x vt) [142].
In contrast, pixelizing the motion into discrete jumps to the nearest grid point leads
to visible numerical artifacts in the radiation, as seen inte right panel of Fig. 5-5.
All of the second-order accuracy of FDTD and the above intedations is gen-
erally spoiled to only rst-order, however, if one directlydiscretizes a discontinuous
material boundary [57,69]. Moreover, directly discretinig a discontinuity in " or

leads to \stairstepped" interfaces that can only be variedn discrete jumps of one

ITechnically, for a dipole-current source given by a delta function with amplitude |, the corre-
sponding current density isJ = I= x% in d dimensions.
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Figure 5-5: Cerenkov radiation emitted by a point charge mang at a speed
v = 1:05c=n exceeding the phase velocity of light in a homogeneous mediwf in-
dex n=1.5. Thanks to Meep's interpolation (or technically restriction), the smooth
motion of the source current (left panel) can be expressed asentinuously varying
currents on the grid, whereas the non-smooth pixelized moti (no interpolation)
(right panel) reveals high-frequency numerical artifactsf the discretization (counter-
propagating wavefronts behind the moving charge).

pixel at a time. Both of these problems are solved in Meep by ing an appropri-
ate subpixel smoothing of' and : before discretizing, discontinuities are smoothed
into continuous transitions over a distance of one pixel x, using a carefully de-
signed averaging procedure. Any subpixel smoothing teclguie will achieve the goal
of continuously varying results as the geometry is continusly varied. In the case
of Meep this is illustrated by Fig. 5-3: in a 2d photonic crysl (square lattice of
dielectric rods), the lowest TE-polarization eigenfrequey (computed as in Ch. 5.7)
varies continuously with the eccentricity of the elliptica rods for subpixel averaging,
whereas the nonaveraged discontinuous discretization jpiaces a stairstepped dis-
continuous eigenfrequency. On the other hand, most subplx&moothing techniques
will not increase the accuracy of FDTD|on the contrary, smoothing discontinuous
interfaces changes the structure, and generally introdus@dditional error into the
simulation [69]. In order to design an accurate smoothing ¢bnique, we exploited

recent results in perturbation theory that show how a partialar subpixel smooth-
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Figure 5-6: Appropriate subpixel averaging camcreasethe accuracy of FDTD with
discontinuous materials [69,175]. Here, relative error!=! (comparing to the \exact"

I o from a planewave calculation [107]) for an eigenmode calatibn (as in Ch. 5.7)
for a cubic lattice (period a) of 3d anisotropic* ellipsoids (right inset) versus spa-
tial resolution (units of pixels per vacuum wavelength ), for a variety of subpixel
smoothing techniques. Straight lines for perfect linear (ack dashed) and perfect
guadratic (black solid) convergence are shown for referencMost curves are for the
rst eigenvalue band (left inset showsEy in xy cross-section of unit cell), with vac-
uum wavelength =5:15a. Hollow squares show Meep's method for band 13 (middle
inset), with = 2:52a. Meep's method for bands 1 and 13 is shown for resolutions
up to 100 pixels/a.

ing can be chosen to yield zero rst-order error [69, 105, 12W/5]. The results are
shown in Fig. 5-6 and Fig. 5-7: for both computation of the e@nfrequencies (of an
anisotropic photonic crystal) in Fig. 5-6 and the scatterig loss from a bump on a strip
waveguide in Fig. 5-7, the errors in Meep's results decreageadratically [O( x?)],
whereas doing no averaging leads to erratic linear convenge O( x)]. Furthermore,
Fig. 5-6 compares to other subpixel-averaging schemes,liring the obvious strategy
of simply averaging" within each pixel [56], and shows that they lead to rst-orde
convergence no better than no averaging at all.

The subpixel averaging is discussed in more detail elsewdd69, 124,175], so we
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Figure 5-7: The relative error in the scattered power from ansall semicircular bump
in a dielectric waveguide ( = 12), excited by a point-dipole source in the waveguide
(geometry and elds shown in inset), as a function of the comyational resolution.
Appropriate subpixel smoothing of the dielectric interfaes leads to roughly second-
order [O( x?)] convergence (red squares), whereas the unsmoothed stawe has only
rst-order convergence (blue circles).

only briey summarize it here. In order for the smoothing to yeld zero rst-order
perturbation, the smoothing scheme must be anisotropic. Ew if the initial interface
is between isotropic materials, one obtains a tensbr(or ) which uses the meari for
elds parallel to the interface and the harmonic mean (invese of mean of 1) for elds

perpendicular to the interface|this was initially proposed heuristically [153] and
later shown to be justi ed via perturbation theory [69, 105] (If the initial materials

are anisotropic, a more complicated formula is needed [1245].) The key point
is that, even if the physical structure consists entirely ofsotropic materials, the
discretized structure will use anisotropic materials. Stale simulation of anisotropic

media requires an FDTD variant recently proposed in Ref. 235

There are a few limitations to this subpixel averaging. Fifs the case of perfect
metals requires a di erent approach [6, 158] that is not yetmplemented in Meep.

Although Meep does not yet implement subpixel averaging fatispersive materials,
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there is numerical evidence that similar accuracy improveemts are obtained in that
case by the same technique [54], and we suspect that a simiterivation can be ap-
plied (using the unconjugated form of perturbation theorydr the complex-symmetric
Maxwell equations in reciprocal media with losses [133]. dad, once the smoothing
eliminates the rst-order error, the presence of sharp coans (associated with eld sin-
gularities) introduce an error intermediate between rst-and second-order [69], which
we hope to address in future work. Third, the elds directlyon the interface are still
at best rst-order accurate even with subpixel smoothing|however, these localized
errors are equivalent to currents that radiate zero power tast order [108,124]. The
improved accuracy from smoothing is therefore obtained foelds evaluated o of the
interface as in scattered ux integrated over a surface awdyom the interface (Fig. 5-
7), for nonlocal properties like resonant frequencies anagenfrequencies (Fig. 5-6),
and for overall integrals of elds and energies [to which thaterface contributes only
O( x) of the integration domain and hence rst-order errors on tk interface have a

second-order e ect].

5.6 Materials

Time-dependent methods for electromagnetism, given thegrenerality, allow for the

simulation of a broad range of material systems. Certain daes of materials, par-
ticularly active and nonlinear materials which do not conswe frequency, are ide-
ally suited for modelling by such methods. Materials are repsented in Maxwell's
equations (5.1) and (5.2) via the relative permittivity "(x) and permeability (x)

which in general depend on position, frequency (material gpersion) and the elds
themselves (nonlinearities). Meep currently supports aitary anisotropic material

tensors, anisotropic dispersive materials (Lorentz{Druel models and conductivities,
both magnetic and electric), and nonlinear materials (bottsecond- and third-order
nonlinearities), which taken together permit investigatbns of a wide range of physical
phenomena. The implementation of these materials in Meepnsostly based on stan-

dard techniques [215], so we will focus here on two places véhdeep di ers from
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Figure 5-8: The performance of a quasi-PML in the radial dicion (cylindrical co-
ordinates, left panel) at a resolution 20 pixeks is nearly equivalent to that of a true
PML (in Cartesian coordinates, right panel). The plot showghe di erence in the
electric eld E; (insets) from a point source between simulations with PML titkness
L and L + 1, which is a simple proxy for the PML re ections [177]. The derent

curves are for PML conductivities that turn on as &=L)¢ for d = 1;2; 3 in the PML,

leading to di erent rates of convergence of the re ection [47].

the usual approach. For nonlinearities, we use a Pace apptaonant to avoid solving
cubic equations at each step. For PML absorbing media in cylirical coordinates,
we only use a \quasi-PML" [138] based on a Cartesian PML, butxelain why its

performance is comparable to a true PML while requiring lessomputational e ort.

5.6.1 Nonlinear materials

Optical nonlinearities arise when large eld intensitiesriduce changes in the local
or to produce a number of interesting e ects: temporal and sp&tl soliton propa-
gation, optical bistability, self-focusing of optical bees, second- and third-harmonic
generation, and many other e ects [2,24]. Such materials @musually described by a
power-series expansion @ in terms of E and various susceptibilities. In many com-

mon materials, or when considering phenomena in a su ciertl narrow bandwidth
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(such as the resonantly enhanced nonlinear e ects [194] welited to FDTD calcula-
tions), these nonlinear susceptibilities can be accurayedpproximated via nondisper-
sive (instantaneous) e ects [28]. Meep supports instant@ous isotropic (or diagonal

anisotropic) nonlinear e ects of the form:
D; P="WE+ PE2+ YJEPE; (5.3)

where"® represents all the linear nondispersive terms ang is a dispersive polar-
ization P = f,ligpersive(! )E from dispersive materials such as Lorentz media [215]. (A
similar equation relatesB and H.) Implementing this equation directly, however,
would require one to solve a cubic equation at each time steplp, sec. 9.6], sincB

is updated fromr  H before updatingE from D.

However, eq. (5.3) is merely a power series approximatiorr fine true material
response, valid for su ciently small eld intensities, so t is not necessary to insist
that it be solved exactly. Instead, we approximate the solibn of eq. (5.3) by a Pace
approximant [11], which matches the \exact" cubic solutionto high-order accuracy

by the rational function:

21+ oDy +2 kDK °
ror ror 5 @ 'pi (5.4)

B =4 @ @ 5
1+2 WDi +3 Wka

whereD; = D; P;. For the case of isotropic'™ and @ =0, so that we have a
purely Kerr ( ®) material, this matches the \exact" cubic E to O(D7) error. With
@ & 0, the error is O(D?).

For more complicated dispersive nonlinear media or for atbary anisotropy in
@ or @, one approach that Meep may implement in the future is to inaporate

the nonlinear terms in the auxiliary di erential equationsfor a Lorentz medium [215].
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5.6.2 Absorbing boundary layers: PML, pseudo-PML, and
quasi-PML

A perfectly matched layer (PML) is an arti cial absorbing medium that is commonly
used to truncate computational grids for simulating wave agations (e.g. Maxwell's
equations), and is designed to have the property that intesates between the PML
and adjacent media are re ectionless in the exact wave equam [215]. There are
various interchangeable formulations of PML for FDTD methds [215], which are all
equivalent to a coordinate stretching of Maxwell's equatits into complex spatial co-
ordinates; Meep implements a version of the uniaxial PML (UML), expressing the
PML as an e ective dispersive anisotropic' and [215]. Meep provides support for
arbitrary user-speci ed PML absorption pro les (which hawe an important in uence
on re ections due to discretization error and other e ects)or a given round-trip re-
ection (describing the strength of the PML in terms of the anplitude of light passing
through the PML, re ecting o the edge of the computational cell, and propagating
back) [177]. For the case of periodic media such as photoniystals, the medium
is not analytic and the premise of PML's re ectionless propgy is violated; in this
case, a \PML" material overlapped with the photonic crystalis only a \pseudo-PML"
that is re ectionless only in the limit of a su ciently thick and gradual absorber, and

control over the absorption pro le is important [177].

For the radial direction in cylindrical coordinates, a truePML can be derived by
coordinate-stretching, but it requires more storage and ogputational e ort than the
Cartesian UPML [84,217], as well as increasing code compigx Instead, we chose
to implement a quasi-PML [138], which simply consists of using the Cartesian UPML
materials as an approximation for the true radial PML. This g@proximation becomes
more and more accurate as the outer radius of the computatiahcell increases, be-
cause the implicit curvature of the PML region decreases witradius and approaches
the Cartesian case. Furthermore, one must recall thatvery PML has re ections
once space is discretized [215], which can be mitigated byadually turning on the

PML absorption over a nite-thickness PML layer. The quasiPML approximation
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is likewise mitigated by the same gradual absorption pro leand the only question is
that of the constant factor in the re ection convergence: he thick does the quasi-
PML need to be to achieve low re ections, compared to a true PMP Figure 5-8
shows that, for a typical calculation, the performance of ta quasi-PML in cylindri-
cal coordinates (left) is comparable to that of a true PML in @rtesian coordinates
(right). Here, we plot a measure of the re ection from the PMLas a function of the
PML absorber lengthL, for a xed round-trip re ection [177], using as a measure
of the re ection the \ eld convergence" factor: the di erence between theE eld at
a given point for simulations with PML absorber lengthsL and L + 1. The PML
conductivity (x) is turned on gradually as &=L)¢ for d = 1;2; 3, and it can be shown
that this leads to re ections that decrease as4L?%*? and eld-convergence factors
that decrease as 2L.24** [177]. Precisely these decay rates are observed in Fig. 5-8,
with similar constant coe cients. As the resolution is increased (approaching the
exact wave equations), the constant coe cient in the Cartesn PML plot will de-
crease (approaching zero re ection), while the quasi-PM&'constant coe cient will
saturate at some minimum (corresponding to its nite re ecivity in the exact wave
equation for a xed L). This di erence seems of little practical concern, howevebe-
cause the re ection from a one-wavelength thick quasi-PMLta moderate resolution

(20 pixels= ) is already so low.

5.7 Enabling typical computations

Simulating Maxwell's equations in the time domain enableshe investigation of prob-
lems inherently involving multiple frequencies, such as nbnearities and active media.
However, it is also well adapted to solving frequency domaijproblems since it can
solve large bandwidths at once, for example analyzing reson modes or computing
transmission/re ection spectra. In this section, we desdbe techniques Meep uses
to e ciently compute scattering spectra and resonant modesn the time domain.
Furthermore, we describe how the time domain method can be agted to a purely

frequency domain solver while sharing almost all of the undging code.
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5.7.1 Computing ux spectra

A principle task of computational time-domain tools are inestigations of transmission
or scattering spectra from arbitrary structures, where onavants to compute the
transmitted or scattered power in a particular direction asa function of the frequency
of incident light. One can solve for the power at many frequeres in a single time-
domain simulation by Fourier transforming the response to ghort pulse. Speci cally,
for a given surfaceS, one wishes to compute the integral of the Poynting ux:

I
P(!)=< E (x) H (x)dA; (5.5)
s

whereE, andH, are the elds produced by a source at frequency, and < denotes
the real part of the expression. The basic idea, in time-dorimg is to use a short-pulse
source (covering a wide bandwidth including all frequengeof interest), and compute
E, andH, from the Fourier transforms ofE(t) and H (t). There are several di erent
ways to compute these Fourier transforms. For example, oneudd store the electric
and magnetic elds throughout S over all times and at the end of the simulation

perform a discrete-time Fourier transform (DTFT) of the elds:

X
E, = e 'E(n t) t (5.6)

n
for all frequencies () of interest, possibly exploiting a fast Fourier transform(FFT)
algorithm. Such an approach has the following computatioh&ost: for a simulation
having T timesteps, F T frequencies to computeNs elds in the ux region
and N pixels in the entire computational cell this approach reques ( N + NgT)
storage and (NT + T logT) time (using a FFT-based chirpz algorithm [10]).2 The
di culty with this approach is that if a long simulation (lar geT) is required to obtain
a high frequency resolution by the usual uncertainty relatin [174], then the (NsT)
storage requirements for the eld€E(t) and H(t) at each point in S become excessive.

Instead, Meep accumulates the DTFT summation of the elds atevery point in

2Here, has the usual meaning of an asymptotic tight bound [50].
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Figure 5-9: Relative error in the quality factorQ for a photonic-crystal resonant
cavity (inset, period a) with Q 1P, versus simulation time in units of optical
periods of the resonance. Blue circles: lter-diagonalitan method. Red squares:
least-squares t of energy in cavity to a decaying exponetfati. Filter-diagonalization
requires many fewer optical periods than the decay tim@®, whereas curve tting
requires a simulation long enough for the elds to decay sigoantly.

S as the simulation progresses; once the time stepping hasnenated, eq. (5.5)
can be evaluated using these Fourier-transformed elds. The computational cost
of this approach is (N + NgF) storage [much less than (NsT) if F T] and
( NT + NsFT) time. Although our current approach works well, another pssible
approach that we have been considering is to use Pace appnmation: one stores the
elds at every timestep onS, but instead of using the DTFT one constructs a Pace
approximant to extrapolate the in nite-time DTFT from a short time series [79].
This requires ( N + NgT) storage (but T is potentially much smaller) andO(NT +

T log? T) time [31].

31t is tempting to instead accumulate the Fourier transform of the Poynting ux at each time,
but this is not correct since the ux is not a linear function o f the elds.

132



5.7.2 Analyzing resonant modes

Another major goal of time-domain simulations is analysisfaesonant phenomena,
speci cally by determining the resonant frequency o and the quality factorsQ (i.e.,
the number of optical cycles 2! , for the eld to decay by e ? ) of one or more
resonant modes. One straightforward and common approach tompute! o and Q
is by computing the DTFT of the eld at some point in the cavity in response to
a short pulse [215]:! ¢ is then the center of a peak in the DTFT and %£Q is the
fractional width of the peak at half maximum. The problem wit this approach is
that the Fourier uncertainty relation (equivalently, spedral leakage from the nite
time window [174]) means that resolving the peak in this wayequires a simulation
much longer thanQ=! (problematic for structures that may have very highQ, even
1C° or higher [193]). Alternatively, one can perform a least sques t of the eld
time-series within the cavity to an exponentially decayingsinusoid, but this leads to
an ill-conditioned, non-convex, nonlinear tting problem (and is especially di cult
if more than one resonant mode may be present). If only a siegtesonant mode is
present, one can perform a least-squares t of the energy ihd cavity to a decaying
exponential in order to determineQ, but a long simulation is still required to accu-
rately resolve a largeQ (as shown below). A more accurate and e cient approach,
requiring only a short simulation even for very large& values, is the technique ofl-
ter diagonalization originally developed for NMR spectroscopy, which transfars the
time-series data into a small eigenproblem that is solvedrfall resonant frequencies
and quality factors at once (even for multiple overlapping e@sonances) [145]. Chap-
ter 16 of Ref. 215 compared the DFT peak- nding method with ter-diagonalization
by attempting to resolve two near-degenerate modes in a mamravity, and demon-
strated the latter's ability to accurately resolve closelyspaced peaks with as much as
a factor of ve times fewer timesteps. Rodriguez et al. [193jave used lter diag-
onalization to compute quality factors of 18 or more using simulations only a few
hundred optical cycles in length. We quantify the ability of Iter diagonalization to

resolve a largeQ  10° in Fig. 5-9, comparing the relative error inQ versus simu-
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lation time for lter diagonalization and the least-squares energy-t method above.
(The speci c cavity is formed by a missing rod in a two-dimenenal photonic crystal
consisting of a square lattice of dielectric rods in air witlperiod a, radius G2a, and
" =12 [99].) Figure 5-9 demonstrates that Iter diagonalizaton is able to identify
the quality factor using almost an order of magnitude fewerime steps than the curve
tting method. (Another possible technique to identify reonant modes uses Pack

approximants, which can also achieve high accuracy from aahsimulation [55,79].)

5.7.3 Frequency-domain solver

A common electromagnetic problem is to nd the elds that areproduced in a geom-
etry in response to a source at a single frequenty In principle, the solution of such
problems need not involve time at all, but involve solving aihear equation purely in
the frequency domain [99, appendix DJ; this can be achieveg many methods, such
as nite-element methods [98, 198, 245], boundary-elememtethods [25,41,188,225],
or nite-di erence frequency-domain methods [44]. Howeveif one already has a full-
featured parallel FDTD solver, it is attractive to exploit that solver for frequency-
domain problems when they arise. The most straightforwardpgroach is to sim-
ply run a simulation with a constant-frequency source|after a long time, when all
transient e ects from the source turn-on have disappearedhe result is the desired
frequency-domain response. The di culty with this approat is that a very long sim-
ulation may be required, especially if long-lived resonamhodes are present at nearby
frequencies (in which case a time Q=! is required to reach steady state). Instead,
we show how the FDTD time-step can be used to directly plug adgquency-domain
problem into an iterative linear solver, nding the frequerty-domain response in the
equivalent of many fewer timesteps while exploiting the FDD code almost without
modi cation.

The central component of any FDTD algorithm is the time step:an operation
that advances the eld by tintime. In order to extract a frequency-domain problem
from this operation, we rst express the timestep as an absdct linear operation: if

f" represents all of the elds (electric and magnetic) at timetgp n, then (in a linear
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time-invariant structure) the time step operation can be egressed in the form:
et = fof" + 87 (5.7)

where T, is the timestep operator with no sources and" are the source terms (cur-

rents) from that time step. Now, suppose that one has a timeammonic source

s" = e " tsand wish to solve for the resulting time-harmonic (steady ate) elds
f" = e "™ f  Substituting these into eq. (5.7), we obtain the followindinear equa-

tion for the eld amplitudes f:
Tfo e tf= s (5.8)

This can then be solved by an iterative method, and the key fags that iterative
methods forAx = b only require one to supply a function that multiplies the lirear
operator A by a vector [13]. HereA is represented byf, e ! ' and hence one can
simply use a standard iterative method by calling the unmodad timestep function
from FDTD to provide the linear operator. To obtain the prope right-hand side
s, one merely needs to execute a single timestep (5.7), withusces, starting from
zero eld f = 0. Since in general this linear operator is not Hermitian (gpecially in
the presence of PML absorbing regions), we employ the BiCGAB-L algorithm (a
generalization of the stabilized biconjugate gradient atgithm, where increasing the
integer parameterL trades o increased storage for faster convergence) [20852.
This techniqgue means that all of the features implemented iour time-domain
solver (not only arbitrary materials, subpixel averagingand other physical features,
but also parallelization, visualization, and user-intedce features) are immediately
available as a frequency-domain solver. To demonstrate thmerformance of this
frequency-domain solver over the straightforward approaoof simply running a long
simulation until transients have disappeared, we computethe root-mean-square er-
ror in the eld as a function of the number of time steps (or evations of Ty by
BiCGSTAB-L) for two typical simulations. The rst simulation, shown in Fig. 5-10,

consists of a point source in vacuum surrounded by PML (insget The frequency-

135



10

100

3 ) )
T 192 | time domain
£ PML
o »
£ 10" - i
(]
n
=
@ 100 i
=
a
10® .
10%°F 8
PML
-12
10 L TR L TR L TR L IR L L
10° 10" 10° 10° 10° 10°

time steps or matrix-vector products

Figure 5-10: Root-mean-square error in elds in response # constant-frequency
point source in vacuum (inset), for frequency-domain solv€red squares, adapted
from Meep time-stepping code) vs. time-domain method (bluercles, running until
transients decay away).

domain solver (red squares) shows rapid, near-exponenti@nvergence, while the
error in the time-domain method (blue circles) decreasesrfmore gradually (in fact,
only polynomially). A much more challenging problem is to dfain the frequency-
domain response of a cavity (ring resonator) with multipledng-lived resonant modes:
in the time domain, these modes require a long simulation ( Q) to reach steady
state, whereas in the frequency domain the resonances cepend to poles (near-
zero eigenvalues oA) that increase the condition number and hence slow conver-
gence [13]. Figure 5-11 shows the results for a ring resomatavity with multiple
closely-spaced resonant modes, excited at one of the resarfaequencies (inset)|
although both frequency- and time-domain methods take lorg to converge than for
the non-resonant case of Fig. 5-10, the advantage of the fusmcy-domain's expo-
nential convergence is even more clear. The convergencedsederated in frequency

domain by usingL = 10 (green diamonds) rather thanL = 2 (at the expense of more
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Figure 5-11: Root-mean-square error in elds in response # constant-frequency
point source exciting one of several resonant modes of a dattic ring resonator
(inset, " = 11:56), for frequency-domain solver (red squares, adaptedrndvieep time-
stepping code) vs. time-domain method (magenta trianglesynning until transients
decay away). Green diamonds show frequency-domain BiCGSBA. solver for ve
times more storage, accelerating convergence. Blue ciscéhow time-domain method
for a more gradual turn-on of source, which avoids excitingphg-lived resonances at
other frequencies.

storage). In time domain, the convergence is limited by theetay of highQ modes
at other frequencies, and the impact of these modes can be wedd by turning on
the constant-frequency source more gradually (magenta angles, hyperbolic-tangent

turn-on of the source over 175 optical periods).

This is by no means the most sophisticated possible frequgrdomain solver. For
example, we currently do not use any preconditioner for thderative scheme [13].
In two dimensions, a sparse-direct solver may be far more eent than an itera-
tive scheme [13]. The key point, however, is that programmeéime is much more
expensive than computer time, and this technique allows u® tobtain substantial

improvements in solving frequency-domain problems with &n minimal changes to
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an existing FDTD program.

5.8 User interface and scripting

In designing the style of user interaction in Meep, we were @led by two principles.
First, in research or design one hardly ever needs jushe simulation|one almost
always performs a whole series of simulations for a class eiited problems, exploring
the parameter dependencies of the results, optimizing someatput as a function of
the input parameters, or looking at the same geometry under sequence of di erent
stimuli. Second, there is the Unix philosophy: \Write progams that do one thing
and do it well" [200]|Meep should perform electromagnetic smulations, while for
additional functionality it should be combined with other programs and libraries via
standard interfaces like les and scripts.

Both of these principles argue against the graphical CADAge interface common
in commercial FDTD software. First, while graphical interbces provide a quick and
attractive route to setting up a single simulation, they arenot so convenient for a series
of related simulations. One commonly encounters problemsere the size/position of
certain objects is determined by the size/position of otheobjects, where the number
of objects is itself a parameter (such as a photonic-crystahvity surrounded by a
variable number of periods [99]), where the length of the sutation is controlled by
a complicated function of the elds, where one output is opithized as a function of
some parameter, and many other situations that become in@gingly cumbersome
to express via a set of graphical tools and dialog boxes. Sedpwe don't want to
write a mediocre CAD program|if we wanted to use a CAD program, we would
use a professional-quality one, export the design to a stasndl interchange format,
and write a conversion program to turn this format into what Meep expects. The
most exible and self-contained interface is, instead, tollw the user to control
the simulation via an arbitrary program. Meep allows this sfle of interaction at two
levels: via a low-level C++ interface, and via a standard hilg-level scripting language

(Scheme) implemented by an external library (GNU Guile). Tk potential slowness
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(set!  geometry-lattice (make lattice ( size 16 8 no-size ))
(set!  geometry (list
(make block (center 0 0) ( size infinity 1 )
(material (make dielectric ( epsilon 12 )
(set!  pml-layers  (list (make pml (thickness 1.0))))

computational cel
& materials

R

(set!  sources (list
(make source

current
source

(src (make continuous-src (frequency 0.15) )
( component Ez)
(center -7.0))))
oS (set! resolution 10) ]
= & (run-until 200 HDF5 file —
23 (at-beginning output-epsilon ) plotting program

(at-end output-efield-z )

Figure 5-12: A simple Meep example showing thE, eld in a dielectric waveg-
uide (" = 12) from a point source at a given frequency. A plot of the resting

eld (blue/white/red = positive/zero/negative) is in the b ackground, and in the fore-
ground is the input le in the high-level scripting interface (the Scheme language).

of the scripting language is irrelevant because all of the pensive parts of the FDTD

calculation are implemented in C/C++.

The high-level scripting interface to Meep is documented idetail, with several
tutorials, on the Meep web page Http://ab-initio.mit.edu/meep ), SO we restrict
ourselves to a single short example in order to convey the lmsavor. This example,
in Fig. 5-12, computes the (2d) elds in response to a point soce located within a
dielectric waveguide. We rst set the size of the computatioal cell to 16 8 (via
geometry-lattice , so-called because it determines the lattice vectors in tiperiodic
case)|recall that the interpretation of the unit of distanc e is arbitrary and up to
the user (it could be 16 m 8 m, in which case the frequency units are= m, or
16 mm 8 mm with frequency units ofc=mm, or any other convenient distance unit).
Let us call this arbitrary unit of distance a. Then we specify the geometry within
the cell as a list of geometric objects like blocks, cylindgretcetera|in this case by a
single block de ning the waveguide with" = 12|or optionally by an arbitrary user-

de ned function "(x;y) (and , etcetera). A layer of PML is then speci ed around the
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boundaries with thickness 1, this layer lienside the computational cell and overlaps
the waveguide, which is necessary in order to absorb wavedgiimodes when they
reach the edge of the cell. We add a point source, in this case alectric-current
sourced in the z direction (sources of arbitrary spatial pro le can also begeci ed).
The time-dependence of the source is a sharp turn-on to a contous-wave source
cos(t ) at the beginning of the simulation; gradual turn-ons, Gausian pulses, or
arbitrary user-speci ed functions of time can also be speed. The frequency is 015
in units of c=a corresponding to a vacuum wavelength = a=0:15 (e.g. 6:67 m
if a=1 m). We set the resolution to 10 pixels per unit distance (10 pels/a), so
that the entire computational cell is 160 80 pixels, and then run for 200 time units
(units of a=q, corresponding to 200 0:15 = 30 optical periods. We output the

dielectric function at the beginning, and theE, eld at the end.

In keeping with the Unix philosophy, Meep is not a plotting pogram; instead, it
outputs elds and related data to the standard HDF5 format fa scienti ¢ datasets [71],
which can be read by many other programs and visualized in vaus ways. (We also
provide a way to e ectively \pipe" the HDF5 output to an external program within
Meep: for example, to output the HDF5 le, convert it immediaely to an image
with a plotting program, and then delete the HDF5 le; this is especially useful for

producing animations consisting of hundreds of frames.)

Another important technique to maintain exibility is that of higher-order func-
tions [1]: wherever it is practical, our functions take funitons as arguments instead
of (or in addition to) numbers. Thus, for example, instead opecifying special in-
put codes for all possible source distributions in space arone, we simply allow
a user-de ned function to be used. More subtly, the argumestoutput-epsilon
and output-efield-z  to the run-until  function in Fig. 5-12 are actually functions
themselves: we allow the user to pass arbitrary \step funans” to run-until  that
are called after every FDTD timestep and which can perform aitrary computations
on the elds as desired (or halt the computation if a desiredandition is reached).
The output-efield-z is simply a prede ned step function that outputsE,. These

step-functions can be modi ed by transformation functiondike at-end , which take
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step functions as arguments and return a new step function &t only calls the origi-
nal step functions at speci ed times (at the end of the simuléon, or the beginning,
or at certain intervals, for example). In this way, great exbility in the output and

computations is achieved. One can, for example, output a g@w eld component
only at certain time intervals after a given time, and only wihin a certain subvolume
or slice of the computational cell, simply by composing sen& of these transforma-
tions. One can even output an arbitrary user-de ned functio of the elds instead of

predetermined components.

There is an additional subtlety when it comes to eld output,because of the Yee
lattice in which di erent eld components are stored at di erent points; presented
in this way to the user, it would be dicult to perform post-pr ocessing involving
multiple eld components, or even to compare plots of di erat eld components.
As mentioned in Ch. 5.5 and again in Ch. 5.9.2, therefore, theld components are
automatically interpolated from the Yee grid onto a xed \centered" grid in each

pixel when exported to a le.

Although at a simplistic level the input format can just be casidered as a le
format with a lot of parentheses, because Scheme is a fulldged programming lan-
guage one can control the simulation in essentially arbitrg ways. Not only can one
write loops and use arithmetic to de ne the geometry and theelationships between
the objects or perform parameter sweeps, but we also exposgeenal libraries for
multivariable optimization, integration, root- nding, a nd other tasks in order that

they can be coupled with simulations.

Parallelism is completely transparent to the user: exactlthe same input script is
fed to the parallel version of Meep (written with the MPI mesage-passing standard
for distributed-memory parallelism [72]) as to the serial @rsion, and the distribution

of the data across processors and the collection of resushiandled automatically.
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5.9 Abstraction versus performance

In an FDTD simulation, essentially just one thing has to be fat: inner loops over all
the grid points or some large fraction thereof. Everythinglse is negligible in terms of
computation time (but not programmer time!), so it can use hjh-level abstractions
without penalty|for example, the use of a Scheme interprete as the user interface
has no performance consequences for a typical computatifrecause the inner loops
are not written in Scheme? For these inner loops, however, there is a distinct tension
between abstraction (or simplicity) and performance, andni this section we discuss
some of the tradeo s that result from this tension and the chiges that have been
made in Meep.

The primacy of inner loops means that some popular princieof abstraction
must be discarded. A few years ago, a colleague of ours attaegpto write a new
FDTD program in textbook object-oriented C++ style: every pixel in the grid would
be an object, and every type of material would be a subclassesriding the necessary
timestepping and eld-access operations. Timestepping wial consist of looping over
the grid, calling some \step" method of each object, so thathjects of di erent ma-
terials (magnetic, dielectric, nonlinear etcetera) wouldlynamically apply the corre-
sponding eld-update procedures. The result of this noblexperiment was a working
program but a performance failure, many times slower than thaging Fortran soft-
ware it was intended to replace: the performance overhead albject dereferencing,
virtual method dispatch, and function calls in the inner lop overwhelmed all other
considerations. In Meep, each eld's components are stored simple linear arrays of
oating-point numbers in row-major (C) order (parallel-array data structures worthy
of Fortran 66), and there are separate inner loops for eachpg of material (more on
this below). In a simple experiment on a 2.8 GHz Intel Core 2 GP, merely moving

the if statements for the di erent material types into these innerloops decreased

4The exception to this rule is when the user supplies a Schemauriction and asks that it be
evaluated for every grid point, for example to integrate sone function of the elds. If this is done
frequently during the simulation, it is slow; in these circumstances, however, the user can replace
the Scheme function with one written in C/C++ if needed. This is rare because most such functions
that might be used frequently during a simulation, such as emrgy or ux, are already supplied in
C/C++ within Meep.
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Meep's performance by a factor of two in a typical 3d calculain and and by a fac-
tor of six in 2d (where the calculations are simpler and henate overhead of the
conditionals is more signi cant). The cost of the conditioals, including the cost of
mispredicted branches and subsequent pipeline stalls [85)ng with the frustration of
compiler unrolling and vectorization, easily overwhelmethe small cost of computing,

e.g.,r H ata single point.

5.9.1 Timestepping and cache tradeo s

One of the dominant factors in performance on modern computeystems is not
arithmetic, but memory: random memory access is far slowehan arithmetic, and
the organization of memory into a hierarchy of caches is dgsied to favor locality
of access [85]. That is, one should organize the computatien that as much work
as possible is done with a given datum once it is fetched (temal locality) and so
that subsequent data that are read or written are located neby in memory (spatial
locality). The optimal strategies to exploit both kinds of bcality, however, appear
to lead to sacri ces of abstraction and code simplicity so gere that we have chosen
instead to sacri ce some potential performance in the name simplicity.

As it is typically described, the FDTD algorithm has very little temporal locality:
the eld at each point is advanced in time by t, and then is not modi ed again
until all the elds at every other point in the computational cell have been advanced.
In order to gain temporal locality, one must employasynchronous timesteppinges-
sentially, points in small regions of space are advanced eel steps in time before
advancing points far away, since over a short time intervalhie e ects of far-away
points cannot cannot be felt. A detailed analysis of the chacteristics of this prob-
lem, as well as a beautiful \cache-oblivious" algorithm thaautomatically exploits
a cache of any size for grids of any dimensionality, is dedmd in Ref. 73. On the
other hand, an important part of Meep's usability is the abstaction that the user can
perform arbitrary computations or output using the elds in any spatial region at any
time, which seems incompatible with the elds at di erent pants in space being out-

of-sync until a predetermined end of the computation. The bakkeeping di culty of
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reconciling these two viewpoints led us to reject the asynanous approach, despite

its potential bene ts.

However, there may appear to be at least a small amount of teropal locality
in the synchronous FDTD algorithm: rst B is advanced fromr E, then H is
computed fromB and , then D is advanced fromr H, then E is computed
from D and ". Since most elds are used at least once after they are advamk;
surely the updates of the di erent elds can be merged into aisgle loop, for example
advancingD at a point and then immediately computingE at the same point|the
D eld need not even be stored. Furthermore, since by mergindné updates one is
accessing several elds around the same point at the same &nperhaps one can gain
spatial locality by interleaving the data, say by storing an array of E;H;"; ) tuples
instead of separate arrays. Meep does not do either of thesengs, however, for two
reasons, the rst of which is more fundamental. As is well-kswn, one cannot easily
merge theB and H updates with the D and E updates at the same point, because
the discretizedr operation is nonlocal (involves multiple grid points)|thi s is why
one normally updatesH everywhere in space before updating fromr H, because
in computingr  H one uses the values dfl at di erent grid points and all of them
must be in sync. A similar reasoning, however, applies to upting E from D and
H from B, once the possibility of anisotropic materials is includddecause the Yee
grid stores di erent eld components at di erent locations, any accurate handling of
o -diagonal susceptibilities must also inevitably invole elds at multiple points (as
in Ref. 235). To handle this,D must be stored explicitly and the update ofE from
D must take place afterD has been updated everywhere, in a separate loop. And
since each eld is updated in a separate loop, the spatialdality motivation to merge

the eld data structures rather than using parallel arrays § largely removed.

Of course, not all simulations involve anisotropic materia|although they appear
even in many simulations with nominally isotropic materias thanks to the subpixel
averaging discussed in Ch. 5.5|but this leads to the second factical problem with
merging the E and D (or H and B) update loops: the combinatorial explosion of

the possible material cases. The update @ fromr  H must handle 16 possible
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cases, each of which is a separate loop (see above for the obgtting conditionals
inside the loops): with or without PML (4 cases, depending um the number of PML
conductivities and their orientation relative to the eld), with or without conductiv-
ity, and with the derivative of two H components (3d) or only oneH component
(2d TE polarization). The update of E from D involves 12 cases: with or without
PML (2 cases, distinct from those in theD update), the number of o -diagonal" *
components (3 cases: 0, 1, or 2), and with or without nonlingty (2 cases). If we
attempted to join these into a single loop, we would have 16 12 = 192 cases, a
code-maintenance headache. (Note that the multiplicity oPML cases comes from
the fact that, including the corners of the computational ck, we might have 0 to 3
directions of PML, and the orientation of the PML directionsrelative to a given eld
component matters greatly.)

The performance penalty of separat& and D (or H and B) updates appears to
be modest. Even if, by somehow merging the loops, one assurtiest the time to
computeE = " 1D could becomezerg benchmarking the relative time spent in this
operation indicates that a typical 3d transmission calculdon would be accelerated

by only around 30% (and less in 2d).

5.9.2 The loop-in-chunks abstraction

Finally, let us brie y mention a central abstraction that, while not directly visible
to end-users of Meep, is key to the e ciency and maintainahily of large portions
of the software (eld output, current sources, ux/energy cmputations and other
eld integrals, and so on). The purpose of this abstractionsito mask the complexity
of the partitioning of the computational cell into overlappgng chunks connected by
symmetries, communication, and other boundary conditionas described in Ch. 5.4.
Consider the output of the elds at a given timestep to an HDF5data le. Meep
provides a routine get-field-pt that, given a point in space, interpolates it onto
the Yee grid and returns a desired eld component at that poin In addition to
interpolation, this routine must also transform the point oito a chunk that is actu-

ally stored (using rotations, periodicity, etcetera) and ommunicate the data from
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another processor if necessary. If the point is on a boundabetween two chunks,
the interpolation process may involve multiple chunks, mtiple rotations etcetera,
and communications from multiple processors. Because ttpsocess involves only a
single point, it is not easily parallelizable. Now, to outptithe elds everywhere in
some region to a le, one approach is to simply cafiet-field-pt  for every point in
a grid for that region and output the results, but this turns aut to be tremendously
slow because of the repeated transformations and commurtioas for every single
point. We nevertheless want to interpolate elds for outputrather than dumping
the raw Yee grid, because it is much easier for post-processiif the di erent eld
components are interpolated onto the same grid; also, to nmin transparency of
features like symmetry one would like to be able to output thevhole computational
cell (or an arbitrary subset) even if only a part of it is stord. Almost exactly the
same problems arise for integrating things like uxe H or energy or user-de ned
functions of the elds (noting that functions combining mutiple eld components
require interpolation), and also for implementing volumedr line, or surface) sources

which must be projected onto the grid in some arbitrary volure.

One key to solving this di culty is to realize that, when the eld in some volume/
is needed (for output, integration, and so on), the rotatios, communications, etcetera
for points in V are identical for all the points in the intersection ofV with some chunk
(or one of its rotations/translations). The second is to relize that, when interpolation
is needed, there is a particular grid for which interpolatio is easy: forowned points
of the centeredgrid (Ch. 5.4) lying at the center of each pixel, it is always pssible to
interpolate from elds on any Yee grid without any inter-chunk communication and

by a simple equal-weight averaging of at most®2points in d dimensions.

The combination of these two observations leads to thieop-in-chunks abstrac-
tion. Given a (convex rectilinear) volumeV and a given grid (either centered, or
one of the Yee- eld grids), it computes the intersection of lathe chunks and their
rotations/translations with V. For each intersection it invokes a caller-speci ed func-
tion, passing the portion of the chunk, the necessary rotatns (etc.) of the elds,

and interpolation weights (if needed, for the boundary o¥). That function then
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processes the speci ed portion of the chunk (for example, fpwtting it to the corre-
sponding portion of a le, or integrating the desired elds) All of this can proceed
in parallel (with each processor considering only those ahks stored locally). This is
(relatively) fast because the rotations, interpolationsand so on are computed only
once per chunk intersection, while the inner loop over all g points in each chunk
can be as tight as necessary. Moreover, all of the rather colcpted and error-prone
logic involved in computing V's intersection with the chunks (e.g., special care is
required to ensure that each conceptual grid point is procesd exactly once despite
chunk overlaps and symmetries) is localized to one place ihet source code; eld
output, integration, sources, and other functions of the &ls are isolated from this

complexity.

5.10 Concluding remarks

We have reviewed in this chapter a number of the unusual impteentation details of
Meep that distinguish our software package from standard x¢book FDTD methods.
Beginning with a discussion of the fundamental structural mit of chunks that con-
stitute the Yee grid and enable parallelization: we providd an overview of Meep's
core design philosophy of creating an illusion of continuswspace and time for inputs
and outputs; we explained and motivated the somewhat unushbidesign intricacies of
nonlinear materials and PMLs; we discussed important aspscof Meep's computa-
tional methods for ux spectra and resonant modes; we demadnated the formulation
of a frequency-domain solver requiring only minimal modi ations to the underlying
time-stepping algorithm. In addition to the inner workingsof Meep's internal struc-
ture, we reviewed how such features are accessible to usaesan external scripting
interface.

We believe that a free/open-source, full-featured FDTD pa&age like Meep can
play a vital role in enabling new research in electromagnetiphenomena. Not only
does it provide a low barrier to entry for standard FDTD simuétions, but the sim-

plicity of the FDTD algorithm combined with access to the sotce code o ers an easy
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route to investigate new physical phenomena coupled withesitromagnetism. For ex-
ample, we have colleagues working on coupling multi-leveabans to electromagnetism
within Meep for modelling lasing and saturable absorptioradapting published tech-
niques from our and other groups [19, 35,89, 167,257], bus@lincluding new physics
such as di usion of excited gases. Other colleagues have med Meep for modelling

gyromagnetic media in order to design new classes of \oneywvavaveguides [229].
Meep is even being used to simulate the quantum phenomena as@nir forces (from
guantum vacuum uctuations, which can be computed from clascal Green's func-
tions) [150,195]|in fact, this was possible without any mod cations of the Meep code
due to the exibility of Meep's scripting interface. We hopethat other researchers,
with the help of the understanding of Meep's architecture tat this chapter provides,

will be able to adapt Meep to future phenomena that we have notet envisioned.
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Chapter 6

Zero{group-velocity modes in
chalcogenide holey photonic-crystal

bers

6.1 Summary

We demonstrate that a holey photonic-crystal ber with chatogenide-glass index
contrast can be designed to have a complete gap at a propagatticonstant = 0 that
also extends into the non-zero region. This type of bandgap (previously identi ed
only at index contrasts unattainable in glasses) opens up agime for guiding zero{
group-velocity modes not possible in holey bers with the me common nger-like
gaps originating from !1 . Such modes could be used to enhance nonlinear and

other material interactions, such as for hollow-core ber#n gas-sensor applications.

6.2 Introduction

Photonic-crystal holey bers have been of great interest foa variety of di erent
applications, mainly using silica or polymers with low inde contrasts (1.5 : 1) [196].
Researchers have also studied photonic-crystal ber-likgeometries with high index

contrast materials (eg. Sior GaAs, index 3:4)[70,80,90,147,154,184,237] and shown
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that they support interesting zero{group-velocity modesd0], but to our knowledge
such modes have not been described for bers made of easilawable materials. In
this work, we demonstrate the possibility of obtaining zefgroup-velocity modes in
uniform ber geometries using chalcogenide glasses (index 2:8 [16]), which have
proven amenable to drawn microstructured bers [30,115,62161,170,180]. Holey
bers, formed by a lattice of air holes in the ber cross sectin, are best known for
supporting \ nger-like" band gaps opening towards the highfrequency regime, which
can open even for arbitrarily low index contrasts [7,99,11884,196]. However, these
gaps close before reaching a zero propagation constantand the guided modes that
they support have all been found to have nonzero group velocilf the index contrast
is high enough to support a complete band gap for all polarigans in two dimensions,
however, then the resultingthree dimensional holey ber has a gap extending from
= 0 to some nonzero . Although such gaps appear in some earlier work for very
high index contrasts (3.3{3.5:1), [70,80,90, 147,154, 1287] here we point out that
they are attainable in lower-contrast glassy materials (Glcogenides). Moreover, we
argue that the key advantage of these gaps is that they can suprt guided ber
modes that have a zero group velocity at = 0. The slow-light modes close to
the zero-velocity band edge should enhance a wide variety mdnlinear phenomena
and material interactions [99, 209], such as ber-based sans [87,95,121,191], ber
lasers [136,227], or Raman scattering [15,151], and the Hasdge should also support
gap solitons [210]. Numerous experiments have demonstitslow-light e ects in
planar optical devices [9,151,172,202,226]. One simpleusture that has a complete
two-dimensional (2d) gap for chalcogenide/air index conéist is a triangular lattice
of circular air holes. In this chapter, we employ a modi catbn of this structure
that is optimized to have a slightly larger gap, but either stucture (and any future

complete-gap 2d designs) creates well-localized zero{gpevelocity ber modes.
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6.3 Review of ber properties

Let us rst review the basic terminology and characteristis of holey bers [99, 196],
and the origin of the gaps and zero{group-velocity modes irhis chapter. The prop-
agating modes of a ber with a constant permittivity cross-sction "(x;y) can be
described as somgy electric eld pattern E(x;y) multiplied by €(? ') where is
the propagation constant and! is the frequency. A holey ber consists of a periodic
cladding (usually a triangular lattice of air holes), as welas a core (solid or hollow)
that breaks the periodicity and supports guided modes. Theigpersion relation, the
plot of ! ( ) for all solutions, can be divided into several regions (a® iFigs. 6-1
and 6-2). First, there is a continuous (shaded) region, théght cone, consisting of all
cladding (non-guided) modes that can propagate in the cladty far from the core.
There are also regions of {! ) that have no cladding modes: band gaps within the
light cone, which can con ne gap-guided modes, and also an iy space below the
light cone that can con ne index-guided modes. The guided ndes, exponentially
localized to the vicinity of the core, appear as discrete bds ! ,( ) within the gaps
and/or under the light cone. (Technically, in a nite-size ber the gap-guided modes
are leaky, but as this leakage rate decreases exponentiadlith the periodic cladding
thickness it can be made negligible in practical contexts.Jn order to con ne light
in an air core, the gaps and guided modes must lie above thehidine ! = ¢ of air
(since modes below the light line of air are evanescent in aggions). Normally, these
guided bands are monotonically increasing, correspondibg a positive group veloc-
ity d!'=d (and there is a proof that this is always the case for index-gled modes
with a homogeneous cladding [12]). Zero group velocity (stding-wave modes) typ-
ically occurs only at values of that have z ! Z re ection symmetry (with rare
exceptions [90, 96]), which in a uniform{cross-section beonly occurs at = 0.
Index-guided modes are not possible at = 0 (they become rapidly more weakly
connedas ! 0), so one must consider bandgap-guided modes. Unfortunigtehe
typical gaps that arise in holey bers have their originintre !'1  limit (where the

eld patterns approximate those of a 2d metallic system [239]), and are observed to
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Figure 6-1: Projected band diagram (frequency vs. propagation constant ), for
a triangular lattice of holes (inset). Inset: optimized 2d ( = 0) gap size vs. index
contrast.

close well before =0 is reached. The =0 point corresponds to atwo-dimensional
photonic crystal with in-plane propagation, whose modes ndbe decomposed into TE
(E in xy plane) and TM (E in z direction) polarizations [99]. Typically, low-contrast
materials such as silica/air will have a gap only for one of #se polarizations (e.g.
TE for air holes) [99]. Such a single-polarization 2d gap isoh useful for guiding
modes in a ber, because the TE/TM distinction disappears fo 6 0 and hence
a single-polarization gap disappears [99]. On the other h@nif one can obtain an
overlapping TE/TM gap at = 0, which typically requires higher index contrasts,
then it should be expected to persist for a nonzero range of even after the TE/TM
distinction disappears [70,80,90,147,154,184,237]. Wartbnstrate that this, in fact,
occurs, for index contrasts attainable in chalcogenide glses that have been used for
ber drawing [30,115,126,161,170,180], contrary to someepious suggestions [184].
The resulting gap around = 0 therefore supports guided modes that attain zero
group velocity as ! 0. In practice, one does not operate at the zero-velocity pui
itself, but rather at nearby frequencies, so that by operatig closer and closer to the
zero-velocity band edge one can make the group velocity oftit arbitrarily small
in principle (at the expense of bandwidth and greater sensiity to absorption and

other loss, as discussed below).
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Figure 6-2: Projected band diagram (frequency vs. propagation constant ), for a
triangular lattice of hexagonal-shaped holes (inset). les. optimized 2d ( = 0) gap
size vs. index contrast.

Several other mechanisms have been proposed for creatingoggroup-velocity
modes in bers. Bragg bers, consisting of concentric ringef two or more materials
forming a one-dimensional photonic crystal, have a gap ongting at =0 [99,196]
and consequently their guided modes attain zero group veltcat this point. (Al-
though Bragg bers do not have a complete 2d gap, this is compsated for by the ro-
tational symmetry which eliminates modes propagating in th azimuthal direction at
large radii [99].) These ber modes resemble those of hollonetallic waveguides [91],
which also have zero group velocity at their cuto frequenes. However, Bragg bers
require two solid materials in the cladding, which makes falzation more challenging,
while metallic waveguides become lossy at infrared frequees. With a traditional
core-clad ber or with a holey ber, zero group velocity can mstead be attained by
periodic modulation of the structure along the axial direabn. For example, a ber
Bragg grating is formed by a weak modulation of the refractevindex \burned" in by
a photorefractive e ect. Because this index modulation isypically much less than
1%, however, the low group-velocity bandwidth is small in ler Bragg gratings. Fur-
thermore, one can only modulate the index of a solid materiagreatly reducing the
grating e ect for modes con ned in an air core. It has been pimosed that spherical

particles could be introduced into an air core in order to cede a periodic modula-
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Figure 6-3: Doubly-degenerate ¢ defect modes for a triangular lattice of hexagonal-
shaped holes with periodicitya obtained by varying inscribed defect diameter of a
hexagonal-shaped air core: d) = 1:6a (fundamental-like) b) D =3:2ac) D =6:2a
d) D = 6:76a (blue/white/red = negative/zero/positive).

tion [208], but such structures seem challenging to producs large scales compared
to drawn bers. Previous work showed that semiconductor (Bcon) index contrasts
(3.5:1) could support zero-group velocity modes in ber#ie geometries [90], and here
we underline the existence and utility of analogous modestviconventional ber ma-
terials. Furthermore, our previous work demonstrated thasuch zero group-velocity
modes can even be converted into backwards-wave and ultrat bands by careful
tuning of the waveguide core [90], and we expect that similgghenomena should be

possible in chalcogenide bers and other lower-contrast reaials.
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6.4 Gaps and defect modes

One 2d photonic crystal structure that is well known to have acomplete gap for
su ciently large index contrast is a triangular lattice (period a) of cylindrical air
holes (radiusr) in dielectric [99], similar to the geometry of many fabriceed holey
bers [196]. This geometry withr = 0:45a turns out to have a 4.4% complete gap
at = 0 for a refractive index of 2.8, chosen to correspond to thadf a typical
chalcogenide glass (e.g., ASeg at = 1:5m [16]). We also considered a slightly
modi ed 2d photonic crystal consisting of a triangular latice of dielectric rods in
air connected by thin veins (resembling hexagonal-shapealbs) [38,242]. The gap
size was optimized over two parameters, rod radius and veihitkness, yielding a
5.4% gap-to-midgap ratio for a rod radius of @6a and a vein thickness of @a. The
gap in this structure persisted for index contrasts as low a&.6:1 (as shown in the
inset of Fig. 6-2). The Maxwell eigenproblem was solved witin iterative (conjugate
gradient) method in a planewave basis [107]. The resultingabd diagrams, with gaps
that extend over a range of nonzero, are shown in Figs. 6-1 and 6-2. Since the
modi ed structure of Fig. 6-2 has a slightly larger gap, we fous on this structure for

the remainder of the chapter; similar results can be obtaidefor the cylindrical-hole
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structure.

An air core is formed by removing some dielectric material,na here we do so
by a hexagonal-shaped air core with an inscribed-circle deeter D in a 15a by 15a
supercell. (This supercell is large enough that, for all gleéd modes considered here,
the guided-mode eld has decayed to negligible values by trexige of the supercell
and hence the nite supercell size is irrelevant.) Dependijnon the core diameteD,
di erent types of modes with varying symmetry and degrees afon nement can be
localized [99]. We chos® to satisfy two criteria. First, the con ned mode should be
of the right symmetry to be excited by an incident planewaveairce|technically, this
means that the mode is doubly degenerate and belongs to thgrepresentation of the
sixfold (Cey) symmetry group [92] of the hexagonal core. AB is varied, we obtain
a variety of dierent ¢ defect modes, as shown in Fig. 6-3. For smdll, we obtain
fundamental-like elds patterns as in Fig. 6-3(a), whereador larger D we obtain
more complicated eld patterns that are, however, better coned in the air core as
in Fig. 6-3(d). For a given mode with strong air-core con nerant, we then choseD
to maximize the fraction of the electric- eld energy (jEj?) in the air core at =0
(see Fig. 6-4) while also eliminating the in uence of surfacstates [116,199,236]. This
is desirable in air-core ber applications to reduce absotijon loss from the cladding

and increase light-gas interactions. In particular, we cts® the mode from Fig. 6-
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Figure 6-6: Solid-core guided mode in gap of Fig. 6-2, withsats showing electric- eld
E, and Poynting vector S, (blue/white/red = negative/zero/positive).

3(d) (D = 6:76a) for speci city, and the resulting structure is shown alongwith its
dispersion relation in Fig. 6-5. The eld pro le (which is TM at = 0) is still strongly

con ned at a non-zero axial wavevector @=2 = 0:14), as shown by the inset.

6.5 Topology optimization of cladding structure

Another approach to nding a cladding structure with low index contrast instead of
starting with a pre-determined lattice and unit cell would ke to makeevery pixel in
the unit cell a free parameter. The" of each pixel could then be constrained to lie in
some interval (between say 1 and 12) and we could proceed toxmaize the bandgap
between any set of two adjacent bands. Cox and Dobson [51, 5#jtimized the
bandgap of square lattice designs of 2d photonic crystalsimg evolutionary algorithms
while Yablonovitch et al. [111] employed level-set method® a similar approach.
Both groups used the absolute size of the gap as their obje&ifunction and only
considered one type of unit cell arrangement. Maximizing aa@'s absolute size is
misleading since it is by de nition relative to an arbitrary frequency of one where the
lattice constant is unity. In practical circumstances, therelevant gure of merit is the
fractional gap as this quantity is normalized by the operatig frequency.

We thus choose the fractional gap as our objective functio potential objective
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function could then be,

[ming ! hea (K)] [maxe ! a(K)] .
P 2 iy T en (K] + [Maxy T n(K)] 61)

However the problem with expressing the problem this way ishat the objective
function in eq. (6.1) is not di erentiable at accidental degneracies in the dispersion
relation corresponding to two di erent wavevector points m the irreducible Brillouin
zone with the same frequency. These accidental degeneracee bound to arise as
the optimization algorithm seeks to align the frequencies &wo wavevectors and then
proceeds to \push" them up together to maximize the gap. A nogradient based
algorithm for these types of problems is computationally tnactable given that the
number of iterations would be at least several times the nunalo of dimensions (for
example, ind dimensions without gradient information,d+1 evaluations are required
just to explore the variation along each dimension in orderot make the rst update
of the design variables). Our only recourse then is to use gliant-based optimization
algorithms but any such method would encounter obstacles iexploring the large
design space as just described. Fortunately, we can reforiame the minimax problem

of eq. (6.1) as an equivalent problem with nonlinear constirss [231],

max 2f2 fa
“foifa fatfy (6.2)
subjectto f; !(k), f2 !4 (K):

Equation (6.2) and its associated gradient can now be solvedth suitable inequality-
constrained nonlinear algorithms. In this case we chose acemt re nement of the
method of moving asymptotes (MMA) [214] implemented in a feesoftware package
of nonlinear-optimization algorithms [101]. The key propgy of the MMA algorithm
that makes it suitable for such problems is that it produces &easible solution at every
iteration enabling the algorithm to be terminated at any time (most methods typi-
cally satisfy constraints only when they are close to convging). This is particularly
useful as we are not interested in computing the fractionalamdgap to a very high

degree of accuracy and can thus quickly explore the desigrasp with many di erent
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initial designs. Another useful attribute of the MMA algorithm is that it is globally
convergent (that is, it provably converges tosome local optimum from any feasi-
ble starting point). We combined the MMA algorithm with our frequency-domain
planewave expansion Maxwell solver [107] for a 2d computatial cell consisting of
64 by 64 pixels (4096 degrees of freedom). The unit cell syntrgewas xed to be
either square (symmetry group C4v) or triangular (C6v) sine if a unique global op-
timum exists it must be symmetric (on intuitive grounds we wald normally expect
the optimal unit cell to be symmetric in order that it have the same overlapping
gap in di erent directions of the Brillouin zone). The MMA algorithm found opti-
mal structures having a triangular lattice at high-index caotrasts but unexpectedly
a square-lattice arrangement at low-index contrasts havipnan 8% complete 2d gap
at an index contrast of 2.6:1 (see Fig. 6-7). We then used thiesign to formulate a
simple two-parameter, non-gradient optimization involung the inner and outer radius
of the ring and width of the connected rod. This design proded a 4.5% gap at even
smaller index contrast of 2.4:1.

Such an approach combining the results from a nonlinear optization having
inequality constraints with low-parameter topology optinization presents intriguing
possibilities for future explorations of cladding designsThe example presented here
demonstrates the potential utility of these hybrid methodsto nd non-conventional

cladding designs.

6.6 Cladding losses in hollow-core bers

One source of loss is the material absorption in the claddingrhich for bulk As,Se
is about 36 dB/m at = 1:5 m [16]. For a guided mode in the hollow core, this
absorption loss is suppressed by a factor 6f=vyn, wheref is the fraction of the
electric- eld energy in the cladding, vy is the group velocity, andn is the cladding
refractive index [99,106]. For the mode of Fig. 6-5 ab=2 = 0:14, wherevy = 0:22
and f = 0:19, the absorption loss of the mode is therefore 11.1 dB/m, weh is

su cient for short-distance ber devices. Lower loss couldoe obtained by operating
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Figure 6-7: Left: the square lattice design with the largestractional gap discov-
ered by the nonlinear optimization algorithm where every piel in the unit cell was
a free parameter having refractive index in the rangél:::3:4g. Right: a simple
two-parameter (radius and width) shape optimization basedn the adjacent design
produces a complete 2d gap at an even lower index contrast.

at a longer wavelength such as 3 or 10m, where the losses of chalcogenide are much

lower while the index of refraction remains larger than 2.71p].

Another general strategy to counteract such cladding-bagddosses is to increase
the diameter of the air core [106], which means that a smalldéraction of the air-
guided mode will reside in the cladding. Unfortunately, in@asing the core diameter
leads to other problems, such as increased bending lossed atiher inter-modal cou-
pling [106], very similar to the tradeo s that were faced demdes ago in designing
low-loss microwave transmission tubes (where the elds irhé cladding gave Ohmic
losses) [232], and so it is desirable to increase the corendéder as little as possible.
Johnson et al. [106] previously showed the scaling lossestfe case of a cylindrical
omniguide ber and here we show that for a holey photonic cryal ber having a
cladding structure made of a much more complicated triangait lattice. This is a
review of the general argument, based on the scalar limit, &b the cladding-related
losses should (asymptotically) scale inversely with theubeof the core diameter, sim-
ilar to the well-known result for metallic tubes [232], and & demonstrate this scaling

with numerical results.
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All cladding-based losses in a dielectric waveguide scaléhahe fraction of the
electric- eld energy in the cladding. Material absorptionlosses, in fact, can be shown
from perturbation theory to be exactly equal to the fractionof R"jEj2 residing in
the cladding material, multiplied by a constant factor proprtional to the material's
extinction coe cient and divided by the mode's group velody [106,233]. The precise
analysis of surface-roughness losses is complicated [LB81 nevertheless is propor-
tional to the mean jEj? at the surfaces (with a complicated proportionality factor
depending on the roughness shapes and correlations [108])l dence also scales as
the fraction of the eld energy in the cladding [106]. The edl leakage through the
nite number of crystal layers can easily be reduced expongally by adding more
layers [99, 106], so it is less of a concern, but it too scaleghathe squared eld am-
plitude in the cladding [106]. Therefore it is su cient to consider the scaling of the
absorption loss, or of the fraction of eld energy in the clading, with the air-core

radius R.

For any given mode, in the limit of largeR the mode becomes more and more sim-
ilar to a plane wave propagating along the axis. Its dispersion relation approaches
the air light line, and its penetration depth into the cladding becomes negligible com-
pared to the scale of the transverse oscillations. This coitidn, of the penetration
into the inhomogeneous materials becoming small comparea the transverse wave-
length (2 =k.), was precisely the condition in which the scalar limit appés. In this
limit, we can describe the mode as a linear polarization mugtlied by a scalar am-
plitude (x;y) that is zero in the cladding. In reality, there is some smalhonzero
amplitude in the cladding, but because of the approximate re boundary condition
at r = R, the amplitude of the cladding eld goes as 4R just as we explained for

teg:. Thus, all modes approach a4R3 scaling.

This is true in two-dimensionally periodic photonic-crysal bers, such as the
hollow-core holey structures described in this chapter. @vall, the same asymptotic
1=R?3 scaling applies: the core interface/area ratio goes asR and there is an addi-
tional 1=R? factor from the cladding eld amplitude in the scalar limit. However, an

additional wrinkle is provided by the proliferation of surbice states. Unless a crystal

161



2R

0.1

0.014

0.001

zero R=12.1a

fundamental-mod
absorption suppressio

0.0001- ‘ —_— ‘ —_—
0.1 1 10 20
Core radiuRR/ a

Figure 6-8: Scaling of the absorption suppression facter  versus core radiuR, at
mid-gap, for the fundamental mode of a hollow-core holey bygblue circles/lines);
this factor tends to a E=R3 scaling (black line, for reference). Insets show the inteihs
pattern (time-average Poynting ux) of the fundamental modce for two core radii,
R =0:83a and R = 12:1a. The dielectric interfaces are shown as black lines; the air
core is hexagonal and terminates the crystal in such a way asremove the possibility
of surface states [236].

termination is chosen that eliminates surface states [118)9, 236], as the core size is
increased we will get more and more surface states. Thesefaoe states cross the
guided band and chop up its usable bandwidth [236]. Precigeduch a phenomenon
was observed experimentally when Ref. 146 replaced the aire of an earlier holey-
ber experiment by Ref. 206 with one of about 2.2 times the diaeter: the losses
were reduced by a factor of eight (from 13 dB/km to 1.6 dB/km),but the bandwidth
was reduced by a factor of ve because the surface states weid eliminated. (The
surface states below the light line daot have absorption/leakage/scattering losses
that decrease withR, because they remain localized at the cladding surface redigss
of R.)

To see the ER® scaling more convincingly in a holey ber, however, one musok
at a larger range of core diameters, in a computer simulatiowhere all other things

can be kept rigorously equal (as opposed to two experimentg 8i erent groups that
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may or may not be comparable), and choose terminations so thtne in uence of
surface states is eliminated. We have done so, looking at thendamental air-guided
mode of a hollow-core holey ber in" = 2:1025 silica with radius ®7a air holes
in a triangular lattice with period a, similar to Fig. 6-1. The core is a hexagonal-
shaped air region carved out of the crystal with \radius"R, where R is the distance
between two parallel sides of the hexagon. This structure)ag with the intensity
pattern of the fundamental mode, is shown for two sample comadii in the insets
of Fig. 6-8. The core termination is chosen to roughly bisect layer of holes, as in
Ref. 236, to eliminate surface states. Then, we varied thereoradius R (in steps of
aIO 3=2 to preserve the termination) and computed the fraction offte fundamental
mode's electric- eld energy in the silica cladding materigequivalently, the absorption
suppression factor) using a planewave-based eigensoli€Y7]; the fundamental mode
was computed near mid-gap, ata=2 = 1:65. The result is shown in Fig. 6-8, and

indeed quickly approaches the expected=R® asymptotic scaling.

6.7 Coupling to slow-light modes

Another practical challenge in all slow-light structures $ coupling from a non-slow
source; one very general technique is a gradual \taper" traition to a higher-velocity
waveguide [102,165,177,186], for example by graduallylswathe structure [131,144]
to a larger diameter to shift the band edge down to increase ¢hgroup velocity at
the operating! . (Alternatively, rather than rescaling the whole structure, gradually
decreasingthe core diameter while keeping the cladding unchanged twsrout to shift
the band edge down in this geometry.) (Theoretically, a gradl enough transition
can couple any pair of waveguides, no matter how dierent, wh arbitrarily low
re ection limited only by fabrication capabilities [102]) Minimization of re ections
by proper design of couplers between very di erent modes oietectric and photonic-
crystal waveguides, including slow-light modes, has beetudied elsewhere [102, 156,
163, 165, 186, 216], and a speci c design for this ber lies yund the scope of this

manuscript.
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6.8 Solid cores

In contrast to air cores, solid (dielectric- lled) cores ca be used to enhance interac-
tions and nonlinearities with solid materials, such as forber lasers [136,227]. Here,
we form a small solid core by lling a hexagonal-shaped cor® (= 1:62a) with di-
electric. This con nes a doubly-degenerate mode with an exgmely at dispersion
relation, in addition to its zero{group-velocity point at =0, as shown in Fig. 6-6.
This extreme atness could potentially be transformed intaa higher-order (e.g. quar-
tic) band edge or even a concave backward-wave band-edge, proper tuning of the

solid core geometry [90].

6.9 Concluding remarks

Any holey photonic-crystal geometry with a complete gap foboth polarizations in
two dimensions can be used to obtain zero{group-velocity rdes in a ber geometry|
our triangular lattice structure of hexagonal holes, hereis only one such example.
An opportunity for future designs is to nd complete gap strictures with even lower
index contrasts, in order that a wider range of materials betne available for the
fabrication of such slow-light devices. The ideal result wibd be a structure that
has a complete 2d gap at silica/air index contrasts (1.5:1put we are not currently
aware of any geometry with this property. We have also higlghted the importance
of the scalar short-wavelength limit, which has many informtive consequences even
at moderate wavelengths, by analyzing the scaling of the cding losses with core

radius.
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Chapter 7

Robust design of slow-light tapers

In periodic waveguides

7.1 Summary

This chapter describes the design of tapers for coupling pemwbetween uniform and
slow-light periodic waveguides. New optimization methodsre reviewed for designing
robust tapers that had previously been proposed, which nonty perform well under
nominal conditions, but also over a given set of parameter nations. When the set
of parameter variations models the inevitable variation tgical in the manufacture or
operation of the coupler, a robust design is one that will haa high yield, despite

these parameter variations.

We review the notion of successive re nement, and robust dptization based on
multi-scenario optimization with iterative sampling of urcertain parameters, using
a fast method for approximately evaluating the re ection ce cient. Robust tapers
designed over a range of dierent lengths are compared to andiar taper and to
optimized tapers that do not take parameter variation into @count. Finally, robust
performance of the resulting designs is veri ed using an agate, but much more

expensive, method for evaluating the re ection coe cient.
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7.2 Introduction

This chapter begins by reviewing optimization methods rstpresented by Mutapcic
et al. [165] for designingobust tapers, which not only perform well under nominal
conditions, but also over a given set of parameter variati@n In contrast, the nominal

optimum produced by straightforward optimization of this problem relies on delicate
interference e ects that are destroyed by any deviation frm the design. Here we
present results that extend our previous work in Ref. 165 (sarheaded by Almir Mu-

tapcic) which involved optimizing taper designs at a singléaper length to a range
of lengths. In this work, we incorporate uncertainties in te taper shape and length,
di erent from Mutapcic et al. which considered the taper legth and operating fre-

guency as we have now discovered that our semi-analyticalngputational method is

inaccurate for calculating taper re ections over a set of d@rent frequencies. We now
also provide insights into the few key parameters among theamy degrees of control
in the optimization algorithm that strongly govern robust taper designs. Further-
more, we study the trade o between re ection and taper lendt by optimizing each

taper length separately. This analysis will demonstrate t# impact of robustness on
device design more clearly. We also focus on more realisties@jns having shorter
taper lengths (1-20 lattice constants) amenable to fabrit@n whereas Mutapcic et
al. [165] considered a relatively large range of taper lemgt (1-100) as part of our

initial work demonstrating the proof-of-concept of this aproach.

The methods outlined optimize over an arbitrary variable taer rate, described
by hundreds (or thousands) of degrees of freedom, in order tad a design with
performance orders of magnitude better than that of a simplknear (constant-rate)
taper. Accurate techniques from coupled-mode theory [10ate used to quickly ex-
plore di erent shapes; the results are validated against aim@ct numerical solution
of Maxwell's equations [21,22]. Because the set of parametariations models the
inevitable variations typical in the manufacture or operaion of the coupler, and is
explicitly accounted for in the optimization, a robust deggn will have a high yield

despite these parameter variations.
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A standard component of optical and microwave devices is a veguide taper
which couples light from one waveguide to another by means @fgradual transition.
Although a su ciently gradual taper approaches an adiabatc limit of 100% trans-
mission, in a practical setting the challenge is to design aper as short as possible,
or with as low a loss as possible for a given length. Perhapsetimost challenging
case is to design a short taper between an ordinary uniform weguide and a periodic
waveguide [62], a special case of a general class of periogiical structures known
as ‘photonic crystals' [99]. Periodic waveguides are botlseful and challenging for
the same reason: a periodic waveguide has a ‘slow-light' baadge for which the
group velocity of light slows down as it approaches a certafnrequency. Operating in
this slow-light region is useful because it increases thetenaction of light with the
material, enhancing nonlinearities [209, 239], tunabiijit [186], gain [244], and other
e ects. However, as the group velocity decreases, the "ing@mnce mismatch' between
the periodic and uniform waveguide increases, and a longaper is generally required
to achieve the same coupling loss [186]. If the waveguide® a@imply butt-coupled
without a taper, the transmission goes to zero as the zerolweity band-edge is ap-
proached [201].

A variety of techniques have been employed to select a tapdrape for coupling
to periodic waveguides. Most of this previous work examinesases operating far
from any band edge (so the group velocity is not small) and fases on simple linear
(constant-rate) tapers [20,42,83,104,156, 178, 185, 2240)] or families of quadratic
shapes [60, 114]. Genetic algorithms have also been employe design couplers
using arbitrarily placed scattering cylinders [82,97]. Nwotaper-based couplers from
free space or parallel waveguides have also been consid¢i@®, 187]. Although this
previous work did not explicitly account for uncertaintiesin the model parameters,
the mostly small number of design parameters combined witthé moderate group
velocities help avoid non-manufacturable designs. As so@s the design involves
optimization over a large number of free parameters, the nanal optimum tends to
be a non-robust design that relies on delicate interfereneeects. (A similar result was

observed as a strong frequency sensitivity in genetic optination over many degrees
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of freedom [81]). Previously, Povinelli et al. [186] consded a slow-light periodic-
waveguide coupler with higher-degree polynomial taper shes, and used a simple
regularization technique to avoid non-robust solutions.

There are several general models of parameter uncertaings well as general ap-
proaches for dealing with uncertain parameters. The approla taken in this design
is worst-case robust optimizatioror (minimax optimization), as rst described in our
previous work spearheaded by Almir Mutapcic [165]. Here th@arameters are mod-
elled as lying in some given set of possible values, but witltaany known distribution;

a taper design is chosen, whose worst-case objective valoxer the given set of pos-
sible uncertainties, is minimized. In this model, one doeshrely on any knowledge
of the distribution of uncertain parameters (which indeedneed not be stochastic).
There is no claim that worst-case robust optimization is sugrior to other approaches;
but it is generally found that worst-case robust designs pduced by the methods of
this project also perform well when analyzed under a stochasmodel of parameter

variation.

7.3 Nominal and robust taper design problems

This section reviews material presented in Ref. 165.

7.3.1 Taper shape and re ection magnitude

Consider a taper with lengthL that couples a uniform and a slow-light waveguide
structure with period . The taper is a quasi-periodic strudure that is parametrized
by the taper shape functions : [0; 1]! R.. The argument of the taper shape function
is the normalized length variableu = z=L, wherez is the physical coordinate along
the taper. Each value ofs corresponds to an intermediate periodic structure between
the taper endpoints, for example in Fig. 7-1s could correspond to the width of the
anges, the radius of the holes, or the separation of the blks. The varying periodic
structure described bys(u) de nes a taper as described in Ref. 102; essentially, the

taper matches the cross-section of the periodic structusfu) at z = Lu. The taper
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Figure 7-1: Various tapers between uniform and periodic dextric waveguides. (a)
Periodic sequence of holes, where taper varies the radiugigreriod of the holes, in
2d or 3d. (b) Periodic set of anges, where taper varies the dth of the ange, in
2d or 3d. (c) Periodic sequence of dielectric blocks, wheraper varies the period
between the blocks. All three of these tapers, in 2d or 3d, cére e ciently optimized
by the robust coupled-mode method, but this chapter focusem (c) because it is also
amenable to brute-force computation for veri cation purpses.

shape function is constrained at its starting and its nal pant, with s(0) = 0 denoting
the starting uniform structure, and s(1) = 1 denoting the nal periodic structure.
Figure 7-2 illustrates a sample taper and its shape functipnvhere in this cases is

simply proportional to the continuously varying width of the anges.

Given a taper shape function, one can evaluate the magnitudd the re ection
from an incoming light wave coupled from the uniform into theslow-light waveguide,
for example by numerical simulation of the wave equation. Tére ection magnitude
is denotedR; it depends on the taper shape functios, as well as various parameters
such as the refractive index (which might, indeed, vary spatly), the wavelength,
and so on. These parameters are denoted by a vector2 R™; to emphasize that
R is a function (or, sinces is a function, a functional) of the taper shapes and the

parameter vector , it will sometimes be written asR(s; ).

Let ,om be the nominal value of , i.e. a typical (or expected) value of the

169



Figure 7-2: Top. A taper coupling uniform and slow-light waveguide structtes.
Bottom. Its taper shape functions.

parameter vector. Thenominal re ection magnitude is de ned as

Rnom (S) = R(S; nom): (7.1)

The nominal re ection magnitude is a functional of the tapershape functions,
and gives the magnitude of the re ection when the parameterector is equal to its

nominal value.

7.3.2 Parameter uncertainty and worst-case re ection mag-

nitude

Parameter uncertainty, which can be caused by manufacturgnimperfections, wave-
length variation, model parameter errors, etc., is modelleby a setV ~ R™. The

set V can be thought of as the set of possible values of the parametector. It

170



will be assumed that o, 2 V. As a simple (but important) example,V can be a
nite set V = q;:::; . In this case the indexi is referred to as ascenarig with
associated parameter vector;. As another common exampley can be a box inR™,

for example, centered at the nominal parameter value,

V=i nomil ni=1;minmg (7.2)

where ; gives the radius or half-range of the variation in parametar. (This type

of parameter variation can be described as = om: i)

The performance of a taper design, in the presence of paraeeincertainty,
is judged by the worst-case (largest possible) re ection rgaitude over all possible

2 V. The worst-case re ection magnitudeis de ned as

Rwe(s) =sup R(s; ): (7.3)
2V

The worst-case magnitude re ectiorR,¢ is a functional of the taper functions. It
is always the case thaR,.(S) Rnom(S) for any s; indeed the ratio Ry,c(S)=Rnom (S)
gives a measure of (worst-case) performance degradatiortted taper, due to param-

eter variation.

For a scenario model of parameter uncertainty, i.e. whew = 4;:::; k, the

worst-case re ection magnitude has the form

Ruc(s) = max R(s; i); (7.4)
i=1;:
the maximum re ection magnitude over the K scenarios. But in most cases,
Rwc(S) cannot be computed exactly, since this involves solving aon-convex opti-
mization problem. It can be approximately computed, howeve using several meth-

ods below.
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7.3.3 Nominal and robust taper shape problems

In the nominal taper shape problema taper shape functiors is found that minimizes

the nominal re ection magnitude R, Subject to some constraints:

minimize  Rpom (S)
subjectto s(0)=0, s(1)=1 (7.5)
0 s(u) S™ jsqu)j D™ for0 u 1

The optimization variable is the taper shape functiors : [0;1]! R+ The problem
parameters are the maximum allowed shape vall&"®, the maximum allowed taper
slopeD ™ and of course, the objective functiolR,oy,. A solution of this problem is
called anominal optimal taper.

In the robust taper shape problenthe goal is to nd a taper shape functions that

minimizes the worst-case re ection magnituddR,,c, subject to some constraints:

minimize  Ryc(S)
subjectto s(0)=0, s(1)=1 (7.6)
0 s(u S™ jsqu)j D™ for0 u 1L

A solution of this problem is called arobust optimal taper The main goal of this
chapter is to present a tractable way to (approximately) sek the robust taper shape
problem eq. (7.6).

Both the nominal and robust taper shape problems eqs. (7.50hd (7.6) are in nite-
dimensional optimization problems, since the optimizatio variable is a function [5],
and they include semi-in nite constraints [86], i.e. an innite set of constraints in-
dexed by a continuous variable (u). Both of these issues wille (approximately)
handled by searching over a nite-dimensional set of shaparfctions, for which the
semi-in nite constraints can be expressed in a simple way.h& complexity of the al-
gorithm grows linearly with the dimension of the nite-dimensional parametrization,
and easily scales to dimensions large enough (e.g. thoussnthat errors due to the
nite-dimensional parametrization are negligible.

A more fundamental issue is that the problems eqgs. (7.5) and.g) are not
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convex (since the objectives are, in general, not convex)high makes it unlikely
that the global solutions can be found e ciently. So one mustsettle for locally
optimal solutions of the problems, which need not be globglioptimal. In Ch. 7.3.5,
a successive re nement approach is described, which appeés be quite resistant to

getting trapped in poor local minima.

7.3.4 Piecewise-linear taper shape parametrization

It is assumed that the taper shape functions are piecewisedar, parametrized by

u, < 1, and passing through the endpoints(0) = 0 and s(1) = 1. This is illustrated

for n = 4 grid points in Fig. 7-3. This can be expressed as

S(U) = le 1(U) ot ann(u) + fn+1 (U); (7-7)
with 8
(U ou)Hw U1 u1oUu o,
fi(U):§ (Uisr  W=Uix1 W) U U Uy,
-0 otherwise,

whereup =0 and uy+; =1, and

8

() S @u 1D=u, 1) u, u 1,
+1(U) =
" : otherwise.

173



The vector x 2 R" is referred to as thetaper shape vectarEvidently s(u;) = X;.

With this parametrization, the endpoint constraints s(0) = 0 and s(1) = 1 hold

automatically, for any shape vectorx. Moreover, the semi-in nite constraints

0 s(u) S™ jsqu)j D™ for0 u 1

hold if and only if

0 x; Sm: i=1;::00n;
jXier  Xij D™ (usr  W); i=1;::5n 1 (7.8)
jx1j D™ uy; il Xaj D™ (1 up):

These are a set ofd linear inequalities on the shape vectax. The notationx 2 S
will be used to denote this, wheres is the (polyhedral) set ofx for which eq. (7.8)
holds.

With some abuse of the notationR,om (X) and R,,¢(x) will be used to denote the
values of Rnom(S) and Ryc(S), for the shape functions associated with the shape
vector x. With piecewise-linear parametrization of taper shapeshe nominal taper

design problem can be expressed as

minimize  Rpom (X)

(7.9)
subjectto x2S;
and the robust taper design problem as
minimize  Ryc(X
wc( ) (7.10)

subjectto x2S:

These are nite-dimensional optimization problems, with ptimization variable

x 2 R", and 4n linear inequality constraints.
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7.3.5 Successive re nement

The taper design problems described in egs. (7.9) and (7.20% non-convex and local
methods which can (and do) get stuck in poor locally optimal @ints. A common
method to x this problem is to run the algorithm multiple tim es, starting with
di erent initial taper designs, picking the best design ob&ined among the runs of the
algorithm. In previous work lead by Mutapcic et al. [165], a rthod calledsuccessive
re nement was presented, however, which seems to avoid the problem @ftong
caught in poor local minima, and eliminates the need for mdfile runs from di erent

starting points.

In successive re nement, a sequence of design problems wstlccessively ner
piecewise-linear taper shape functions is solved, in eaelse starting from the previous
design. One starts with a single grid point, i.e.n = 1, and runs a global search of
the optimal robust taper, which is tractable only for this shgle dimensional problem.
One then adds two more grid points, in between 0 and the rst ga point, and the
rst grid point and 1, so that n = 3, and runs the robust taper shape (RTS) algorithm
(as described in [165]), starting from the previous desigThis is repeated until some

maximum value ofn is reached. This is illustrated in Fig. 7-4.

In numerical experiments we started with the initial grid pant at 1/2, and in each
successive re nement step, new grid points are added halfia-between the old ones
(and 0 and 1). At the Mth re nement step there will ben =2M 1 grid points, with

values

uM =i2 M i=1;002M L (7.11)

This approach is related in spirit to the multigrid methods R9], where the latter
uses both successive re nements and coarsenings in ordesp@ed up convergence of
a linear solver rather than to avoid local minima. Success&vre nement have been
successfully applied in circuit design [34], in motion estiation for video coding [45],

etc.

175



Figure 7-4: Top left. Linear taper with a single grid point. Top right. Full search
performed to obtain a global optimum taper with a single grigpoint. Bottom left. Two
new grid points added and taper values interpolated a1 and u®?). Optimization
algorithm is run starting from this taper. Bottom right. New local optimum.

7.4 Computation of re ection magnitude

This section reviews material presented in Ref. 165. To optize the taper shape
function s, one needs a rapid method to compute the re ected power fraoch R and
its gradient for light incident on a particular taper structure. This project employs
two such methods, described below: a fast approximate methdor the optimization
(including the computation of the gradient), and a slower hute-force method for

veri cation of the nal design.

7.4.1 Coupled-mode theory

In general, computing the re ection from an arbitrary strudure could require an
expensive solution of the complete Maxwell equations, euated to high accuracy
in order to distinguish the tiny re ected eld in a well-designed gradual taper. In
the present case, however, the fact that the structure isearly periodic (slowly-
varying) and the re ection is consequently small, can be ekpited to utilize a fast

semi-analytical method based oroupled-mode theory
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Coupled-mode theory, also known aoupled-wave theoryr the slowly-varying en-
velope approximatgSVEA), involves an expansion of the electromagnetic eldlang
the waveguide taper in terms of the eigenmodes (indexed ky of a uniform periodic
waveguide matching the cross-section at each point. The exgsion coe cients ¢ in
this basis are then determined by a set of ordinary di erenéil equations for d/d z
along the taper direction ), where the di erent modes are coupled by terms propor-
tional to the rate of change of the structure. Because the sicture is slowly varying,
the expansion coe cients approach an "adiabatic' limit in vhich the ¢, are nearly
constant. In this limit, the equations can be integrated appoximately, to rst-order
in the taper rate, to yield a simple integral for the re ection coe cient. (Re ection

dominates the loss in slow-light tapers.)

The most common form of coupled-mode theory was developed fearly uniform
waveguides [148] but has recently been generalized to sigbnperiodic waveguides of
the type considered in this chapter [102]. The results of asple rst-order calculation
were found to be nearly exact as long as the re ections weredar 10%, making them

ideal for the present case where the taper designs all haveerions well under 1%.

In particular, coupled-mode theory of a taper shaps(u) with length L leads to a
rst-order re ection amplitude c,, where the fraction of re ected power iR = jcj?,
given by an integral of the form:

e 88X MWL R
s(u)g = du— - ; (7.12)
o du  [s(u)]

Here, M and ( are given functions of the taper parametrizatiors. That is,
each s denotes a given intermediate periodic structureM(s) is a complex-valued
coupling coe cient determined from the eigen elds of that sructure, and is a
real phase-mismatch factor. The summation must in princigl run over all integers
k, but in practice only a handful of terms are required becausthe contributions
decrease rapidly withk. (In particular, k(s) = (s)+2 k= ( s), where (s)is

the variable period along the taper.)

The derivation of these coupled-mode equations is ratherroplicated and will not
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be reproduced heré. The key point, however, is that the full Maxwell equations red
only be solved once: a set of small calculations for the eigeodes of the periodic
structures at eachs, by a spectral method [107], yields the function$1(s) and

(s). One can then re-use these functions to compute the re eot for any taper
shapes(u) and any lengthL by a single integral, which allows quick exploration and
optimization over many di erent shapes.

The equations are the same regardless of the dimensionaldl/the problem, and
have previously been used by Povinelli et al. to compute tapee ections and perform
simple optimizations in large three-dimensional structues where direct simulation was

not possible [186].

7.4.2 Coupled-mode re ection gradient

To carry out taper shape optimization we need to evaluate nabnly the re ection
magnitude R but also its functional derivative (gradient) @R=@sIn general, such
gradients can be computed by an adjoint method [32], but in B case the prob-
lem is simple enough that one can derive the same thing withbtesorting to such
cumbersome techniques.

In particular, since R = j¢ j2 and ¢, is a summation overk, it su ces to compute
the gradient of eachk term in the summation equation forc, above. Dropping thek
subscript for simplicity, eachk term corresponds to the functional:

Z,

cf s(u)g = : duso(u)F[s(u)]eRo“f[S<“°ﬂd“°; (7.13)

where F(s) = My(s)= «(s) and f(s) = iL ((s). The gradient g(u) of this
functional is de ned by the rst-order change ofcf s(u)g under a small changes (u)
(where s(0) = s(1) =0 to preserve the boundary conditions):

Z,

c=cfs+ sg «cfsg= g(u) s(u)du: (7.14)
0

1The original derivation [102] did not include an explicit shape function s(u). However, it was
noted that the coupling matrix elements were simply proportional to the taper rate, and this is what
allows us to pull out the taper-rate dependence as as(u) term in the integral
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The explicit gradient g can be derived by substitutings+ s into ¢, dropping terms
higher than rst-order in s, and integrating by parts to eliminate the s®term. After

some algebra, one obtains:

Z
o) = FISWIf [S(WIes B9 5] dus)F[s(ele s SO (7.15)
u
which is a single integral in terms ofs(u) and the known functions F and f
and their derivatives, which means that the gradient can bevaluated with roughly
the same cost as evaluatingf s(u)g (similar to what one would expect for adjoint
methods).
In practice, of course, in nitely many degrees of freedom armnot present ins(u).
As explained in Ch. 7.3.4, a piecewise-linear parametrizah s(u) = P i Xifi(u), for
‘tent' functions f;(u) and parametersx;, is employed. One therefore needs only the

nite-dimensional gradient with respect to the x;:

Z
@c_“!

@x 0
The gradient of the re ection R is then found by rst summing @c=@xver k to

obtain @G@x and then @R=@3s the real part of Z @G@x

g(u)fi(u)du: (7.16)

7.4.3 Brute-force veri cation

Because coupled-mode theory involves some approximatipiitsis also desirable to
directly solve the Maxwell equations, with no assumptionsin order to verify the

correctness of the solutions. Such a direct solution alloveme to consider the e ect
of imperfections that violate the slow-taper assumption uwterlying coupled-mode
theory; in particular, one can include rapid small variatios in the structure cor-
responding to fabrication imperfections (e.g., surface ughness). We use two dif-
ferent computational methods to validate the coupled-modéheory: the rst is an

eigenmode-expansion, or transfer-matrix, method that isriplemented in a free soft-
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ware package called CAMFR [21, 22], the second is our Meeptsafe package for
FDTD simulations described in Chapter 4.

CAMFR works by expanding the elds at everyz in terms of the eigenmodes of
that cross-section, with perfectly-matched layer (PML) aborbing boundaries in the
lateral directions [17]. In this sense, it is related to thelassic coupled-mode method
mentioned above [148]. Unlike the rst-order integration bove, however, CAMFR
makes no assumption of small scattering or slow variationnd computes a complete
transfer matrix at each point where the cross-section chaag that couples all the
modes according to the continuity conditions on the electroagnetic eld. In this
sense, it is a “brute-force' method: it solves the completeaMwell equations with no
assumptions, to an arbitrary accuracy given enough computanal time and memory
(i.e. a large enough eigenmode basis).

Moreover, CAMFR imposes the incident-wave boundary conddns (atz = 0 and
z = L) analytically, thanks to its eigenmode basis, and hence catistinguish even a
tiny re ection coe cient with high accuracy. It is most e ec tive, however, when the
two ends of the simulation are terminated by semi-in nite uiform waveguide, and
so the CAMFR simulations are performed using a double tapewhich tapers from
uniform to periodic, then ve periods in the periodic strucure, and then tapers back

from periodic to uniform.

7.4.4 \Worst-case re ection magnitude

The problem of nding the worst, or at least a bad, value of theparameter 2V, for
a given taper shapes, is calledpessimizing since the goal is to nd the least favorable
value of the parameter for the given shape. Whevi is nite, exact pessimizing can be
carried out by evaluatingR under each scenario and taking the largest value found.
When V is innite it is dicult to compute the exact value of the wors t-case

re ection magnitude

Ruwc(S) = sup R(s; )
2V
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along with a (worst-case) parameter that achieves this supremum, since in
generalR(s; )is not concave in (and V need not be convex). Options for pessimiz-
ing include direct search methods [119, 168, 238], or any istiard local optimization
method such as sequential quadratic programming methods6[A71]. With any of
these methods, the algorithm is run from a number of startingoints in V; the largest
value of R found is then an estimate oR,.

When V is a box (1), one can easily guess a value ofthat often leads to large
(if not largest) R. The gradient of R with respect to is evaluated at ,om; the
approximate pessimizer is then

8

< +

nom;i i, @R=@>0
nom;i i, @R=@< 0
(This is the maximizer of the rst-order approximation of R overV.) This point

can, of course, be used as the starting point for a local optiation method.

7.5 Numerical results

In this section some numerical results for a particular streture are presented. The
details of the optimization algorithms are discussed in oysrevious publication else-
where [165].

7.5.1 Taper geometry and uncertainty model

The two dimensional taper depicted in Fig. 7-1 (c), similar @ the one considered
in Ref. 102 and identical to the structure considered by Mufacic et al. [165], is
optimized, in order to have a structure where the brute-foe CAMFR method is
e cient (and thus can be used to validate the coupled-mode teory for a large number
of values of the parameters). The periodic structure is a saence of dielectric blocks
with period o, size 04 o 0.4 o, and dielectric constant” = 12. The blocks
are surrounded by air { = 1). The electric eld is polarized perpendicular to the

2d plane ("TM' polarization). As described in Ref. 102, thistructure supports true
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localized guided modes by the mechanism of index-guiding]6and has a zero{group-
velocity band edge at a frequency of =2 = 0:2434. The operating frequency is
I ,=2c =0:23,2 which is slightly below the band edge, where the group velbgis

under c=4 and the waveguide is single-mode at every point along theptar.

A uniform waveguide width of Q4 , which can be treated as a sequence of (touch-
ing) blocks with period Q4 o, is tapered to the periodic structure by gradually spread-
ing the blocks apart. That is, their period varies as (5) = o[s+0:4(1 )], so that
s = 0 corresponds to the uniform structure with pitch Q4 , and s = 1 corresponds
to the periodic structure with pitch 4. The problem is then to determine the func-
tion s describing how fast the period (pitch) varies along the tape The taper will
be optimized individually at each length from 1 to 100 with mamum shape value

max =1, and maximum slopeD ™ =5,

On physical grounds, one expects the optimal taper to be morapid at the u =0
corresponding to the uniform waveguide where the group velty is larger, and to be
more gradual at theu = 1 end corresponding to the periodic waveguide where the
group velocity is low (and thus the structure is more sensite to small changes [186]).
This is precisely what is found, below, although the exact tger rate is di cult to

predict a priori.

The following parameter uncertainty model is used. The tapdength varies 1%
around its nominal value (Mutapcic et al. [165] had previoug considered a 1% vari-
ation of the operating frequency while using the same coupdj coe cients in the
coupled-mode theory for all frequencies which we have deténed to be inaccurate
and thus avoided); variation in the taper shape function is bunded at each grid point
by 0:001 around the current value, with the perturbed shape witlm the bounds 0

and 1. The shape variation is meant to model, for example, mafacturing variation.

2It is convenient to use dimensionless frequency units of 2= o, wherec is the speed of light in
vacuum, due to the scale invariance of Maxwell's equations99].
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Figure 7-5: Comparison of coupled-mode theory and brute e veri cation method

(CAMFR [21, 22]) for a linear taper from length of 1 taper pend through 100.
The excellent agreement between the fast coupled-mode tgsemi-analytical solver
(blue circles) and the much slower brute-force method (redjgares) to compute the
objective function permits use of the former to quickly expre a large parameter
space in the robust optimization.

7.5.2 Pessimizing method

The following method is used to carry out approximate worstase analysis. At each
of 11 values of the taper length, uniformly spaced over thetarval of 1% around its
nominal value, the approximate worst-case shape perturkiah at the current point s

is found using the derivative heuristic as described in Ch.4.4, i.e.

8
< minfs(u)+0:00% 1g; @R=@s) > O

s (u)=,
maxf s(u) 0:001;,0g; @R=@s < O

(The worst-case shape perturbation depends on the taper tgh L.) The re ec-
tion magnitude is evaluated for each taper length. with its associated approximate
worst-case taper shape. The result is the approximate worsaise re ection over the
shape uncertainty; maximizing over the 11 values of the tapéength yields the ap-

proximation of Ry.
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Figure 7-6: Comparison of brute force computation (solid iles) and coupled-mode
theory (hollow circles) of re ections from nominal taper dsigns optimized for each
taper length. The performance of the nominal taper is clearlruined by the slight
pixellization e ects introduced by the brute-force solver

We cannot claim that this pessimization heuristic gives thérue worst-case value.
However it has been tested extensively, by attempting to ndvorse parameter values
using other methods, such as derivative-free optimizatioisQP, and simply sampling
random parameter values inV. In no case was a signi cantly worse value of the

parameter found.

7.5.3 Optimization

Tapers were found using the nominal taper shape (NTS) and robt taper shape
(RTS) algorithms as described in Ref. 165, with the followip parameters: initial
= Q:1Sma, mn = :00I1SMax, mMax = Q:5gmax =~ decr = (.75 et = 1:25 and
N™M& =150, terminating also if no improvement is made. 10 iteratins of successive
re nement are used, with evenly-spaced grid points, whichesults in a nal taper
with n = 1023 grid points. Global optimization is carried out durirg the rst step of

the successive re nement, after which the obtained shapeused to construct initial
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Figure 7-7: Brute force computation of re ections from linar (green), nominal (blue)
and robust (red) taper designs for each length. The superiperformance of the robust
tapers, showing an exponential decrease of the re ection ahorter taper lengths
before reaching a noise oor, is evident under the slight perrbation introduced by

the brute-force solver's pixellization.

points for the subsequent steps.

The NTS algorithm, and the multi-scenario taper shape (MSTBalgorithms car-
ried out in each iteration of the RTS algorithm, usually terninate in 50-70 steps,
due to no improvement in objective value. The RTS algorithm @nverged around
30-40 steps (each of which consisted of an approximate wecsise analysis and a
multi-scenario optimization). For the highest level of renement, the RTS algorithm
required a total of around 2000 basic iterations (each reqing an approximate worst-
case analysis, the solution of an LP, etc.).

The algorithms were implemented in Matlab, solving the upda step subproblems
using CVX [77], which calls the SeDuMi solver [211]. The sulgblem calculation for
the NTS algorithm with n = 1023 variables (the last step in successive re nement)
takes about a second, while the subproblem calculation fon¢ MSTS algorithm with
n = 1023 and K = 50 scenarios takes about ten seconds (on a personal complute

Solving the NTS problem required a total of around 40 secondsnd solving the RTS
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problem required a total of around 20 minutes. Had algorithsbeen implemented in
C, using a custom LP solver for the particular structure thatarises in these problems,

these times would likely have been far smaller, by a factor exeding 10.

7.5.4 Results

Figure 7-5 shows the re ections from a linear taper structw spanning taper lengths
1 to 100 computed using two di erent methods: the slow, exactapart from dis-
cretizations), brute-force CAMFR method and the much faste approximate, semi-
analytical coupled-mode theory. (In order to minimize numgcal errors from the
boundaries in the simulations the double taper setup as degxed in [102] Ch. 7.4 is
used.) The excellent agreement between the two methods coms the validity of the
coupled-mode theory which, given its speed, is used in thetwpization algorithms.
Coupled-mode theory's ability to quickly and accurately ealuate the taper re ection
objective function thus permits exploration of a large degh parameter space.

The nominal taper designs, on the other hand, show very di ent performance
as illustrated in Fig. 7-6. The delicate interference e ed give rise to taper designs
that have low re ections using coupled-mode theory, but inhe presence of slight
perturbations (e.g. the pixellization e ects of the bruteforce solver) their performance
is degraded by as much as four orders of magnitude at certaiapter lengths.

The robust taper designs outperform the linear and nominalaper designs at all
taper lengths as demonstrated in Fig. 7-7. The optimal robtislesign has a re ection
coe cient that is nearly two orders of magnitude lower than the nominal design,
and almost three orders of magnitude lower than the simplenear design under the
slight pixellization e ects introduced by the discrete brue-force solver. Among all the
parameters used in the robust optimization, the taper-slgptrust region was found to
be dominant for producing smooth taper shapes without strage features. This was
true regardless of the inclusion of taper slope constrainend modi cations to the
number of iterations of the multi-scenario taper shape algithm (N ™) and robust
taper algorithm.

An investigation of the taper pro les produced by the nomindand robust taper
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Figure 7-8: Taper pro les of linear (green), nominal (blueland robust (red) designs
for taper length of 20. The slow-light, periodic waveguidetrsicture is at u = 0 on the

left and the standard, strip waveguide is on the right of the ds. Note the delicate
features of the nominal taper which arise from sensitive iaetference e ects. The
robust taper pro le varies more gradually and has superior grformance under the
slight pixellizations e ects of the brute-force solver.

shape optimization algorithms provides insight into theirperformance. Figure 7-8
shows the linear, nominal and robust taper pro les designealt a taper length of 20.
The nominal taper design has very ne, non-robust featureshait arise from delicate
interference e ects required to produce small re ections.The robust taper design
varies more gradually and thus should be expected to toleeaslight perturbations as

its performance con rms.

7.6 Conclusions

In this chapter, an approach to non-convex robust optimizabn has been reviewed
that was rst presented by Mutapcic et al. [165], which is apfed to the challenging
problem of designing robust taper transitions to 'slow-lilgt' periodic waveguides. The

robust optimization algorithm is based on multi-scenario jtimization with iterative
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sampling of uncertain parameters, and uses fast and accugatoupled-mode compu-
tations in order to quickly explore di erent taper designs. The approach also uses
the idea of successive re nement in order to avoid poor lotgloptimal points and to
improve design robustness to taper shape uncertainty.

Numerical experiments verify that the obtained robust tapes perform well under
the slight pixellization e ects introduced by the brute-farce solver, while the optimized
tapers that do not take parameter variation into account pefiorm quite poorly. An
inspection of the taper shape pro les provides clear insiglinto their performance
as only smooth designs lacking ne features are insensitive slight perturbations.
The parameters having the dominant e ect on producing suitiale robust taper shapes
have also been identi ed.

In the future, we aim to further extend the techniques revieed in this chapter to
more complicated 3d taper structures where brute-force cailation of the objective
function would be intractable. Our hope is to design robustapers for complicated
geometries that can ultimately be fabricated, tested and ¢éoyed in real-world ex-

periments.
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Chapter 8

Conclusion

This thesis has explored a number of areas relevant in the cpatation and design
of nanophotonics. The rst half was devoted to resolving keyssues limiting the use
of large, bulky simulations in computational electromagrtesm for device optimiza-
tion. We developed a novel subpixel smoothing algorithm, fdoth isotropic and
anisotropic media, based on rigorous analytical argumengnd demonstrated its su-
perior performance over that of previously published ressl Our method restores the
guadratic accuracy of the underlying second-order nite derences and thereby per-
mits simulations with high accuracy at low resolutions andhus computational cost.
Next we demonstrated the irrecoverable failure of perfegtimatched layer (PML) ab-
sorbing boundaries for a number of important problems and pposed a workaround
involving adiabatic absorbers. We demonstrated the fundaemtal connection between
re ections from any type of absorber, PML or non-PML, by makng a link with the
smoothness of the absorption pro le. From these fundamerit@roperties of PMLs,
we then introduced a simple method to verify the correctness any PML formulation
and demonstrated its utility by proposing and validating a uniaxial-PML (UPML)
formulation for anisotropic media in FDTD simulations. We ten incorporated these
and many other enhancements into a exible, free-softwareapkage for electromag-
netism, Meep, that is becoming increasingly popular in theptics community. Meep
is an implementation of the FDTD method that has a rich set ofdatures and func-

tionalities and continues to evolve. The second half of thifhesis was devoted to the
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design of nanophotonic devices. We used topology optimizat to design cladding
structures for holey-photonic crystal bers having a lowsdex contrast which now
permits a new class of materials known as chalcogenide géss$o be used to fabri-
cate such bers. Finally, we developed fast, semi-analytt tools to design adiabatic
tapers for coupling to slow-light modes of a photonic-cryat waveguide. The tapers
were designed with careful performance metrics to withstdnsmall manufacturing
and operational perturbations. These robust tapers were aWwn to be a signi cant
improvement over nominal tapers that were not designed witlthese principals in
mind. Several enhancements relating to PDE-constrained tymization were intro-
duced to overcome technical challenges in the design of suaper structures. The
tools and design methodologies described in this thesis cha readily extended to
other problems in electromagnetism. It is our hope that the ark presented here has
opened new lines of inquiry and will continue to be developehd improved upon by

future generations of researchers.
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