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Abstract

The versatility of computational design as an alternative to design by nanofabrication
has made computers a reliable design tool in nanophotonics.Given that almost any
2d pattern can be fabricated at infrared length scales, there exists a large number of
degrees of freedom in nanophotonic device design. However current designs are ad-
hoc and could potentially bene�t from optimization but there are several outstanding
issues regarding PDE-based optimization for electromagnetism that must �rst be
addressed: continuously and accurately deforming geometric objects represented on
a discrete uniform grid while avoiding staircasing e�ects,reducing the computational
expense of large simulations while improving accuracy, resolving the breakdown of
standard absorbing boundary layers for important problems, �nding robust designs
that are impervious to small perturbations, and �nally distinguishing global from
local minima. We address each of these issues in turn by developing novel subpixel
smoothing methods that markedly improve the accuracy of simulations, demonstrate
the failure of perfectly matched layers (PML) in several important cases and propose
a workaround, develop a simple procedure to determine the validity of any PML
implementation and incorporate these and other enhancements into a 
exible, free
software package for electromagnetic simulations based onthe �nite-di�erence time-
domain (FDTD) method. Next we investigate two classes of design problems in
nanophotonics. The �rst involves �nding cladding structures for holey photonic-
crystal �bers at low-index contrasts that permit a larger class of materials to be used
in the fabrication process. The second is the development ofadiabatic tapers for
coupling to slow-light modes of photonic-crystal waveguides that are insensitive to
manufacturing and operational variability.
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Title: Associate Professor of Mathematics

Thesis Supervisor: Yoel Fink
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Education is Not the Filling of a Pail but the Lighting of a Fire.

- William Butler Yeats
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ection either set to

R0 = 10� 16 (upper blue line) or set to match the estimated transition

re
ection from Fig. 3-5 (lower red line). By matching the round-trip

re
ection R0 to the estimated transition re
ection, one can obtain a

substantial reduction in the constant factor of the total re
ection, al-

though the asymptotic power law is only changed by a lnL factor. . . 89
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4-1 Results from 2d PWFD showing �eld convergence factor (a proxy

for the re
ection coe�cient) versus resolution in pixels=� v for both

isotropic and anisotropic media with PML, Z-PML (from Ref. 253) and

non-PML (conductivity absorber in electric �eld) absorbing bound-

aries. For the anisotropic medium, Z-PML fails to be re
ectionless in

the limit of high resolution. Inset: Ez �eld pro�le of a point source

at the center of the 2d computational cell surrounded by absorbing

material (blue/white/red = positive/zero/negative). . . . . . . . . . . 96

4-2 Results from 2d PWFD simulation showing �eld convergence factor

(� re
ection=L2) vs. absorber thickness in units of vacuum wavelength

(L=� v) for anisotropic media at a resolution of 9pixels=� v for various

polynomial absorber functionss(u) ranging from linear [s(u) = u] in

blue to cubic [s(u) = u3] in green. As the absorber becomes thicker

and the absorption is turned on more gradually, re
ection goes to zero

via the adiabatic theorem. For reference, the corresponding asymptotic

power laws are shown as dashed lines. Fixing the round-trip re
ection

yields similar scaling relationships and values between the three types

of absorbers. Inset:< [Ez] �eld pattern for the (point) source at the

center (blue/white/red = positive/zero/negative). . . . . . . . . . . 97

4-3 Results from 2d FDTD simulations showing �eld convergence factor eq. (4.1)

vs. absorber thickness in units of vacuum wavelength (L=� v) for anisotropic

media at a resolution of 20pixels=� v for various polynomial absorber

functions s(u) ranging from linear [s(u) = u] in blue to [s(u) = u3]

in green. Left inset: �eld convergence factor versus resolution in

pixels=� v showing correct PML scaling relationship. Top right inset:

< [Ez] �eld pattern snapshot in time for the (point) source at the center

(blue/white/red = positive/zero/negative). . . . . . . . . . . . . . . 99
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5-1 The computational cell is divided into chunks (left) that have a one-

pixel overlap (gray regions). Each chunk (right) represents a portion

of the Yee grid, partitioned into owned points (chunk interior) and

not-owned points (gray regions around the chunk edges) that are de-

termined from other chunks and/or via boundary conditions. Every

point in the interior of the computational cell is owned by exactly one

chunk, the chunk responsible for timestepping that point. .. . . . . . 116

5-2 Meep can exploit mirror and rotational symmetries, suchas the 180-

degree (C2) rotational symmetry of the S-shaped structure in this

schematic example. Although Meep maintains the illusion that the

entire structure is stored and simulated, internally only half of the

structure is stored (as shown at right), and the other half isinferred by

rotation. The rotation gives a boundary condition for the not-owned

grid points along the dashed line. . . . . . . . . . . . . . . . . . . . . 119

5-3 A key principle of Meep is that continuously varying inputs yield con-

tinuously varying outputs. Here, an eigenfrequency of a photonic crys-

tal varies continuously with the eccentricity of a dielectric rod, accom-

plished by subpixel smoothing of the material parameters, whereas the

nonsmoothed result is \stairstepped." Speci�cally, the plot shows a

TE eigenfrequency of 2d square lattice (perioda of dielectric ellipses

("=12) in air versus one semi-axis diameter of the ellipse (in gradations

of 0:005a) for no smoothing (red squares, resolution of 20 pixels/a),

subpixel smoothing (blue circles, resolution of 20 pixels/a) and \ex-

act" results (black line, no smoothing at resolution of 200 pixels/a) . 120

5-4 Left: a bilinear interpolation of valuesf 1;2;3;4 on the grid (red) to the

value f at an arbitrary point. Right: the reverse process isrestriction,

taking a value J at an arbitrary point (e.g. a current source) and

converting into values on the grid. Restriction can be viewed as the

transpose of interpolation and uses the same coe�cients. . .. . . . . 122
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5-5 Cerenkov radiation emitted by a point charge moving at a speedv =

1:05c=nexceeding the phase velocity of light in a homogeneous medium

of index n=1.5. Thanks to Meep's interpolation (or technically re-

striction ), the smooth motion of the source current (left panel) can

be expressed as continuously varying currents on the grid, whereas

the non-smooth pixelized motion (no interpolation) (right panel) re-

veals high-frequency numerical artifacts of the discretization (counter-

propagating wavefronts behind the moving charge). . . . . . . .. . . 123

5-6 Appropriate subpixel averaging canincrease the accuracy of FDTD

with discontinuous materials [69,175]. Here, relative error � !=! (com-

paring to the \exact" ! 0 from a planewave calculation [107]) for an

eigenmode calculation (as in Ch. 5.7) for a cubic lattice (period a) of

3d anisotropic-" ellipsoids (right inset) versus spatial resolution (units

of pixels per vacuum wavelength� ), for a variety of subpixel smooth-

ing techniques. Straight lines for perfect linear (black dashed) and

perfect quadratic (black solid) convergence are shown for reference.

Most curves are for the �rst eigenvalue band (left inset shows Ex in

xy cross-section of unit cell), with vacuum wavelength� = 5:15a. Hol-

low squares show Meep's method for band 13 (middle inset), with

� = 2:52a. Meep's method for bands 1 and 13 is shown for resolutions

up to 100 pixels/a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-7 The relative error in the scattered power from a small semicircular

bump in a dielectric waveguide (" = 12), excited by a point-dipole

source in the waveguide (geometry and �elds shown in inset),as a func-

tion of the computational resolution. Appropriate subpixel smoothing

of the dielectric interfaces leads to roughly second-order[O(� x2)] con-

vergence (red squares), whereas the unsmoothed structure has only

�rst-order convergence (blue circles). . . . . . . . . . . . . . . . .. . 125
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5-8 The performance of a quasi-PML in the radial direction (cylindrical

co-ordinates, left panel) at a resolution 20 pixels=� is nearly equivalent

to that of a true PML (in Cartesian coordinates, right panel). The

plot shows the di�erence in the electric �eld Ez (insets) from a point

source between simulations with PML thicknessL and L + 1, which is

a simple proxy for the PML re
ections [177]. The di�erent curves are

for PML conductivities that turn on as (x=L)d for d = 1; 2; 3 in the

PML, leading to di�erent rates of convergence of the re
ection [177]. . 127

5-9 Relative error in the quality factor Q for a photonic-crystal resonant

cavity (inset, period a) with Q � 106, versus simulation time in units

of optical periods of the resonance. Blue circles: �lter-diagonalization

method. Red squares: least-squares �t of energy in cavity toa decaying

exponential. Filter-diagonalization requires many feweroptical periods

than the decay timeQ, whereas curve �tting requires a simulation long

enough for the �elds to decay signi�cantly. . . . . . . . . . . . . . . 132

5-10 Root-mean-square error in �elds in response to a constant-frequency

point source in vacuum (inset), for frequency-domain solver (red squares,

adapted from Meep time-stepping code) vs. time-domain method (blue

circles, running until transients decay away). . . . . . . . . . .. . . . 136

5-11 Root-mean-square error in �elds in response to a constant-frequency

point source exciting one of several resonant modes of a dielectric ring

resonator (inset," = 11:56), for frequency-domain solver (red squares,

adapted from Meep time-stepping code) vs. time-domain method (ma-

genta triangles, running until transients decay away). Green diamonds

show frequency-domain BiCGSTAB-L solver for �ve times more stor-

age, accelerating convergence. Blue circles show time-domain method

for a more gradual turn-on of source, which avoids exciting long-lived

resonances at other frequencies. . . . . . . . . . . . . . . . . . . . . . 137
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5-12 A simple Meep example showing theEz �eld in a dielectric waveg-

uide (" = 12) from a point source at a given frequency. A plot of

the resulting �eld (blue/white/red = positive/zero/negat ive) is in the

background, and in the foreground is the input �le in the high-level

scripting interface (the Scheme language). . . . . . . . . . . . . .. . 139

6-1 Projected band diagram (frequency! vs. propagation constant� ), for

a triangular lattice of holes (inset). Inset: optimized 2d (� = 0) gap

size vs. index contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6-2 Projected band diagram (frequency! vs. propagation constant� ), for

a triangular lattice of hexagonal-shaped holes (inset). Inset: optimized

2d (� = 0) gap size vs. index contrast. . . . . . . . . . . . . . . . . . 153

6-3 Doubly-degenerate �6 defect modes for a triangular lattice of hexagonal-

shaped holes with periodicitya obtained by varying inscribed defect

diameter of a hexagonal-shaped air core: a)D = 1:6a (fundamental-

like) b) D = 3:2a c) D = 6:2a d) D = 6:76a (blue/white/red =

negative/zero/positive). . . . . . . . . . . . . . . . . . . . . . . . . . 154

6-4 Fraction of electric-�eld energy" jEj2 in the hexagonal-shaped air core

(as in Fig. 6-3) as a function of the core radius (radius of inscribed

circle). Inset: frequency! at � = 0 of guided mode vs. core radius. . 155

6-5 Air-core guided mode in gap of Fig. 6-2, with insets showing electric-

�eld Ez and Poynting vectorSz (blue/white/red = negative/zero/positive).156

6-6 Solid-core guided mode in gap of Fig. 6-2, with insets showing electric-

�eld Ez and Poynting vectorSz (blue/white/red = negative/zero/positive).157

6-7 Left: the square lattice design with the largest fractional gap discovered

by the nonlinear optimization algorithm where every pixel in the unit

cell was a free parameter having refractive index in the rangef 1: : : 3:4g.

Right: a simple two-parameter (radius and width) shape optimization

based on the adjacent design produces a complete 2d gap at an even

lower index contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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6-8 Scaling of the absorption suppression factor�=� 0 versus core radius

R, at mid-gap, for the fundamental mode of a hollow-core holey�ber

(blue circles/lines); this factor tends to a 1=R3 scaling (black line, for

reference). Insets show the intensity pattern (time-average Poynting


ux) of the fundamental mode for two core radii,R = 0:83a and R =

12:1a. The dielectric interfaces are shown as black lines; the aircore is

hexagonal and terminates the crystal in such a way as to remove the

possibility of surface states [236]. . . . . . . . . . . . . . . . . . . .. 162

7-1 Various tapers between uniform and periodic dielectricwaveguides. (a)

Periodic sequence of holes, where taper varies the radius and period of

the holes, in 2d or 3d. (b) Periodic set of 
anges, where tapervaries

the width of the 
ange, in 2d or 3d. (c) Periodic sequence of dielectric

blocks, where taper varies the period � between the blocks. All three

of these tapers, in 2d or 3d, can be e�ciently optimized by therobust

coupled-mode method, but this chapter focuses on (c) because it is also

amenable to brute-force computation for veri�cation purposes. . . . . 169

7-2 Top. A taper coupling uniform and slow-light waveguide structures.

Bottom. Its taper shape functions. . . . . . . . . . . . . . . . . . . . 170

7-3 A piecewise-linear taper shapes with n = 4, with grid points u1; : : : ; u4.

The taper shape satis�ess(0) = 0, s(u1) = x1; : : : ; s(u4) = x4, and

s(1) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7-4 Top left. Linear taper with a single grid point. Top right. Full search

performed to obtain a global optimum taper with a single gridpoint.

Bottom left. Two new grid points added and taper values interpolated

at u(2)
1 and u(2)

3 . Optimization algorithm is run starting from this taper.

Bottom right. New local optimum. . . . . . . . . . . . . . . . . . . . . 176
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7-5 Comparison of coupled-mode theory and brute force veri�cation method

(CAMFR [21, 22]) for a linear taper from length of 1 taper period

through 100. The excellent agreement between the fast coupled-mode

theory semi-analytical solver (blue circles) and the much slower brute-

force method (red squares) to compute the objective function permits

use of the former to quickly explore a large parameter space in the

robust optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7-6 Comparison of brute force computation (solid circles) and coupled-

mode theory (hollow circles) of re
ections from nominal taper designs

optimized for each taper length. The performance of the nominal taper

is clearly ruined by the slight pixellization e�ects introduced by the

brute-force solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7-7 Brute force computation of re
ections from linear (green), nominal

(blue) and robust (red) taper designs for each length. The superior

performance of the robust tapers, showing an exponential decrease of

the re
ection at shorter taper lengths before reaching a noise 
oor,

is evident under the slight perturbation introduced by the brute-force

solver's pixellization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7-8 Taper pro�les of linear (green), nominal (blue) and robust (red) designs

for taper length of 20. The slow-light, periodic waveguide structure is

at u = 0 on the left and the standard, strip waveguide is on the right

of the axis. Note the delicate features of the nominal taper which arise

from sensitive interference e�ects. The robust taper pro�le varies more

gradually and has superior performance under the slight pixellizations

e�ects of the brute-force solver. . . . . . . . . . . . . . . . . . . . . . 187
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Chapter 1

Introduction

Progress in nanophotonics has been inextricably linked with the development of novel

numerical modelling and design tools. These tools have beenused to study photon

modes whose solution are almost always non-analytical and thus necessitate a com-

putational approach. Some common methods include �nite-di�erence time domain

(FDTD) [215], �nite element (FE) [41], frequency domain planewave expansion eigen-

solvers [107], transfer matrix [22] and boundary element [245]. Each approach has its

own advantages and disadvantages and is well suited for particular tasks: FDTD is

commonly employed to compute scattering spectra, cavity resonances and for visual-

ization of �eld patterns; FE is especially useful for problems involving metals where

length scales vary greatly in di�erent media; planewave expansion of Bloch modes for

computing dispersion relations of photon modes; and transfer matrix and boundary

element methods for scattering phenomena over large distances. These computational

tools are increasingly being used to study light-matter interactions in new and novel

regimes.

Photonic crystals (PhC) are periodic dielectric structures for which there exists

a photonic bandgap when the wavelength of light is comparable to the lengthscale

of the periodicity. These nanoscale structures were �rst studied in one dimension by

Lord Rayleigh in 1887 who used wave scattering phenomenon todescribe their prop-

erties. It was not until one hundred years later that analogues for higher dimensions

were proposed for inhibiting spontaneous emission of atoms[241] and localization of
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light [100]. Among the many applications for PhCs are devicecomponents for inte-

grated optics: waveguides [66], �lters [67], switches [207] and optical bu�ers [243].

The vast and growing body of literature in the last twenty years is a testament to the

versatility of PhCs in molding the 
ow of light with unprecedented control.

The ability to fabricate almost any 2d and increasingly 3d patterns at infrared

length scales permits a huge number of degrees of freedom in nanophotonic device de-

sign. Researchers have hitherto made use of this in simple, primitive structures mainly

by using apriori knowledge to guide initial design but more and more are turning to

optimization as a means to explore the design space. Unfortunately optimization

requires solving a large PDE that can take several hours for an objective function

that is both nonlinear and highly non-convex. Furthermore there remains several

outstanding issues related to this PDE-based optimizationthat need addressing: con-

tinuously deforming parameters represented on a discrete uniform grid, resolving the

breakdown of conventional absorbing boundary layers for important problems, �nd-

ing robust designs that are insensitive to fabrication and operational variabilities and

�nally discriminating between local and global minima.

One area of computational design that is becoming increasingly important given

recent experimental advances in nanophotonics is that of robust optimization. Ow-

ing to delicate interference e�ects of scattered electromagnetic waves with dielectric

structures, slight perturbations arising in device fabrication or operation conditions

may signi�cantly deteriorate nominal performance. Such sensitivity mandates robust

designs that are insensitive to such irregularities. In robust optimization, one must

simultaneously optimize potentially thousands of design parameters while pessimizing

uncertainties (optimizing the worst case) and thus a singleoptimization-based design

may require the PDE to be solved thousands or even tens of thousands of times.

Signi�cant improvements can potentially be gained by exploiting intrinsic features

of robust optimization: the holy grail would be to marry the optimization and the

pessimization with the iterative PDE solver. This would involve updating the design

parameters and pessimizing the uncertaintiesduring iterations of the PDE solver

based on the inexact solution; and would provide the bene�t of �nding an optimal
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solution at a cost of iteratively solving the PDE once.

A well-known bottleneck for non-convex problems is that local methods routinely

get stuck in local optima; to address this, the optimizationis usually repeated numer-

ous times with di�erent initial conditions and the best-performing design ultimately

chosen. There are a variety of global optimum approaches butthey become ex-

ponentially expensive in higher dimensions. A heuristic method we call successive

re�nement, however, seems to circumvent the issue of getting stuck in poor local

minima, �nding a simultaneously more robust and more global solution. Successive

re�nement consists of solving a sequence of design problemswith successively �ner

resolution starting from the previous coarser design in each case.

When actually solving the PDEs, impediments to computational photonics can act

as serious bottlenecks especially when optimizing over a large design space requiring

numerous iterations. Two major aspects of computational electromagnetism relevant

to nanophotonics that markedly increase computational cost are the �ne resolution

required to model objects with intricate geometries and theneed for minimally re-


ective absorbing boundary layers for inhomogeneous media. The �rst is related to

the question of how best to model arbitrary dielectric structures on a discrete grid

and the second with how best to design absorbing boundary layers with the least

numerical footprint.

A major challenge of computational electromagnetism with discrete, uniform grids

is in the modelling of non-orthogonal dielectric interfaces not aligned with the grid.

This issue is also prevalent in device optimization studieswhere some shape is contin-

uously varied and accuracy is required to monitor a given optical property (e.g., cavity

quality factor, bandgap, transmitted/re
ected 
ux, etc.) without strange jumps from

numerical artifacts in the data. Typically such \staircasing" e�ects often arise in

nanophotonics and signi�cantly degrade the accuracy of FDTD simulations. Chap-

ters 2 presents a novel subpixel material averaging scheme for isotropic and anisotropic

materials based on rigorous analytical arguments derived from perturbation theory

that greatly improve the accuracy of FDTD simulations. We demonstrate its superior

performance by comparing it to other previously published subpixel averaging meth-

27



ods. With this new method, researchers can now use modest computing resources to

obtain high accuracy for large simulations.

A standard and popular approach to simulate open boundarieswith minimal nu-

merical artifacts in computational electromagnetism is the perfectly matched layer

(PML). PMLs are absorbing boundary layers that surround thecomputational cell

and are theoretically re
ectionless. However, in Chapter 3we show that PMLs ir-

recoverably fail when overlapping inhomogeneous media (e.g., photonic crystals) and

lead to large re
ections. We then demonstrate a simple replacement solution involv-

ing adiabatic absorbers that typically perform just as wellas PMLs and establish

the basic link between the re
ections from these absorbers and their correspond-

ing absorber pro�le. In Chapter 4, we introduce a simple procedure to validate the

correctness ofany PML formulation by providing analytical insights into key char-

acteristics of PMLs. These �ndings will now make simulations of photonic crystals

and other inhomogeneous media more accurate using FDTD and any other numerical

methods that use PMLs.

Our developments in subpixel averaging and PML in addition to a number of other

improvements have been incorporated into our 
exible, free-software package for elec-

tromagnetic simulations by the FDTD method known as Meep (anacronym for MIT

Electromagnetic Equation Propagation) detailed in Chapter 5. The current range of

Meep's functionality permits simulations in 1d, 2d, 3d or cylindrical co-ordinates of a

large class of electromagnetic phenomena involving arbitrary anisotropic, nonlinear,

dispersive, active and conductive materials. Meep is also fully parallelized so that it

can run on supercomputers for large applications.

Next, we demonstrate the utility of optimization in nanophotonics by focusing on

two important design problems.

Chapter 6 describes a new class of holey photonic-crystal �bers. These are �bers

with a 2d photonic crystal in the cladding where the complete2d bandgap extended

over a range of axial propagation wavevectors acts to con�neslow light to the waveg-

uide core which is either solid or air. The principal aim of this research was to

determine how low an index contrast could be found for various 2d photonic crystal
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geometries so as to enable a larger class of materials for thefabrication of such �bers

for slow-light applications. The challenge here is that thesmaller the index contrast,

the more di�cult the problem becomes of �nding a structure with a complete bandgap

so we decided to use an optimization strategy to guide the design. We were able to

�nd designs for an index contrast as low as 2.6:1 which now permits for the �rst time

the use of an important class of materials known as chalcogenide glasses to be used

in the �ber drawing process.

Chapter 7 focuses on designing waveguide tapers that can be used to couple an

optical mode from a standard dielectric (or strip) waveguide into the slow-light mode

of a photonic-crystal waveguide. Slow-light optical modesare important for the in-

vestigation of a number of interesting physical phenomena,such as nonlinearities,

gain, tunability and magneto-optics. The principal aim of this project was to de-

sign waveguide couplers with maximal transmission of photons over a narrow range

of frequencies near the band edge that are also insensitive to fabrication imperfec-

tions. The latter point related to robustness is key as slow-light optical modes are

strongly a�ected by any irregularities or disorder in the device. This work was con-

ducted in collaboration with the optimization research group of Professor Stephen

Boyd at Stanford University where we combined our group's nanophotonic design ex-

pertise and semi-analytical numerical tools for electromagnetism with their advanced

optimization toolbox. We have been successful in designingwaveguide tapers for a

number of di�erent 2d structures that operate in the challenging slow-light regime,

were designed with rigorous optimization methods and had very small re
ections (less

than 1%) suitable for telecommunication applications.
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Chapter 2

Sub-pixel smoothing for dielectric

media

2.1 Summary

Finite-di�erence time-domain (FDTD) methods su�er from reduced accuracy when

modelling discontinuous dielectric materials, due to the inherent discretization (\pix-

ellization"). We show that accuracy can be signi�cantly improved by using a sub-pixel

smoothing of both the isotropic and anisotropic dielectricfunction, but only if the

smoothing scheme is properly designed. We develop such a scheme based on a cri-

terion taken from perturbation theory, and compare it to other published FDTD

smoothing methods. In addition to consistently achieving the smallest errors, our

scheme is the only one that attains quadratic convergence with resolution for arbi-

trarily sloped interfaces. Finally, we discuss additionaldi�culties that arise for sharp

dielectric corners.

2.2 Overview

A popular numerical tool for photonics is the �nite-di�erence time-domain (FDTD)

method, which discretizes Maxwell's equations on a grid in space and time [215]. Here,

we address di�culties in representing a discontinuous permittivity ( " ) on such a grid,
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by reviewing previously proposed anisotropic sub-pixel" smoothing schemes adapted

from spectral methods [107,124,153]. The work in this chapter provides a clear jus-

ti�cation for the second-order convergence of prior proposed schemes for isotropic

media in terms of perturbation theory. It enables extensionto anisotropic media and

clari�es the role of sharp corners. We show that our method consistently achieves

the smallest errors compared to previous smoothing schemesfor FDTD [56,110,160].

Subpixel smoothing has an additional bene�t: it allows the simulation to respond

continuously to changes in the geometry, such as during optimization or parameter

studies, rather than changing in discontinuous jumps as interfaces cross pixel bound-

aries. This technique additionally yields much smoother convergence of the error

with resolution, which makes it easier to evaluate the accuracy and enables the pos-

sibility of extrapolation to gain another order of accuracy[235]. Unlike methods

that require modi�ed �eld-update equations [57] or larger stencils and complicated

position-dependent di�erence equations for higher order accuracy [255], our method

uses the standard center-di�erence expressions and is easyto implement requiring

only preprocessing of the materials (free code is available[176]).

The presence of material discontinuities in degrading the order of accuracy of

underlying �nite di�erences has been prevalent in a number of other computational

schemes involving solid, 
uid and heat equations [78, 134, 143]. Here we investigate

the e�ects of such discontinuities in computational electromagnetism. When" is

represented by \pixels" on a grid (or \voxels" in 3d), two di� culties arise. First, a

uniform grid makes it more di�cult to model small features or to optimize device

performance by continuous variation of geometric parameters. Second, the pixellized

" may be a poor representation of the dielectric function: diagonal interfaces produce

\staircasing," and even interfaces aligned with the grid may be shifted by as much

as a pixel. This increases the computational errors, and caneven degrade the rate

of convergence with the grid resolution|as was pointed out in Ref. 57, " interfaces

actually reduce theorder of convergence from the nominal quadratic (error� � x2)

of standard FDTD to only linear (error � � x). We address both of these di�culties

in this chapter.
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2.3 Designing subpixel smoothing algorithms with

perturbation theory

Our basic approach is to smooth the structure to eliminate the discontinuity before

discretizing, but because the smoothing itself changes thegeometry we use �rst-order

perturbation theory to select a smoothing with zero �rst-order e�ect. For isotropic

materials, this approach makes rigorous a smoothing schemethat had previously been

proposed heuristically [132, 153] and we can now explain itssecond-order accuracy.

Advances in perturbation theory have enabled us to extend this scheme to interfaces

between anisotropic materials, initially for a planewave method [124]. Here, we adapt

the technique to FDTD, combined with a recent FDTD scheme with improved stabil-

ity for anisotropic media [235]. Although this chapter focuses on the case of isotropic

and anisotropic electric permittivity " , exactly the same smoothing and discretiza-

tion schemes apply to magnetic permeabilities� due to the equivalence in Maxwell's

equations under interchange of" / � and E/ H .

There are many ways to formulate perturbation techniques inelectromagnetism.

One common formulation, analogous to \time-independent perturbation theory" in

quantum mechanics [48], is to express Maxwell's equations as a generalized Hermitian

eigenproblemr�r � E = ! 2"E in the frequency! and electric �eld E (or equivalent

formulations in terms of the magnetic �eld H ) [99], and then to consider the �rst-

order change � ! in the frequency from a small change �" in the dielectric function

"(x) (assumed real and positive), which turns out to be [99]:

� !
!

= �

R
E � � � "E d3x

2
R

E � � "E d3x
+ O(� "2); (2.1)

whereE and ! are the electric �eld and eigenfrequency of theunperturbed struc-

ture " , respectively, and� denotes complex conjugation.

As was shown by Johnson et al. [105], eq. (2.1) is not valid when � " is due to a

small change in the position of a boundary between two dielectric materials (except in

the limit of low dielectric contrast), but a simple correction is possible. In particular,
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Figure 2-1: Schematic of an interface perturbation: the interface between two ma-
terials " a and " b (possibly anisotropic) is shifted by some small position-dependent
displacementh.

let us consider situations like the one shown in Fig. 2-1, where the dielectric boundary

between two materials"a and "b is shifted by some small displacementh (which

may be a function of position). Directly applying eq. (2.1),with � " = � ("a �

"b) in the regions where the material has changed, gives an incorrect result, and in

particular � !=h (which should ideally go to the exact derivatived!=dh ) is incorrect

even forh ! 0. The problem turns out to be not so much that � " is not small, but

rather that E is discontinuous at the boundary, and the standard method inthe limit

h ! 0 leads to an ill-de�ned surface integral ofE over the interfaces. Forisotropic

materials, corresponding toscalar "a;b, the correct numerator instead turns out to be

the following surface integral over the boundary as shown byJohnson et al. [105]:

Z
E � � � "E d3x �!

ZZ �
�
"a � "b

� �
�Ek

�
�2

�
�

1
"a

�
1
"b

�
jD? j2

�
h � dA ; (2.2)

where Ek and D? are the (continuous) components ofE and D = "E parallel

and perpendicular to the boundary, respectively,dA points towards "b, and h is the

displacement of the interface from"a towards "b.

In our previous work spearheaded by Chris Kottke [124] whichis brie
y re-

viewed here, we generalized eq. (2.2) to handle the case where the two materials are

anisotropic, corresponding to arbitrary 3� 3 tensors" a and " b (assumed Hermitian
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Figure 2-2: Schematic 2d Yee FDTD discretization near a dielectric interface, showing
the method [235] used to compute the part of Ex that comes from Dy and the locations
where various" � 1 components are required.

and positive-de�nite to obtain a well-behaved Hermitian eigenproblem). In the gener-

alized case, it is convenient to de�ne a local coordinate frame (x1; x2; x3) at each point

on the surface, where thex1 direction is orthogonal to the surface and the (x2; x3)

directions are parallel. We also de�ne a continuous �eld \vector" F = ( D1; E2; E3)

so that F1 = D? and F2;3 = Ek. The resulting numerator of eq. (2.1), generalizing

eq. (2.2), Kottke et al. showed to be:

ZZ
F � �

�
� (" a) � �

�
" b

��
� F h � dA ; (2.3)

where � (" ) is the 3� 3 matrix in eq. (2.6) which reduces to eq. (2.2) when" is a

scalar multiple " of the identity matrix. (Our assumption that " is positive-de�nite

guarantees that"11 > 0).

We de�ne an interface-relative coordinate frame as in Fig. 2-2, so that the �rst

component \1" is the direction normal to the interface. Previously, for an interface

between twoisotropic materials "a and "b, Meade et al. [153] showed (without rigor-
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ous analytical arguments) that the proper smoothed permittivity (in this coordinate

frame) at each point is:

~" =

0

B
B
B
@

h" � 1i � 1 0 0

0 h" i 0

0 0 h" i

1

C
C
C
A

; (2.4)

whereh� � � i denotes an average over one pixel. Equation (2.4) uses the mean h" i

for the surface-parallelE components and the harmonic meanh" � 1i � 1 for the surface-

perpendicular component. For an interface betweenanisotropic materials, Kottke et

al. [124] showed that the following subpixel smoothing scheme is the appropriate

choice (having zero �rst-order perturbation) [124]:

~" = � � 1 [h� (" )i ] ; (2.5)

where � (" ) and its inverse are de�ned by

� (" ) =

0

B
B
B
@

� 1
" 11

" 12
" 11

" 13
" 11

" 21
" 11

"22 � " 21 " 12
" 11

"23 � " 21 " 13
" 11

" 31
" 11

"32 � " 31 " 12
" 11

"33 � " 31 " 13
" 11

1

C
C
C
A

; (2.6)

� � 1[� ] =

0

B
B
B
@

� 1
� 11

� � 12
� 11

� � 13
� 11

� � 21
� 11

� 22 � � 21 � 12
� 11

� 23 � � 21 � 13
� 11

� � 31
� 11

� 32 � � 31 � 12
� 11

� 33 � � 31 � 13
� 11

1

C
C
C
A

: (2.7)

The derivation of this result is nontrivial and is explainedin Kottke et al. [124]

and we will not repeat it here, but we point out that eq. (2.4) is now obtained as the

special case for isotropic" .

2.4 Analysis of smoothing perturbation

Here we review work �rst outlined by us for isotropic media [69] and later generalized

by Kottke et al. to anisotropic media [124]. In any numericalmethod involving the
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Figure 2-3: TE eigenfrequency error vs. resolution for a Bragg mirror of alternating
air and " = 12 (inset).
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solution of the full-vector Maxwell's equations on a discrete grid or its equivalent, such

as the planewave method above [107] or the �nite-di�erence time-domain (FDTD)

method [215], discontinuities in the non-discretized dielectric function " (and the cor-

responding �eld discontinuities) generally degrade the accuracy of the method, typi-

cally reducing it to only linear convergence with resolution [57, 107]. Unfortunately,

piecewise-continuous" is the most common situation for computational simulations,

so a technique to improve the accuracy (without switching toan entirely di�erent

computational method) is desirable. One simple approach that has been proposed by

several authors is tosmooththe dielectric function, or equivalently to set the" of each

\pixel" to be some average of" within the pixel, rather than merely sampling" in a

\staircase" fashion [56,107,110,132,153,160,166]. Unfortunately, this smoothing itself

changes the structure, and therefore introduces errors. The problem is closely related

to perturbation theory: one desires a smoothing of" that has zero �rst-order e�ect ,

to minimize the error introduced by smoothing and so that theunderlying second-

order accuracy can potentially be preserved. At an interface between two isotropic

dielectric materials, the �rst-order perturbation is given by eq. (2.2), and this leads

to an anisotropic smoothing: one averages" � 1 for �eld components perpendicular to

the interface, and averages" for �eld components parallel to the interface, a result

that had previously been proposed heuristically by severalauthors [107,132,153].

In this section, we generalize that result to interfaces between anisotropic materi-

als, and illustrate numerically in the following sections that it leads to both dramatic

improvements in the absolute magnitude and the convergencerate of the discretiza-

tion error. In the anisotropic-interface case, a heuristicsubpixel smoothing scheme

was previously proposed [107], but Kottke et al. [124] showed that this method was

suboptimal: although it is better than other smoothing schemes, it does not set the

�rst-order perturbation to zero and therefore does not minimize the error or permit

the possibility of second-order accuracy. Speci�cally, asdiscussed more explicitly be-

low, a second-order smoothing is obtained by averaging� (" ) and then inverting � (" )

to obtain the smoothed \e�ective" dielectric tensor. Because this scheme is analyti-

cally guaranteed to eliminate the �rst-order error otherwise introduced by smoothing,
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Figure 2-4: TE eigenfrequency error vs. resolution for a square lattice of elliptical air
holes in" = 12 (inset).
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Figure 2-5: TM eigenfrequency error vs. resolution for a square lattice of elliptical
air holes in " = 12 (inset).

we expect it to generally lead to the smallest numerical error compared to competing

smoothing schemes, and there is the hope that the overall convergence rate may be

quadratic with resolution.

First, let us analyze how perturbation theory leads to a smoothing scheme. Sup-

pose that we smooth the underlying dielectric tensor" (x) into some locally aver-

aged tensor�" (x), by some method to be determined below. This involves a change

� " = �" � " , which is likely to be large near points where" is discontinuous (and,

conversely, is zero well inside regions where" is constant). In particular, suppose

that we employ a smoothing radius (de�ned more precisely below) proportional to

the spatial resolution � x of our numerical method, so that � " is zero [or at most

O(� x2)] except within a distance � � x of discontinuous interfaces. To evaluate

the e�ect of this large perturbation near an interface, we must employ an equivalent

reformulation of eq. (2.3):
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Figure 2-6: Eigenfrequency error vs. resolution for a cubiclattice of " = 12 ellipsoids
in air (inset).

� ! �
Z

F � � � � � F d3x; (2.8)

where � � = � ( �" ) � � (" ). It is su�cient to look at the perturbation in ! , since

the same integral appears in the perturbation theory for many other quantities (such

as scattered power, etc.). If we letx1 denote the (local) coordinate orthogonal to the

boundary, then thex1 integral is simply proportional to �
R

� � dx1 + O(� x2) : since

F is continuous and � � = 0 except near the interface, we can pullF out of the x1

integral to lowest order. That means, in order to make the �rst-order perturbation

zero for all �elds F, it is su�cient to have
R

� � dx1 = 0. This is achieved by averaging

� as follows.

The most straightforward interpretation of \smoothing" would be to convolve"

with some localized kernels(x), where
R

s(x) d3x = 1 and s(x) = 0 for jxj greater
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than some smoothing radius (the support radius) proportional to the resolution� � x.

That is, �" (x) = " � s =
R

" (y) s(x � y) d3y. For example, the simplest subpixel

smoothing, simply computing the average of" over each pixel, corresponds tos = 1

inside a pixel at the origin ands = 0 elsewhere. However, this will not lead to the

desired
R

� � = 0 to obtain second order accuracy. Instead, we employ:

�" (x) = � � 1[� (" ) � s] = � � 1

� Z
� [" (y)] s(x � y) d3y

�
: (2.9)

where � � 1 is the inverse of the� (" ) mapping, given by eqs. (2.7) and (2.6) re-

spectively.

The reason why eq. (2.9) works, regardless of the smoothing kernel s(x), is that

Z
� � d3x =

Z
d3x

� Z
� [" (y)] s(x � y) d3y � " (x)

�

=
Z

d3y � [" (y)]
� Z

s(x � y) d3y � 1
�

= 0: (2.10)

This guarantees that the integral of � � is zero over all space, but above we re-

quired what appears to be a stronger condition, that the local, interface-perpendicular

integral
R

� � dx1 be zero (at least to �rst order). However, in a small region where

the interface is locally 
at (to �rst order in the smoothing r adius), � � must be a

function of x1 only by translational symmetry, and therefore eq. (2.10) implies that
R

� � dx1 = 0 by itself. Although the above convolution formulas may look compli-

cated, for the simplest smoothing kernels(x) the procedure is quite simple: in each

pixel, average� (" ) in the pixel and then apply � � 1 to the result. (This is not any

more di�cult to apply than the procedure implemented in Ref. 107, for example.)

Strictly speaking, the use of this smoothing does not guarantee second-order ac-

curacy, even if the underlying numerical method is nominally second-order accurate

or better. For one thing, although we have canceled the �rst-order error due to

smoothing, it may be that the next-order correction is not second-order. Precisely
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Figure 2-7: Relative error � !=! for an eigenmode calculation with a square lattice
(period a) of 2d anisotropic ellipsoids (right inset) versus spatialresolution (units
of pixels per vacuum wavelength� ), for a variety of subpixel smoothing techniques.
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convergence are shown for reference. Most curves are for the�rst eigenvalue band
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show new method for band 15 (middle inset), with� = 1:7a. Maximum resolution
for all curves is 100 pixels/a.
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this situation occurs if one has a structure with sharp dielectric corners, edges, or

cusps, as discussed in Ref. 105: in this case, smoothing leads to a convergence rate

between �rst order (what would be obtained with no smoothing) and second order,

with the exponent determined by the nature of the �eld singularity that occurs at

the corner. This is discussed in more detail in Ch. 2.8 below.

2.5 Stable FDTD �eld-update implementation

An additional di�culty for anisotropic material tensors oc curs in FDTD: to accu-

rately discretize the spatial derivatives, each �eld component is discretized on a

di�erent grid. In the standard Yee discretization for grid coordinates [i; j; k ] =

(i � x; j � y; k� z), the Ex and Dx components are discretized at [i + 0:5; j; k ] while

Ey / Dy are at [i; j + 0:5; k] and Ez/ Dz are at [i; j; k + 0:5] [215]. At each time step,

E = " � 1D must be computed, but any o�-diagonal parts of" couple components

stored at di�erent locations. For example, a nonzero (" xy )� 1 means that the com-

putation of Ex requires Dy, but the value of Dy is not available at the same grid

point as Ex , as depicted in Fig. 2-2. One approach is to average the four adjacent

Dy values and use them in updatingEx , along with (" xy )� 1 at the Ex point [69,235].

This approach, however, is theoretically unstable and leads to divergences for a long

simulation [235]. Instead, a modi�ed technique was recently shown to satisfy a nec-

essary condition for stability with Hermitian " [235]: as depicted in Fig. 2-2, one �rst

averagesDy at [i; j � 0:5; k] and multiplies by (" xy )� 1 at [i; j; k ], and then averages

the two results at [i; j; k ] and [i + 1; j; k ] to update Ex at [i + 0:5; j; k ]. (Although

Ref. 235 derives nosu�cient condition for stability with inhomogeneous media once

the Yee time discretization is included, this method has been stable in all numerical

experiments to date.) We use this scheme here, and �nd that itgreatly improves sta-

bility compared to the simpler scheme from the previous chapter [69]. The subpixel

averaging is performed as follows. At theEx point [i + 0:5; j; k ] (orange dot in Fig. 2-

2), the smoothed~" is computed by eq. (2.5), averaging over the pixel centered at that

point. Then, ~" is inverted to obtain (~" � 1)xx , which is stored at theEx point. The
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subpixel averaging~" is also performed for a pixel centered at the [i; j; k ] point (blue

dot) halfway between twoDy points (red dot), and (~" � 1)xy is computed and stored

at that point. Similarly for other components. (Note that the ~" tensor from eq. (2.5)

must be rotated from the interface-normal to Cartesian coordinates at each point.)

Thus, for each Yee cell in three dimensions, the subpixel averaging is performed four

times, obtaining (~" � 1)xx at [i +0:5; j; k ], ( ~" � 1)yy at [i; j +0:5; k], ( ~" � 1)zz at [i; j; k +0:5],

and all o� diagonal components are at [i; j; k ]|in other words, we apply the same

averaging procedure eq. (2.5) to pixels centered around di�erent points/corners in the

Yee cell, and then for each point we store only the componentsof " � 1 necessary for

that point. Each component of" � 1 need only be stored at most once per Yee cell,

so no additional storage is required compared to other anisotropic FDTD schemes.

After this smoothing, the anisotropic FDTD scheme proceedswithout modi�cation.

2.6 Numerical performance of methods for isotropic

media

To evaluate the discretization error, we compute an eigenfrequency! of a periodic

(square or cubic, perioda) lattice of dielectric shapes with 12:1" contrast, a photonic

crystal [99]. In particular, we compute the smallest! for an arbitrarily chosen Bloch

wavevector k (not aligned with the grid), so that the wavelength is comparable to

the feature sizes. We perform an FDTD simulation with Bloch-periodic boundaries

and a Gaussian pulse source, analyzing the response with a �lter-diagonalization

method [145] to obtain the eigenfrequency! . This is compared to the \exact" ! 0

from a planewave calculation [107] at a very high resolution, plotting the relative

error j! � ! 0j=! 0 versus FDTD resolution. ! is a good proxy for other common

computations, because both the change in the frequency and the scattered power for

a small � " go as � " jEj2 to lowest order [108]. We compare to three other smoothings.

The simplest is to use the scalar meanh" i for all components, [56] which is incorrect for

the surface-normal �elds. Kaneda [110] proposed an anisotropic smoothing that leads
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Figure 2-9: Relative error � !=! for an eigenmode calculation with a square lattice
(period a) of 2d anisotropic ellipses (green inset), versus spatial resolution, for a
variety of sub-pixel smoothing techniques. Straight linesfor perfect linear (black
dashed) and perfect quadratic (black solid) convergence are shown for reference.

to diagonal ~" � 1 tensors. We also consider the \VP-EP" scheme, [160] which isexactly

the diagonal part of eq. (2.4) fors = 1. Both Kaneda and VP-EP are equivalent to

eq. (2.4) for 
at interfaces oriented along the grid (xyz) directions, but they do not

satisfy the perturbation criterion for diagonal interfaces. Yet another method [166]

was found to be numerically unstable for our test cases, which prevented us from

evaluating it; however, it is equivalent to eq. (2.4) only for 
at x=y=z interfaces.

Other schemes, not considered here, were developed for perfect conductors [215,249]

or for non-Yee lattices in 2d. [164]

To start with, we look at a 1d case in Fig. 2-3 where Kaneda, VP-EP, and Nadobny

are equivalent to our method: a distributed bragg re
ector (DBR) along the x direc-

tion, with a k vector in the xy plane so that the eigen�eldE has components both

parallel and perpendicular to the interfaces. We �nd that both the no-smoothing

and simple mean-" cases both have only linear convergence, whereas the new method
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Figure 2-10: Relative error � !=! for an eigenmode calculation with cubic lattice
(period a) of 3d anisotropic ellipsoids (green inset), versus spatial resolution, for a
variety of sub-pixel smoothing techniques. Straight linesfor perfect linear (black
dashed) and perfect quadratic (black solid) convergence are shown for reference.

(and Kaneda and Nadobny) have quadratic convergence.

Since Kaneda, VP-EP, and our method are equivalent for grid-parallel interfaces

(and we obtain quadratic convergence for all these methods), we focus instead on

a more complicated case: a square lattice of elliptical air holes shown in the inset

of Fig. 2-4, for the TE polarization (E in the 2d plane). Our new method (hollow

squares) has the smallest errors by large margin, while the Kaneda and VP-EP meth-

ods are actually worse than no smoothing. As mentioned above, all methods except

ours converge linearly, whereas we expect our method to be asymptotically quadratic.

As a trick to make the quadratic convergence of our method more apparent, we dou-

ble the smoothing diameter tos = 2 (�lled squares), at the expense of increasing the

absolute error.

The TM polarization (E out of the plane) is shown in Fig. 2-5, but is less interest-

ing: all the smoothing methods are equivalent to the simple mean", all decrease the
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error compared to no smoothing, andall methods (including no smoothing) exhibit

quadratic convergence. SinceE is everywhere continuous, TM is the \easy" case for

numerical computation (and perturbative methods [105,108]).

In three dimensions, we used a cubic lattice of" = 12 ellipsoids, with an arbitrary

orientation, in air. The results in Fig. 2-6 again show that the new method has the

smallest error, and is again quadratic. Notice that the ordering of the other methods

has changed, and in general we observe them to yield erratic accuracy.

2.7 Numerical performance of methods for anisotropic

media

To illustrate the discretization error for the anisotropicsmoothing algorithm of eqs. (2.6)

and (2.7), we repeat similar numerical experiments where wecompute an eigenfre-

quency! of a periodic (square in 2d or cubic in 3d, perioda) lattice of dielectric ellip-

soids made of"a surrounded by"b, a photonic crystal [99]. We choose"a;b to be random

positive-de�nite symmetric matrices with eigenvalues in the interval [1; 5] (1.45, 2.81,

and 4.98) for"a and in [9; 12] (8.49, 8.78, and 11.52) for"b. We compute the lowest

! for an arbitrary Bloch wavevectork = (0 :4; 0:2; 0:3)2�
a , giving wavelengths compa-

rable to the feature sizes. In an FDTD simulation with Bloch-periodic boundaries

and a Gaussian pulse source, we analyze the response with a �lter-diagonalization

method [145] to obtain the eigenfrequency! , obtaining the relative error j! � ! 0j=! 0

by comparison with the \exact" ! 0 from a planewave calculation [107] at a high res-

olution. We looked at eigenvalue bands 1 and 15 (in 2d) or 1 and13 (in 3d), where

the higher band is clearly nonplanewave-like (see inset �elds), to counter suggestions

that subpixel averaging may perform poorly for higher bands[235].

We compare the new smoothing technique of eq. (2.5) to the nonsmoothed case

as well as to two simple smoothing techniques: using the meanh" i [56] and also

the harmonic meanh" � 1i � 1. We do not compare to a previous heuristic that we

had proposed without the bene�t of perturbation theory [107], since the previous
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chapter already demonstrated that this heuristic (which does not yield zero �rst-

order perturbation) is much less accurate than the new method [124], and �rst-order

FDTD accuracy for that heuristic was also shown in Ref. 235 [who did not examine

the isotropic case where eq. (2.4) remains correct].

Results from 2d and 3d simulations are shown in Fig. 2-7 and Fig. 2-8, respectively.

In both cases, similar to our previous results for isotropicmaterials [69], the new

smoothing algorithm has the lowest error, often by an order of magnitude or more,

and is the only technique that appears to give second-order accuracy in the limit of

high resolution. (The simple meanh" i does better than the harmonic meanh" � 1i � 1,

probably because it treats roughly two of the three �eld components correctly [69].)

Similar accuracy is obtained for both lower and higher (non-planewave-like) bands

at comparable resolutions per wavelength (although higherbands require greater

absolute resolution pera, of course, because their wavelengths are smaller). As we

have noted, apparent quadratic convergence obtained in a single structure [107] can

sometimes be fortuitous [124], but we have con�dence in these results (obtained now

in multiple settings) because they are backed by a clear theory rather than an ad hoc

heuristic.

We repeat a similar experiment this time using a planewave method consisting

of a preconditioned conjugate-gradient minimization of the block Rayleigh quotient

from a free-software package [107]. As before, we �rst consider a two-dimensional

example problem: a square lattice (perioda) of ellipses made of" a surrounded by" b,

where we will �nd the lowest-! Bloch eigenmode. As above, we choose the dielectric

tensors to be random positive-de�nite symmetric matrices with random eigenvalues

in [2; 12] for " a and in [1; 5] for " b, and the ellipses are oriented at an arbitrary

angle, at an arbitrary Bloch wavevectorka=2� = (0 :1; 0:2; 0:3), to avoid fortuitous

symmetry e�ects. (The vacuum wavelength� corresponding to the eigenfrequency!

is � = 5:03a.) For each resolution � x, we assign an�" to each pixel by computing� � 1

of the average of� (" ) within that pixel. Then, we compute the relative error � !=!

(compared to a calculation at a much higher resolution) as a function of resolution.

For comparison, we also consider four other smoothing techniques: no smoothing,
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Figure 2-11: Degraded accuracy due to �eld singularities atsharp corners: TE eigen-
frequency error vs. resolution for square lattice of tilted-square air holes in" = 12
(inset).
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averaging" in each pixel [56], averaging" � 1 in each pixel, and a heuristic anisotropic

averaging proposed by Ref. 107 in analogy to the scalar case.The results are shown in

Fig. 2-9 and show that the new smoothing technique clearly leads to the lowest errors

� !=! . Also, whereas the other methods yield clearly �rst-order convergence, the new

method seems to exhibit roughly second-order convergence.The no-smoothing case

has extremely erratic errors, as is typical for stair-casing phenomena.

In Fig. 2-10, we also show results from a similar calculationin three dimensions.

Here, we look at the lowest eigenmode of a cubic lattice (period a) of 3d ellipsoids

(oriented at a random angle) made of" a surrounded by " b, both random positive-

de�nite symmetric matrices as above. The frequency! , at an arbitrarily chosen

wavevectorka=2� = (0 :4; 0:3; 0:1), corresponds to a vacuum wavelength� = 3:14a.

Again, the new method almost always has the lowest error by a wide margin, especially

if the unpredictable dips of the no-smoothing case are excluded, and is the only one

to exhibit (apparently) better than linear convergence.

Our previous heuristic proposal from Ref. 107, while betterthan the other smooth-

ing schemes (and less erratic than no smoothing), is clearlyinferior to the new method.

Previously, we had observed what seemed to have been quadratic convergence from

the heuristic scheme [107], but this result seems to have been fortuitous|as we

demonstrated recently, even non-second-order schemes cansometimes appear to have

second-order convergence over some range of resolutions for a particular geometry [69].

The key distinction of the new scheme, that lends us greater con�dence in it than

one or two examples can convey, is that it is no longer heuristic. The new smoothing

scheme is based on a clear analytical criterion|setting the�rst-order perturbative

e�ect of the smoothing to zero|that explains why it should be an accurate choice in

a wide variety of circumstances.

2.8 Field singularities at sharp corners

Finally, we consider a qualitatively di�erent case, in which none of the methods

satisfy our zero-perturbation criterion: the presence of asharp corner leads to a
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new �eld singularity. Figure 2-11 shows the error for a square lattice of tilted air

squares in" = 12 (inset). Because our new method at least handles the 
at edges

properly, it still has lower error than other smoothing schemes, although suboptimal

handling of the corner limits the di�erences. Fits of this data indicate that our

method seems to be converging as �x1:4, and in fact this can be predicted analytically.

Quite generally, any corner leads to a singularity whereE diverges asr p� 1 for a

radius r from the corner, with p given by a transcendental equation in the corner

angle and" 's (here, p � 0:702) [4]. This leads to a perturbation in the frequency

�
R

� jEj2rdr � � r 2p � � r 1:404, where � r is the size of the perturbation (the pixel).

Other smoothing schemes, in contrast, are limited by the linear error from the 
at

interfaces.

2.9 Conclusion

We have described in this chapter a method for designing subpixel smoothing algo-

rithms for dielectric media having zero �rst-order e�ect. We then used this method to

develop smoothing algorithms for isotropic and anisotropic media and veri�ed their

property of restoring the second-order accuracy of standard FDTD simulations. Be-

cause the new smoothing scheme greatly improves the accuracy of FDTD simulation

for isotropic and anisotropic materials, without increasing the computational/storage

cost (other than a one-time preprocessing step), it should be an attractive technique.

A remaining challenge is to accurately handle objects with sharp corners, where the

resulting �eld singularities are known to degrade the accuracy to between �rst- and

second-order once the smoothing eliminates the �rst-ordererror. We are hopeful that

an accurate smoothing can be developed for corners once the corresponding pertur-

bation theory is derived.
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Chapter 3

The failure of perfectly matched

layers

3.1 Summary

Although perfectly matched layers (PMLs) have been widely used to truncate numeri-

cal simulations of electromagnetism and other wave equations, we point out important

cases in which a PML fails to be re
ectionless even in the limit of in�nite resolution.

In particular, the underlying coordinate-stretching ideabehind PML breaks down

in photonic crystals and in other structures where the material is not an analytic

function in the direction perpendicular to the boundary, leading to substantial re-


ections. The alternative is an adiabatic absorber, in which re
ections are made

negligible by gradually increasing the material absorption at the boundaries, similar

to a common strategy to combat discretization re
ections inPMLs. We demonstrate

the fundamental connection between such re
ections and thesmoothness of the ab-

sorption pro�le via coupled-mode theory, and show how to obtain higher-order and

even exponential vanishing of the re
ection with absorber thickness.

55



3.2 Overview

A perfectly matched layer (PML) is an arti�cial absorbing medium that is commonly

used to truncate computational grids for simulating wave equations (e.g. Maxwell's

equations), and is designed to have the property that interfaces between the PML

and adjacent media are re
ectionless in the exact wave equation [17, 215]. We de-

scribe important cases in which PMLfails to be re
ectionless, even in the exact

(non-discretized) Maxwell equations, most notably in the case of periodic media

(photonic crystals [99])|contrary to previous suggestions of photonic-crystal \PML"

absorbers [120, 122, 123, 224, 234]. In these cases (similarto PML re
ections due

to discretization error [39, 215]), the remaining approachto reduce re
ections is to

\turn on" the absorption gradually, asymptotically approaching an \adiabatic" limit

of zero re
ections [103] regardless of whether the medium forms a true PML|here,

we provide a deeper understanding of all such adiabatic absorbers by showing that the

re
ection's dependence on the thickness of the absorbing layer is determined by the

smoothness of the absorption pro�le, and can be predicted bycoupled-mode theory

approximations. For a �xed absorption pro�le (typically quadratic or cubic in pre-

vious work [215]), the re
ection decreases with absorber thicknessL proportional to

some characteristic power law determined by the smoothness(e.g. 1=L6 for quadratic

absorption). (The same smoothness/re
ection relation canbe applied to adiabatic

absorbers in boundary element methods where a true PML is much less practical to

terminate in�nite surfaces like waveguides even in cases where it is theoretically possi-

ble [251].) As the absorber becomes thicker, smoother absorptions become favorable,

and we show that it is even possible to obtain exponential decrease of the re
ection

with L by new choices of the absorption pro�le. The role of PML (whenit works),

compared to ordinary absorbing materials, is to improve theconstant factor in this

re
ection convergence, rather than the functional form. For homogeneous materials

as in most previous analyses, although some attempts have been made to optimize

the PML pro�le among various polynomial functions [36,109,149,190], a quadratic or

cubic pro�le works so well [215] that further attempts at optimization are arguably
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super
uous. On the other hand, for periodic media|especially when operating in

modes with low group velocity|the required absorber thickness can become so large

that the choice of absorption pro�le becomes critical. We also discuss the possi-

bility of other optimizations, such as balancing the \transition" re
ection from the

absorber interface with the \round-trip" re
ection due to t he �nite absorption, but

these optimizations depend more sensitively on the incident-wave medium.

3.2.1 Various PML Formulations

There are several nearly equivalent formulations of PML. Berenger's original formula-

tion [17] split the wave solution into the sum of two new arti�cial �eld components. A

more common \UPML" (uniaxial-PML) formulation expresses the PML region as the

ordinary wave equation with a combination of arti�cial anisotropic absorbing materi-

als [197]. Both of these formulations were originally derived by laboriously computing

the solution for a planewave incident on the absorber interface at an arbitrary angle

and polarization, and then solving for the conditions in which the re
ection is always

zero. Both formulations, however, can also be derived by a complex \stretched-

coordinate" approach [40, 189, 218]|this much simpler and more elegant derivation

of PML reveals its underlying meaning and generalizes more easily to inhomoge-

neous media, other wave equations, and other coordinate systems. In particular, the

coordinate-stretching approach derives PML by an analyticcontinuation of Maxwell's

equations into complex spatial coordinates, where the oscillating �elds become expo-

nentially decaying [40,49,189,218]. (This description can then be converted back into

a change of materials via a complex coordinate transformation [218,230]. A real co-

ordinate transformation would be suitable only for waves that are already decaying,

but not propagating, as it would merely act to shorten the distance over which the

wave has decayed to some negligible amount.) By viewing PML as an analytic contin-

uation, it can be shown to be re
ectionless even forinhomogeneousmedia such as in

Fig. 3-1(a) [88]: for a waveguide entering the PML perpendicularly, complex coordi-

nate stretching is still possible because the material parameters (and hence Maxwell's

equations) are analytic functions (constants) in that direction. The same derivation
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waveguide
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PML? waveguide splitter

Figure 3-1: (a) PML is still re
ectionless for inhomogeneous media such as waveguides
that are homogeneous in the direction perpendicular to the PML. (b, c) PML is no
longer re
ectionless when the dielectric function is discontinuous (non-analytic) in
the direction perpendicular to the PML, as in a photonic crystal (b) or a waveguide
entering the PML at an angle (c).

of PML, however, also immediately points to situations where PML is inapplicable:

in any problem where the material parameters arenot described by analytic func-

tions in the direction perpendicular to the boundary, a re
ectionless absorber cannot

be designed by complex coordinate stretching. As discussedin more detail below,

this means that \PML" is not re
ectionless for photonic crystals as in Fig. 3-1(b)

where the dielectric function varies discontinuously in the direction perpendicular to

the boundary, or even in cases where a dielectric waveguide hits the PML obliquely

[Fig. 3-1(c)]. (In fact, even for rare cases in which an oscillating dielectric function

is analytic in the PML direction, we will explain that the analytic-continuation idea

still does not yield a useful PML absorber in the discretizedequations.)

3.2.2 PMLs in Photonic Crystals

Previous suggestions to apply PML to photonic crystals by simply overlapping a

\PML" anisotropic absorber with the periodic dielectric function [120, 122, 123, 224,

234] (including a similar suggestion for integral-equation methods [183]) were there-

fore not \true" PML media in the sense that the re
ection will not go to zero even in

the limit of in�nite resolution. In this thesis, we will refer to such an absorbing layer as

a pseudo-PML(pPML). (In the special case of an e�ectively one-dimensional medium

58



where there is only a single propagating mode, such as a single-mode waveguide sur-

rounded by a complete-bandgap medium, it is possible to arrange an \impedance-

matched" absorber to approximately cancel that one mode [155], or alternatively

to specify analytical boundary conditions of zero re
ection for that one mode [162].

More generally, in a transfer-matrix or scattering-matrixmethod where one explicitly

computes all propagating modes and expands the �elds in thatbasis, it is possible to

impose analytically re
ectionless boundary conditions [135, 182], but such methods

become very expensive in three dimensions.) These previousauthors were neverthe-

less able to observe small re
ections in a pPML only because they overlapped the

pPML with many periods of the crystal and thereby turn on the pPML very grad-

ually. As we explain below, such absorbing layers are more properly understood as

adiabatic absorbersrather than PML media, and indeed the \PML" property only

improves the constant factor in the long-wavelength limit of an e�ective homogeneous

medium, or in any case where there are large homogeneous-material regions compared

to the wavelength. Moreover, as we describe, the re
ectionsworsen rapidly as the

group velocity decreases (e.g. as a band edge is approached).

Even in the case of a homogeneous medium (or one uniform in thedirection per-

pendicular to the boundary), where true PML applies, there are well-known numerical

re
ections due to the �nite discretization [39, 215]. It is sometimes claimed that the

solutions for a PML converge exponentially to the solution of the open problem as

the PML thickness is increased [130, 259]. This is true, but only in the limit where

the discretization error is negligible. Once the discretization re
ections dominate,

we show in Ch. 3.7 that the convergence rate with PML thickness depends on the

smoothness of the PML pro�le in the same way as for any other adiabatic absorber,

and the rate is only polynomial for a �xed polynomial pro�le. That is, there is a uni-

versal relationship between smoothness and re
ectivity for all adiabatic absorbers,

whether discrete or continuous and whether PML or non-PML. Other authors have

remarked that the numerical re
ection seems to be dominatedby the discontinuity

in the pro�le or its derivatives at the PML boundary [215], but have not presented a

precise analysis of the relationship between convergence and smoothness.
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3.3 PMLs versus Adiabatic absorbers

The notion of an adiabatic absorber is an old idea. Anechoic chambers have been

used to provide minimally re
ecting walls for echo suppression in acoustic and electro-

magnetic wave experiments [46]. The chamber walls are typically made of pyramid-

shaped pieces of lossy materials where the graded-geometrypro�le is a stand-in for

the continuously-varying conductivity pro�le of numerical absorbing boundary layers.

Given that the wavelength of sound waves in air is commensurate with radio waves

in vacuum (i.e. centimeters), the same chamber design can beused for both types

of waves (albeit constructed with di�erent radiation absorbent materials). Anechoic

chambers continue to be widely used for a number of applications including acous-

tic speaker testing, RF antenna design, and measurements ofnoise radiation from

industrial machinery.

PMLs have also been used in a number of di�erent areas outsideof computa-

tional electromagnetism: modelling acoustic waves in uniform media [14, 113, 140],


uids [203], periodic media (phononic crystals) [128,159,181,213] and even piezoelec-

tric crystals [33] as well as in simulating the Schrodinger equation [3,256]. However,

similar to electromagnetism, claims of PML for periodic acoustic media (phononic

crystals) [128,159,181,213] appear to be erroneous for thesame reason as for photonic

crystals in this chapter and are really just another exampleof adiabatic absorbers.

The following chapter is structured as follows. We begin, inCh. 3.4, with a very

brief review of the derivation of PML in the simple case of oneand two dimensions,

and de�ne the key quantities. Then, in Ch. 3.6, we explain anddemonstrate the failure

of PML for periodic media, even in the simplest case of one-dimensional structures

where only normal-incident, non-evanescent waves are present, and even when the

dielectric function varies analytically (sinusoidally). In fact, in this case, pPML may

do no better than an ordinary absorbing medium (e.g., a scalar electric conductivity).

Next, in Ch. 3.7, we analyze the relationship of the re
ection to the smoothness of

the absorption pro�le, and show via both 1d and 2d numerical calculations that

the asymptotic behavior is predicted by coupled-mode theory, as well as the e�ect
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of group velocity. In Ch. 3.8, we describe how the coupled-mode understanding of

this transition re
ection points the way towards improved absorbing layers|ideally,

layers whose re
ection decreases exponentially with thickness (not the case even for

true PML with a conventional quadratic pro�le, as mentioned above). Finally, we

conclude with some remarks about future directions in Ch. 3.9.

3.4 Brief review of PML

3.4.1 Mathematical formulation

Consider Maxwell's equations in two dimensions (xy) for the TM polarization, in

which the electric �eld (E) is in the z direction and the magnetic �eld (H ) is in the

xy plane, for a current sourceJz and a dielectric function "(x; y) in natural units

("0 = � 0 = 1), with time-harmonic �elds (time-dependence� e� i!t ) are:

r � H =
@Hy

@x
�

@Hx

@y
= � i!"E z (3.1)

@Ez
@y

= i!H x (3.2)

@Ez
@x

= � i!H y (3.3)

One can now derive a PML absorbing boundary in thex direction, assuming for now

that " is a function of y only (e.g., the medium is homogeneous, or a waveguide in

the x direction, near the computational cell boundary). In this case, one performs an

analytic continuation to complex x coordinates by the transformation:

@
@x

!
1

1 + i � (x)
!

@
@x

; (3.4)

in terms of a PML pro�le � (x), which plays the role of a conductivity or absorption

strength. The pro�le � (x) can also be a complex function, where the imaginary part

corresponds to a real coordinate stretching and enhances the attenuation of purely

evanescent waves [68, 215], but in this thesis we focus on thecase of real� and the
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absorption of propagating waves. Maxwell's equations thenbecome:

@Hy

@x
�

�
1 +

i�
!

�
@Hx

@y
= � i!"E z + �"E z (3.5)

@Ez
@y

= i!H x (3.6)

@Ez
@x

= � i!H y + �H y (3.7)

Note the �"E z and �H y terms, which have the form of electric and magnetic con-

ductivities, respectively. The remainingi�=! term becomes an integral or convolu-

tion in time-domain and is typically handled by integrating an auxiliary di�erential

equation [215], but is trivial in frequency domain. The extension to PMLs in other

directions is straightforward and is not reviewed here.

In a medium independent ofx, the wave solutions can be decomposed into normal

modes with x dependence exp(ik xx) and kx > 0 for right-going waves in a right-

handed [58] medium (e.g. planewaves in a homogeneous mediumor waveguide modes

in a waveguide). The point of this transformation (3.4) is that these normal modes

are thereby analytically continued to decaying solutions exp[ik xx � kx
!

Rx � (x0)dx0]

wherever � > 0. The 1=! factor is desirable because, at least in a homogeneous

dispersionless medium, the attenuation factorkx=! is independent of frequency (but

not of incidence angle).

Outside the PML regions, where� = 0, the wave equation and thus the solution

are unchanged, and it is only inside the PML (� > 0) that the oscillating solution

becomes exponentially decaying with no re
ections (in theory) no matter how fast �

changes, even if� changes discontinuously. After a short distanceL in the PML, the

computational cell can then be truncated (e.g. with Dirichlet boundaries), with an

exponentially small round-trip re
ection

Rround � trip � e� 4 k x
!

RL
0 � (x0)dx0

; (3.8)

where we have started the PML atx = 0, and the factor of 4 is because the re
ection

is proportional to the round-trip (2L) �eld squared.
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In the exact Maxwell equations, the PML could be made arbitrarily thin by making

� very large, but this is not feasible in practice because, once Maxwell's equations are

discretized (in a �nite-di�erence or �nite-element scheme) the re
ectionless property

disappears. That is, it is not meaningful to analytically continue the discretized

equations, and thus in the discretized system there arenumerical re
ections from

the PML boundary that disappear in the limit of high resolution. To reduce these

numerical re
ections, most authors suggest that the PML be turned on gradually,

i.e. that � (x) be a continuous function starting at zero, typically chosen to grow

quadratically or cubically [215].

3.4.2 Absorption pro�le

More precisely, let us de�ne� (x) in the PML ( x 2 [0; L]) by a shape functions(u) 2

[0; 1]:

� (x) = � 0 s(x=L) (3.9)

where the argument ofs(u) is a rescaled coordinateu = x=L 2 [0; 1] and � 0 is an

overall amplitude set to achieve some theoretical maximum round-trip absorption R0

for normal-incident waves in a medium of indexn (kx = !n ). Using eq. (3.8) forR0,

we de�ne:

� 0 =
� ln R0

4Ln
R1

0 s(u0)du0
: (3.10)

For x < 0, outside the PML, � = 0, i.e. s(u < 0) = 0. As L is made longer and longer

for a �xed s(u), the PML pro�le � turns on more and more gradually [both because

s(u) is stretched out and because� 0 decreases], and the numerical re
ections decrease.

Several authors have suggesteds(u) = u2 (quadratic) or s(u) = u3 (cubic) turn-on

of the PML, which have discontinuities atu = 0 in the second and third derivatives

respectively [215]. In Ch. 3.7, we show that there is a simplecorrespondence between

the smoothness ofs(u) and the rate of decrease of absorption withL, as a consequence

of the adiabatic theorem and coupled-mode theory. Note thatthe smoothness ofs(u)

is still relevant in a discretized system|with a �xed resolu tion and wavelength, asL

is increased one sampless(x=L) more and more �nely and a discrete version of the
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adiabatic theorem applies [61].

In fact, we will see that the same adiabatic theorem and the same rate of decrease

apply for any absorption, whether or not the absorbing material forms a PML. For

example, if we only include� on the right-hand-side of eq. (3.5), and neither on the

left-hand-side nor in eqs. (3.6) and (3.7), it corresponds to an ordinary scalar electric

conductivity. As we see in Ch. 3.6, the advantage of PML over this ordinary con-

ductivity is not that the re
ection decreases faster withL, but that this decrease is

multiplied by a much smaller constant factor (which decreases with increasing resolu-

tion) in the case of PML. This advantage mostly disappears for periodic media where

analytic continuation fails, but the same relationship between the rate of decrease

and the smoothness ofs(u) applies.

In general, therefore, we will divide the re
ections from PML into two categories:

the exponentially small round-trip re
ections (above), and transition re
ections from

the boundary between� 6= 0 and � = 0 (which can arise either from numerical

discretization or from other failures of PML as described inthe next section). It is

possible to obtain exactly zero re
ection by balancing the round-trip and transition

re
ections so that they destructively interfere, but this cancellation can only occur

for isolated wavelengths (and incident angles) [109] and hence is not useful in general.

Instead, we will begin by setting the estimated round-trip re
ection R0 to be negligibly

small (10� 25) and focus on the transition re
ection; we return to the question of

balancing round-trip and transition re
ections in Ch. 3.8.

3.5 Adiabatic theorems in electromagnetism

Adiabatic theorems have been widely used in quantum mechanics involving time-

dependent Hamiltonians where at each temporal cross section the solution is expanded

as an eigenmode series [8,43,112,157,169,247]. Such theorems have also been applied

to electromagnetism for studying ordinary waveguides [148]. Johnson et al. [102] ex-

tended the adiabatic theorem to strongly-grated waveguides (photonic crystals) with

arbitrary index modulation by generalizing coupled-mode theory to handle arbitrary
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nonuniform gratings using an instantaneous Bloch-mode basis. The analysis yields

a continuous set of di�erential equations for the basis coe�cients and the general

principal is that as the system is varied more and more gradually, these coupling

coe�cients converge rapidly to constants (see Appendix A ofRef. 102). We will be

returning to similar coupled-mode equations in later sections where we compute the

re
ection coe�cient from the absorbing boundary layer.

3.6 Failure of PML

3.6.1 Homogeneous & inhomogeneous media

To illustrate the failure of PML in periodic media, we consider a �nite-di�erence

frequency-domain simulation (FDFD, with a second-order{accurate Yee grid) [44] of

the simplest possible case: a periodic dielectric function"(x) in one dimension [so that

we only have theEz and Hy �elds in eqs. (3.5) and (3.7)]. Given a point dipole source

at some position (outside the absorber), we then compute there
ection coe�cient

from a pPML of thicknessL as a function of bothL and resolution.

Here, pPML (pseudo-PML) is de�ned by using eqs. (3.5) and (3.7): exactly the

same equations as for an ordinary PML, but with an inhomogeneous" function over-

lapping the \PML" as in Refs. 120, 122, 123, 224, 234. For comparison, we also show

a non-PML absorber in which� is included only in eq. (3.5) but not in eq. (3.7), i.e.

an ordinary electric conductivity only. We consider two dielectric functions: vacuum

(" = 1) for comparison, and a periodic dielectric function"(x) = 6 + 5 sin(2 �x=a )

that varies from 1 to 11 with perioda. Like all one-dimensional periodic structures,

this "(x) has photonic band gaps that prohibit propagation in certain frequency

ranges [99], but we operate at a vacuum wavelength� a slightly below the �rst

bandgap (at a wavevectorkx = 0:9�=a and vacuum wavelength� = 0:9597a). The

re
ection is computed as the squared amplitude of the re
ected Bloch wave, given by

the total �eld minus the incident Bloch wave (computed by numerically solving for

the Bloch waves of the discretized unit cell). Of course, there are two boundaries,
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at + x and � x, but we make the latter re
ection negligible by using an absorber of

thickness 5L on the left (and veri�ed that further increasing the left-absorber thick-

ness does not change the result). In this section, we use a quadratic shape function

s(u) = u2 for the absorber pro�le � as de�ned above.

The absorber, here, is a pPML because it isnot derived by analytic continuation

of the dielectric function, and is instead formed by simply applying the homogeneous-

PML equations on top of the inhomogeneous medium, leading tointrinsic re
ections.

However, in this case the periodic"(x) function is actually analytic in x, so in prin-

ciple one could have derived atrue PML by using eq. (3.5) with the analytically

continued dielectric function" [x + i
!

Rx � (x0)dx0]. Unfortunately, this introduces new

problems: the sine of a complex argument has an exponentially growing real part,

causing the solutions to oscillate exponentially rapidly and leading to a breakdown

of the discretization as the oscillation exceeds the Nyquist frequency. In practice

therefore, we �nd that such a \true" PML with exponentially i ncreasing< [" ] leads to

large re
ections that (at best) decrease extremely slowly with resolution. So, one still

cannot use a true PML in practice for the discretized problem(and the same is true

any analytical periodicity, via Fourier expansion of"). In any case, this possibility is

not applicable in the vast majority of practical periodic structures, which more com-

monly involve a discontinuous (non-analytic)" , so we do not consider analytically

continuing "(x) further here and focus only on the pPML case.

Figure 3-2 shows the results of these one-dimensional FDFD simulations, and the

di�erence between the uniform medium (where PML works) and the periodic medium

(where it does not) is stark. In the uniform medium, the re
ection from PML rapidly

goes to zero as resolution is increased (and in fact, goes to zero quadratically with

resolution because FDFD's center-di�erence discretization is second-order accurate),

whereas the non-PML absorber in the uniform medium goes to aconstant nonzero

re
ection (the Fresnel re
ection coe�cient from the exact M axwell equations). For

the periodic medium, both the pPML and non-PML absorbers behave roughly the

same, going to a constant nonzero-re
ection in the high-resolution limit: the pPML

is not re
ectionless for the exact Maxwell equations.
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Figure 3-2: Re
ection coe�cient as a function of discretization resolution for both a
uniform medium and a periodic medium with PML and non-PML absorbing bound-
aries (insets). For the periodic medium, PML fails to be re
ectionless even in the
limit of high resolution, and does no better than a non-PML absorber. Inset: re
ec-
tion as a function of absorber thicknessL for �xed resolution � 50pixels=� : as the
absorber becomes thicker and the absorption is turned on more gradually, re
ection
goes to zero via the adiabatic theorem; PML for the uniform medium only improves
the constant factor.
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3.6.2 Backward-wave structures

Here we identify and explain a fundamental failure of PMLs for backward-wave struc-

tures. In particular, the stretched-coordinate derivation of PML suggests that such

waves should be exponentiallygrowing in the PML, and we explain this physically

by pointing out that PML is an anisotropic \absorber" with gain in the longitudinal

direction, which dominates for backward-wave modes.

PML is re
ectionless because it corresponds merely to a complex coordinate

stretching z ! (1 + i�
! )z, so that propagating wavesei�z are transformed into ex-

ponentially decaying wavesei�z � �z=v p for some PML strength� . From this perspec-

tive, an obvious problem occurs for backward waves: ifvp < 0 for vg > 0, then a

+ z-propagating wave (vg > 0) will undergo exponentialgrowth for � > 0. (This is

entirely distinct from the failure of PML in medium periodic in the z direction as

described in the previous section, which in that case is due to the non-analyticity of

Maxwell's equations and lead to re
ections but not instability.)

We demonstrate this PML failure in the case of a backward-wave waveguide made

of positive-index materials. For example, a hollow metallic waveguide containing

a concentric dielectric cylinder was shown to support backward-wave modes [47].

More recently, the same phenomenon was demonstrated in all-dielectric (positive-

index, non-dispersive) photonic-crystal Bragg and holey �bers, and in general can be

explained as an avoided eigenvalue crossing from a forced degeneracy at� = 0 [90].

An example of such a structure is shown in the inset of Fig. 3-3, which shows the cross-

section of a Bragg �ber formed by alternating layers of refractive indices nhi = 4:6

(thickness 0:25a) and nlo = 1:4 (thickness 0:75a) with period a. The central high-

index core has radius 0:45a and the �rst low-index ring has thickness 0:32a. For this

geometry, one of the guided modes (with angular dependenceeim� and m = 1) has

the dispersion relation! (� ) shown in the inset of Fig. 3-3: at� = 0, d2!=d� 2 < 0,

resulting in a downward-sloping backward-wave region withvgvp < 0. As the index

of the core cylinder is varied, this curvature can be changedfrom negative to positive

in order to eliminate the backward-wave region.

68



The exponential growth of �elds within the PML region is observed for this struc-

ture as shown in Fig. 3-3. We simulated the backward-wave structure of Fig. 3-

3(inset) with a �nite-di�erence time-domain (FDTD) simula tion in cylindrical coor-

dinates [176,215], terminated in thez direction with PML layers. Both the forward-

and backward-wave modes were excited with a short-pulse current source, and the

�elds in the PML region after a long time were �t to an exponential in order to deter-

mine the decay rate. Figure 3-3 plots this decay rate as a function of the curvature

@2!=@�2j � =0 as the core-cylinder index is varied from 2.6 to 5.0. The appearance

of negative curvature, which indicates the appearance of a backward-wave region,

precisely coincides with the decay rate changing sign to exponential growth.

In the usual case in which group and phase velocities are oriented in the same

direction, the overall rate constant is negative and this causes absorptive loss in the

PML. In the case of backward waves, however, the ratiovg=vp is negative, and thus

the overall rate constant is positive, i.e., PML produces gain.

In a homogeneous backward-wave medium, this problem can be solved merely

by making � < 0 in the negative-index frequency ranges [53, 59]. This solution is

impossible in the case of Fig. 3-3(inset), however, becauseat the same ! one has

both forward and backward waves|no matter what sign is chosen for� , one of these

waves will experience exponential growth in the PML.

3.6.3 PMLs & adiabatic absorbers

One way of understanding why pPML is not re
ectionless for a periodic medium was

described in the previous section: the equations with \PML"absorption are no longer

derived via analytic continuation of Maxwell's equations,and so the fundamental

justi�cation for PML disappears. This has nothing to do with either evanescent

waves or glancing-angle waves, neither of which are presentin one dimension, nor is

it a numerical re
ection from discretization (since it doesnot vanish as resolution is

increased). Another way of understanding this is that the propagating waves in a

periodic medium are Bloch waves [99], and consist of a superposition of re
ections

from all interfaces (all places where" changes) in the medium|when we absorb
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waves re
ected from interfaces within the \PML," we have e�ectively terminated the

periodicity and hence see re
ections from this termination. (Similar but even stronger

re
ections are observed if one terminates the periodicitybeforeit enters the absorbing

region [155].)

However, the inset of Fig. 3-2 shows a way in which the re
ections can still be

made small for the periodic medium: by increasing the thicknessL of the absorbing

layer. As L is increased, we see that the re
ections inall four cases (PML and

non-PML, uniform and periodic) go to zero as 1=L6 asymptotically (although the

periodic media take longer to attain this asymptotic power law). The true PML in

the uniform medium is only di�erent in that it has a better constant factor (which

depends on resolution). The reason for this, as described inthe next section, is that all

transition re
ections can be understood via the same coupled-mode mechanism, and
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the 1=L6 rate is a consequence of the second-derivative discontinuity in s(u) = u2.

This reduction of re
ection with L is adiabatic absorption, distinct from the PML

concept, and it is such adiabatic absorption that one must better understand in order

to e�ciently truncate periodic media.

With the understanding that the standard formulation of PML fails for backward

waves, we now turn to a discussion of what can be done instead.As pointed out above,

previous corrections for left-handed media [53, 59] are inapplicable here because one

has forward and backward waves at the same! . Since the re
ectionless property

of PML fundamentally arises from the coordinate-stretching viewpoint, and gain is

predicted by coordinate-stretching above, we are led to theconclusion that PML must

be abandoned entirely for such backward-wave structures. The alternative is to use a
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scalar absorbing material, e.g. a scalar conductivity� , which is absorbing for all �eld

orientations and therefore cannot lead to gain (unlike in the previous example for

periodic media where an anisotropic \pseudo-PML" could still be employed). At the

interface of such a material, however, there will be re
ections. Such re
ections can be

made arbitrarily small, however, by turning on the absorption by a su�ciently gradual

taper transition similar to our approach for an unrelated failure of PML as described

in the next section. Even for PML, numerical re
ections due to discretization require

a similar gradual � taper. In both cases, the re
ectionR(L) goes to zero as the

absorber thicknessL is made longer (and more gradual), and the impact of PML

(when it works) is merely to multiply R(L) by a smaller constant coe�cient. Even

without PML, the rate at which R(L) goes to zero can be made more rapid by

reducing the discontinuity in � : for example, if � � (z=L)2 (for z > 0) then its

second derivative is discontinuous at the transitionz = 0 and R(L) consequently

scales as 1=L4, while if � � (z=L)3 then R(L) � 1=L6. Figure 3-4 shows how a scalar

conductivity � can be used as a last-resort replacement for PML in the backward-wave

structure of Fig. 3-3(inset). The plot shows the di�erence-squared of the magnetic

�eld at a test point for absorber lengths L and L + 1 (which scales asR(L)=L2)

versusL for various conductivity pro�les � . Even with both forward and backward

waves excited, the re
ection can indeed be made small for a su�ciently thick absorber

(albeit thicker than a PML for purely forward-wave modes) and displays the expected

scaling 1=L2d+2 for � � (z=L)d discussed next.

3.7 Smoothness & Re
ection

In this section, we demonstrate and explain the relationship between the smoothness

of the absorber pro�le's shape functions(u) and the dependence of re
ection on

absorber thicknessL. The basic principle is that, asL increases, the rate of change of

the absorption (PML or otherwise) becomes more and more gradual|as it approaches

a perfectly uniform (or perfectly periodic) limit, there isan adiabatic theoremstating

that the re
ections must go to zero. Such an adiabatic theorem is the well-understood
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mechanism behind gradual waveguide tapers [186], and adiabatic theorems also hold

in periodic media with slowly varying unit cells [103], and there is also an adiabatic

theorem for slowly-varying discretized systems [61]. Moreover, as we discuss in the

next section, the rate at which the adiabatic (zero-re
ection) limit is approached is

determined by the smoothness of the transitions(u).

3.7.1 Numerical results

First, however, let us present the results of numerical experiments using second-order

FDFD discretization for four structures: uniform and periodic media in one and

73



10
0

10
1

10
2

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

198 200 202 204 206 208
0

2

4

6

8

10

12

x / a

e(x) = 6 + 5sin(2 px/a)

absorber length L / a

re
fle

ct
io

n 
co

ef
fic

ie
nt

linear

quadratic

cubic

quartic

quintic

1/L4

1/L6

1/L8

1/L10

1/L12

pPMLpPML

L(100L)

a

Figure 3-6: Re
ectivity vs. pPML thickness L for the 1d periodic medium (inset)
with period a, as in Fig. 3-2, at a resolution of 50pixels=a with a wavevector kx =
0:9�=a (vacuum wavelength� = 0:9597a, just below the �rst gap) for various shape
functions s(u) ranging from linear [s(u) = u] to quintic [s(u) = u5]. For reference,
the corresponding asymptotic power laws are shown as dashedlines.

74



two dimensions (with continuous and discontinuous", respectively). The re
ection

versus PML/pPML absorber lengthL in one dimension is shown for uniform media

in Fig. 3-5 and for a periodic medium (the same medium as for Fig. 3-2) in Fig. 3-6,

for a variety of shape functionss(u) = ud for exponentsd 2 f 1; 2; 3; 4; 5g. In both

cases, there is a striking pattern: the re
ection asymptotically follows a power law

1=L2d+2 , which we will explain analytically below in terms of the smoothness ofs(u).

In two dimensions, we looked at the boundary re
ection from apoint source at

the center of the cell. In this case, de�ning a single \re
ection" coe�cient is more

di�cult because the point source emits waves at multiple angles. Instead, we look at

the convergence of the electric �eld asL is increased, and de�ned a�eld convergence

factor
jE (L +1)

z (x; y) � E (L )
z (x; y)j2

jE (L )
z (x; y)j2

(3.11)

in terms of the electric �eld Ez at a point (x; y) (chosen roughly halfway between the

point source and the absorbing layer) for two PML/pPML thicknessesL and L + 1.

This di�erence should go to zero asL ! 1 , assuming that the re
ection goes to

zero in this limit (and hence the �eld converges to the solution for open boundaries).

Indeed, this adiabatic limit is observed for both the uniform medium (vacuum) in

Fig. 3-7 and for a periodic medium (a square lattice of width-0:7a square air holes in

" = 12) in Fig. 3-8. Again, there is a simple power-law relationship evident in both

plots: whens(u) = ud, the �eld convergence factor goes as 1=L2d+4 .

In 1d, we found that the re
ection went as 1=L2d+2 for s(u) = ud, and in 2d

we found that the corresponding �eld convergence factor went as 1=L2d+4 . These

two results are mathematically equivalent, for the following reason. Suppose that

the re
ection coe�cient (for waves at any angle) goes asymptotically as 1=L2� for

some exponent� ; it follows that the re
ected electric �eld goes as 1=L� , and hence

E (L )(x; y) = E (1 )(x; y)+ O(1=L� ). Substituting this expression into eq. (3.11) and ex-

panding in powers of 1=L, one �nds that the �eld convergence factor goes as 1=L2� +2 ,

exactly the di�erence of 1=L2 that we observed above. [There is a subtlety in this

derivation: it implicitly assumes that the phaseof the O(1=L� ) term, i.e. the re
ected
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phase, goes to a constant asL ! 1 in order to expand in powers of 1=L. This as-

sumption is con�rmed by our numerical results, but it is alsopredicted analytically

by the coupled-mode theory result eq. (3.13) in the next section.]

3.7.2 Analysis

The natural way to analyze waves propagating along a medium that is slowly vary-

ing in the propagation direction (say x) is coupled-mode theory(or coupled-wave

theory) [103, 148]: at eachx, one expands the �elds in the basis of the eigenmodes

(indexed by `) of a uniform structure with that cross-section in terms of expansion

coe�cients c̀ (x). (The eigenmodes havex-dependenceei� ` x for some propagation

constants� ` .) The expansion coe�cients c̀ in this basis are then determined by a set

of ordinary di�erential equations for dc̀ =dx coupling the di�erent modes, where the

coupling coe�cient is proportional to the rate of change [here, the derivatives0(x=L)].

In the limit where the structure varies more and more slowly,the solution approaches

an \adiabatic" limit in which the c̀ are nearly constant (i.e. no scattering between

modes). Although coupled-mode theory was originally developed for media that are

slowly varying in the propagation direction [148], it has been generalized to peri-

odic media with a slowly varying unit cell [103], in which very similar coupled-mode

equations appear. A similar adiabatic limit has also been derived for slowly varying

discrete systems. Using coupled-mode theory, one can derive a universal relation-

ship between the smoothness of the rate of change [s0(u)] and the asymptotic rate

of convergence to the adiabatic limit. This relationship, derived below, analytically

predicts the convergence rates of the re
ection with absorber length observed in the

previous section.

Coupled Mode Theory

We omit the derivation of the coupled-mode equations here; their general form is

considered in detail elsewhere [103, 148]. We simply quote the result: in the limit of

slow variation (largeL), the equations can be solved to lowest order in 1=L in terms
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of a simple integral. In particular, if the structure is smoothly parameterized by a

shape functions(x=L) (e.g. the absorption pro�le as given here), then the amplitude

cr (corresponding to a re
ected powerjcr j2) of a re
ected mode is given to lowest-order

(for large L) by [103]:

cr (L) =
Z 1

0
s0(u)

M [s(u)]
� � [s(u)]

eiL
Ru

0 � � [s(u0)]du0
du: (3.12)

Here,M is a coupling coe�cient depending on the mode overlap between the incident

and re
ected �eld (in the changing part of the structure) and � � 6= 0 is the di�erence

� i � � r between the propagation constants of the incident and re
ected modes. Both

of these are some analytic functions of the shapes(u). In general, there may be more

than one re
ected mode, and in a periodic structure the coe�cient even for a single

re
ected mode is a sum of contributions of above form from thedi�erent Brillouin

zones [103], but it su�ces to analyze the rate of convergenceof a single such integral

with L. The basic reason for the adiabatic limit is that, asL grows, the phase term

oscillates faster and faster and the integral of this oscillating quantity goes to zero.

Convergence Analysis

There are many standard methods to analyze the asymptotic (largeL) properties of

such an integral. In particular, we apply a technique that iscommonly used to analyze

the convergence rate of Fourier series: one simply integrates by parts repeatedly until

a nonzero boundary term is obtained [26, 152]. Each integration by parts integrates

the eiL
R

� � term, dividing the integrand by iL � � (u), and di�erentiates the s0M=� �

term. (If � � is real as in the case of waveguides but not absorbers then we can turn

this expression into a Fourier transform, otherwise we haveto evaluate the expression

explicitly as shown next.) After integrating by parts d times, the boundary term at

u = 0 is zero if the corresponding derivatives(d)(0+ ) is zero, whereas the boundary

term at u = 1 is always negligible because of the absorption (leading to a complex

� � and exponential decay), assuming a small round-trip re
ection R0. The dominant

asymptotic term is the �rst (lowest-d) u = 0 boundary term that is nonzero, since
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all subsequent integrations by parts have an additional factor of 1=L. [Here, we

have assumed thats is a smooth function in (0; 1) so that there are never delta-

function contributions from the interior. In systems with purely decaying solutions

(e.g. elliptic equations), mapping the domain [0,1 ]to [0,1] requires some care since

if the wave oscillations vary too rapidly (exceeding the discrete grid's Nyquist limit),

large re
ections will arise [26].] The result is the following asymptotic form forcr (L),

independent of the particular details of the geometry or themodes:

cr (L) = s(d)(0+ )
M (0+ )
� � (0+ )

[� iL � � (0+ )]� d + O(L � (d+1) ); (3.13)

where s(d)(0+ ) is the �rst nonzero derivative of s(u) at u = 0+ , and integrating by

parts d times yielded a division by (� iL � � )d (
ipping sign each time). This result

corresponds to what is sometimes called \Darboux's principle:" the convergence is

dominated by the lowest-order singularity [26], which hereis the �rst discontinuity

in the rate of changes0(u) at u = 0. A similar result applies, for example, to the

convergence rate of a Fourier series: a function that has a discontinuity in the d-

th derivative has a Fourier series whose coe�cientscn decrease asymptotically as

1=n(d+1) [26,152] (thed+1 instead of d is due to the fact that our integral starts with

s0).

Equation (3.13) would seem to imply that the re
ection � j cr j2 is O(L � 2d), but

this is not the case because there is a hidden 1=L factor in the coupling coe�cient

M , thanks to the 1=L dependence of� 0 in eq. (3.10). The coupling coe�cient M

is a matrix element proportional to the rate of change of the materials [103], which

in this case is @�
@u = s0(u)� 0 � 1=L. Therefore, the re
ection scales asjM j2=L2d =

O(L � (2d+2) ), exactly corresponding to our numerical results above.

Other useful results can be obtained from eq. (3.13), and in particular one can show

that the re
ections due to nonuniformity worsen in a periodic structure as a 
at band

edge (� 0; ! 0) is approached [186]. As a quadratic-shaped band-edge! � ! 0 � (� � � 0)2

is approached, the group velocityvg = d!
d� scales proportional to� � � 0, while the

� � between the forward and re
ected modes is 2(� � � 0) � vg. Also, the coupling
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coe�cient M is proportional to 1=vg because of the constant-power normalizations

of the incident and re
ected modes [103,186]. Hence, by inspection of eq. (3.13), the

re
ection jcr j2 = O(v� (2d+4)
g ). For example, the re
ection isO(v� 6

g ) for a linear taper

s(u) = u [186]. Because of this unfavorable scaling, an imperfect absorbing layer such

as a pPML is most challenging in periodic structures when operating close to a band

edge where there are slow-light modes (in the same way that other taper transitions

are challenging in this regime [186]).

Derivation of re
ection coe�cient

Here we show how eq. (3.13) is derived from eq. (3.12) using the methods of Fourier

analysis, speci�cally the integration by parts method. We start with

cr (L) =
Z 1

0
s0(u)

M [s(u)]
� � [s(u)]

eiL
Ru

0 � � [s(u0)]du0
du (3.14)

where the upper bound of the integral can be extended to +1 since � � [s(u0)] =

2k + 2i� (u) is itself complex owing to the absorption pro�le� = � 0s(u) within the

\PML" region. Using this fact with slight rearrangement of the terms, we arrive at:

cr (L) �
Z 1

0

s0(u) M [s(u)]
� � [s(u)]

iL � � [s(u)]
d
du

h
eiL

Ru
0 � � [s(u0)]du

i
du: (3.15)

Equation (3.15) is now in the standard form of
R

udv = uv �
R

vdu and after one

iteration of integration by parts becomes:

cr (L) =
s0(u) M [s(u)]

� � [s(u)]

iL � � [s(u0)]
eiL

Ru
0 � � [s(u0)]du j10+ �

Z 1

0

"
s0(u) M [s(u)]

� � [s(u)]

iL � � [s(u0)]

#0

eiL
Ru

0 � � [s(u0)]du : (3.16)

The �rst term with integral bounds is zero ass0(0+ ) = 0 on the left boundary and

exponentially approaches zero on the right boundary. This iteration repeats until a

discontinuity is reached whens(d)(0+ ) 6= 0 resulting in:

cr (L) =
s(d)(0+ ) M (0+ )

� � (0+ )

[� iL � � (0+ )]d + O
�

1
L (d+1)

�
: (3.17)
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3.7.3 Adiabatic theorems in discrete systems

There is one thing missing from the above analysis, and that is the discretized-space

adiabatic case. In a slowly varying discrete system [i.e, sampling some slow change

sn = s(n� x=L) as L grows larger], there is still a proof of the adiabatic theorem

(cr ! 0), but the only published proof is currently for the lossless case (unitary evo-

lution) [61]. Also, an analogous integral form of the lowest-order re
ection has not

been presented, nor has the rate of convergence to the adiabatic limit been analyzed

in the discrete case. So, our prediction of the asymptotic convergence rate is rigor-

ously proven only for the case of the continuous-space wave propagation. However,

our numerical results demonstrate that a slowly-changing discretized system exhibits

exactly the same scaling (e.g. in the PML case for uniform media, where the only

re
ections are due to discretization). (This seems analogous to the fact that the dis-

cretization error of a discrete Fourier transform converges at the same rate as the

decay of the coe�cients of the continuous-space Fourier series [26].) In future work,

we hope to further validate our numerical result for the convergence rate in discretized

space with a proper generalization of the coupled-mode analysis.

3.8 Towards Better Absorbers

From the previous section, there is a close relationship between the smoothness of

the absorption pro�le and the asymptotic convergence rate of the re
ections R(L)

as a function of absorber thicknessL: if the pro�le s(u) has a discontinuity in the

d-th derivative (e.g. for s = ud), then the re
ection coe�cient goes as 1=L2d+2 for a

�xed round-trip re
ection. This result raises several interesting questions. Can one

do better than polynomial convergence? What is the optimal shapes(u)? And what

if the round-trip re
ection is not �xed?
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Figure 3-9: Re
ectivity vs. PML thickness L for 1d vacuum (blue circles) at a
resolution of 50pixels=� , and for pPML thickness L in the 1d periodic medium of
Fig. 3-6 (red squares) with perioda at a resolution of 50pixels=a with a wavevector
kx = 0:9�=a (vacuum wavelength � = 0:9597a. In both cases, aC1 (in�nitely
di�erentiable) shape function s(u) = e1� 1=u for u > 0 is used, leading to asymptotic
convergence ase� �

p
L for some constants� .
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Figure 3-10: Re
ectivity vs. PML thickness L for two di�erent absorber pro�les
in the 1d uniform medium of Fig. 3-5 at a resolution of 50pixels=� . In both cases,
a C1 (in�nitely di�erentiable) shape function is used, leading to asymptotic expo-
nential convergence but the blue curve has a slightly lower constant factor since it
approximates a quadratic taper pro�le for small taper lengths.
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Figure 3-11: Re
ectivity vs. pPML thicknessL for two di�erent absorber pro�les in
the 1d periodic medium of Fig. 3-6 with a wavevectorkx = 0:9�=a (vacuum wave-
length � = 0:9597a at a resolution of 50pixels=� . In both cases, aC1 (in�nitely di�er-
entiable) shape function is used, leading to asymptotic exponential convergence but
the blue curve has a slightly lower constant factor since it approximates a quadratic
taper pro�le for small taper lengths.
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Figure 3-12: Re
ectivity vs. pPML thicknessL for two di�erent absorber pro�les in
the 2d periodic medium of Fig. 3-8 consisting of a square lattice of square air holes
in " = 12 with period a, at a resolution of 10pixels=a with a vacuum wavelength
� = 0:6667a (not in a band gap). Right inset: < [Ez] �eld pattern for the (point)
source at the origin (blue/white/red = positive/zero/negative). In both cases, aC1

(in�nitely di�erentiable) shape function is used, leading to asymptotic exponential
convergence but the blue curve has a slightly lower constantfactor since it approxi-
mates a quadratic taper pro�le for small taper lengths.
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3.8.1 Smoothness & C1 functions

The above result relating smoothness and convergence has a natural corollary: if s(u)

is C1 , i.e. all of its derivatives are continuous, then the re
ection goes to zero faster

than any polynomial in 1=L. This is similar to a well-known result for the conver-

gence of Fourier series ofC1 functions [26]; the exact rate of faster-than-polynomial

convergence again depends on the strongest singularity ins(u). For example, for

s(u) = (tanh( u) + 1) =2, which goes exponentially to zero asu ! �1 and to one

as u ! + 1 , the re
ection should decrease exponentially withL, as determined by

contour integration from the residue of the pole atu = � i�= 2 that is closest to the

real axis (similar to the analysis for the convergence of a Fourier series for an analytic

function [26,63]). However, such an absorption taper wouldrequire an in�nitely thick

absorber in order to avoid discontinuously truncating the exponential tail of tanh(u).

To have aC1 function with a �nite absorber, with s(u) = 0 for u � 0, the s(u) func-

tion must be non-analytic; a standard example of such a function is s(u) = e1� 1=u

for u > 0 (all of whose derivatives go to zero asu ! 0+ , where there is an essential

singularity). Becauses(u) = e1� 1=u is C1 , its re
ection R(L) must decrease faster

than any polynomial. Exactly how much faster than polynomial is determined by

asymptotically evaluating the integral of eq. (3.12) by a saddle-point method [27,37]:

the result is that R(L) decays asymptotically ase� �
p

L for some constant� > 0 [27].

This is con�rmed by Fig. 3-9, which plots the PML/pPML re
ect ion for the 1d uni-

form and periodic cases on a semilog scale versus
p

L, and results clearly approach a

straight line as expected.

Although s(u) = e1� 1=u yields an exponential convergence of the absorption in

Fig. 3-9, the constant factor and the exponential rate are almost certainly suboptimal

for this arbitrary choice of C1 function. If we compare Fig. 3-9 to Fig. 3-5 for the

uniform case and Fig. 3-6 for the periodic case, we see that this C1 s(u) is superior

to the polynomial s(u) for the periodic case where PML is not perfect, but inferiorfor

the uniform case until the re
ection becomes inconsequential (� 10� 20). This is still

a useful result in the sense that one mainly needs to improve pPML for the periodic
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case, whereas PML is already good enough for uniform media. However, one would

ideally prefer a shape function that is consistently betterthan the polynomial s(u),

regardless of the dielectric function, so further exploration of the space of possible

absorption pro�les seems warranted. A possibility here would be to design a custom

absorber pro�le with optimal performance that combines thesuperior constant factor

of quadratic absorbers at short taper lengths with the exponential convergence of

C1 absorber at long taper lengths. The functions(u) = u(e�u � 1)=(e� � 1) where

� = 2L0:5 is such a function and its performance is demonstrated for 1duniform (see

Fig. 3-10), 1d periodic (see Fig. 3-11) and 2d periodic media(see Fig. 3-12) comparing

to the simple C1 pro�le s(u) = u1� 1=u. In all three examples, the constant factor of

the more complicated custom absorber pro�le is lower for small taper lengths (since

it approximates a simple quadratic pro�le in this regime) while both absorber pro�les

clearly demonstrate the exponential convergence as the taper length is increased. This

is just a simple demonstration of the utility of custom absorber pro�les for adiabatic

tapers and we hope further research will continue to improvetheir properties.

3.8.2 Balancing round-trip & transition re
ections

Finally, in the above analysis we �xed the round-trip re
ection R0, via the estimate

of eq. (3.8), to approximately 10� 25 in order for our calculations to isolate the e�ect

of the transition re
ection. Obviously, in a real application, one is unlikely to require

such low re
ections and one will setR0 to a larger value, corresponding to a larger

� 0 � ln R0 in eq. (3.10). This will also reduce the transition re
ection [as seen from

eq. (3.13)], but only by a logarithmic constant factor. The best choice to minimize

re
ection for a given absorber length, in principle, is to set R0 to be roughly equal

to the transition re
ection for that length. (Another reason to make them equal

is the possibility of destructive interference between theround-trip and transition

re
ection [109], but such destructive interference is inherently restricted to narrow

bandwidths and ranges of incident angles and so we do not concern ourselves with

this possibility.) In order to make them roughly equal, one needs an estimate of the

transition re
ection; for example, one could simply numerically �t the power law of
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Figure 3-13: Re
ectivity vs. PML thickness L for 1d vacuum (inset) at a resolution
of 50pixels=� for s(u) = u2, with the round-trip re
ection either set to R0 = 10� 16

(upper blue line) or set to match the estimated transition re
ection from Fig. 3-5
(lower red line). By matching the round-trip re
ection R0 to the estimated transition
re
ection, one can obtain a substantial reduction in the constant factor of the total
re
ection, although the asymptotic power law is only changed by a lnL factor.
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eq. (3.13). The result of such matching is shown in Fig. 3-13 for a quadratic pro�le

s(u) = u2 in 1d uniform media, and the overall re
ection is reduced by afactor of

3{400 compared to a �xed R0 = 10� 16. This is a signi�cant reduction, but is not

overwhelming (especially for smallerL) and changes the asymptotic convergence rate

eq. (3.13) only by a factor of lnR0 � ln L. The drawback of this optimization is that

it is di�cult to determine the transition re
ection analyti cally for inhomogeneous

media, and so one is generally forced to make a conservative estimate of R0, which

reduces the advantage gained.

3.9 Conclusion

Perfectly matched layers are an extraordinarily powerful technique to absorb waves

incident on the boundaries of wave-equation simulation, but they are not a panacea.

In particular, for cases such as photonic crystals where themedium is not analytic in

the direction perpendicular to the boundary, the fundamental coordinate-stretching

idea behind PML breaks down, and the interface has intrinsicre
ections (even for

simple 1d cases with only normal-incident non-evanescent waves). However, one can

still obtain small re
ections by gradually ramping up the \pseudo-PML" (pPML)

absorption, similar to the idea behind the quadratic PML pro�les commonly used

to circumvent discretization-based re
ections in uniformmedia, forming an adiabatic

absorber. In fact, for both cases (pPML in periodic media andPML in discretized

uniform media), we show that the basic mechanism behind the re
ection is deter-

mined in the same way by the smoothness of the absorption pro�le, which can be

predicted analytically by coupled-mode theory. More generally, an adiabatic absorber

is applicable in any situation where a true PML is inconvenient or impossible to im-

plement.

The same theory then predicts that anexponential absorber, one whose re
ections

decrease exponentially with some power of the absorber thicknessL, is possible, for

example by using an in�nitely di�erentiable absorption pro�le. (In contrast, ordinary

PML in a uniform medium with a quadratic pro�le is not an exponential absorber: its
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numerical-discretization re
ections decrease as 1=L6.) We gave a simpleC1 example

pro�le that led to such exponential absorption, but much future work remains to

be done in identifying pro�les with both exponential absorption and good constant

factors. In particular, one possibility that we will examine in a subsequent manuscript

is an absorption pro�le whose smoothness increases withL, so that it matches simple

quadratic pro�les for small L but becomes exponentially smoother with largeL.

(Such L-varying pro�les require a more careful convergence analysis, however, in

order to ensure that they approach the adiabatic zero-re
ection limit. A closely

related mathematical idea is explored in Ref. 27.)
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Chapter 4

A simple validation scheme for

perfectly matched layers

4.1 Summary

We introduce a numerical method to verify the correctness ofperfectly matched layer

(PML) absorbing boundaries. Our method is straightforwardand can be applied

to any PML regardless of implementation. To demonstrate itsutility, we derive a

correct uniaxial-PML formulation for lossless, non-dispersive, anisotropic media for

the �nite-di�erence time-domain (FDTD) method. Our formul ation consists of at

most four auxiliary variables and is as computationally e�cient in storage as previous

implementations based on the split-�eld approach. We numerically verify the validity

of our method and also demonstrate that certain previously reported formulations

are incorrect.

4.2 Overview

We introduce an e�cient numerical method to verify the correctness of the perfectly

matched layer (PML) irrespective of the details of its implementation. Our method

is both simple and intuitive, consisting of two parts: the �rst requires that re
ections

from the PML boundaries reduce to zero in the limit of increasing resolution and
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the second shows the re
ection decreasing with absorber thicknessL proportional to

some characteristic power law determined by the smoothness(e.g. 1=L6 for quadratic

absorption) when the round-trip re
ection is �xed [177]. This method is then used

to demonstrate the failure of at least one previously published proposal for PML in

anisotropic media. We then derive our own e�cient formulation for an anisotropic

absorber for anisotropic media and verify its correctness with this approach.

A perfectly matched layer (PML) is an arti�cial absorbing medium that is com-

monly used to truncate computational grids for simulating wave equations (e.g.

Maxwell's equations), and is designed to have the property that interfaces between

the PML and adjacent media are re
ectionless in the exact wave equation [17, 215].

There are several nearly equivalent formulations of PML. Berenger's original formu-

lation [17] split the wave solution into the sum of two new arti�cial �eld components,

which while e�ective as a numerical method for absorbing incident waves neverthe-

less does not reveal physical insights into its operation orconnection with Maxwell's

equations. Moreover implementation of split-�eld PMLs typically requires labori-

ously computing the solution for a planewave incident on theabsorber interface at

an arbitrary angle and polarization, and then solving for the conditions in which the

re
ection is always zero [74,179].

A more common \UPML" (uniaxial-PML) formulation expressesthe PML region

as the ordinary wave equation with a combination of arti�cial anisotropic absorb-

ing materials [75, 197, 215, 221]. This modi�cation of the permittivity and perme-

ability material parameters, as Ward and Pendry clari�ed [230], is equivalent to a

co-ordinate transformation of Maxwell's equations. In thecase of the UPML, this

\stretched-coordinate" corresponds to an analytic continuation of real space into the

complex plane where oscillating �elds become exponentially decaying [40, 189, 220].

UPML's principal advantage over split-�eld PML is that it is based on the unmodi�ed

Maxwell's equations (the absorption appearing as anisotropic material tensors or �cti-

tious conductivity absorbers) which makes implementationin numerical code straight-

forward. Several attempts have been made at UPML formulations for anisotropic

materials [141,219,220,222,253] yet some, we will argue, are incorrect as we demon-
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strate analytically and con�rm with a numerical experiment while others lack the

full details of an FDTD implementation. Certain authors have proposed \material-

independent PMLs" containing conductivities� D and � B (instead of � E and � H ) in

the split-�eld [252, 254] and UPML [228, 253] formulations while failing to recognize

in the derivation equations that the Jacobian stretch matrices and full anisotropic

material (" or mu) tensors do not commute.

To illustrate the failure of incorrect PML formulations in anisotropic media, we

�rst consider a frequency-domain simulation with a planewave expansion method

(PWFD) solved with an iterative bi-conjugate gradient algorithm [13] in two dimen-

sions (2d). Given a point dipole source at the center of the cell, we then wish to

compute the re
ection coe�cient from a surrounding absorber of thickness L as a

function of both L and resolution. De�ning a single \re
ection" coe�cient is d i�cult

because the point source emits waves at multiple angles, so instead we look at the

convergence of the electric �eld by de�ning a�eld convergence factor

jE (L +1)
z (x; y) � E (L )

z (x; y)j2

jE (L )
z (x; y)j2

(4.1)

in terms of the electric �eld Ez at a point (x; y) (chosen directly adjacent to the

absorbing layer) for two PML thicknessesL + 1 and L (L = 1 in this example). This

di�erence should go to zero as both resolution increases andL ! 1 for a true PML,

assuming that the re
ection goes to zero in this limit (and hence the �eld converges

to the solution for open boundaries).

Figure 4-1 shows the results of these two-dimensional PWFD simulations for uni-

form isotropic (" = 10) and anisotropic (" chosen to be a random positive-de�nite

symmetric matrix with eigenvalues [8.4896, 8.7820, 11.5210])) media; the di�erence

between a correct PML and an incorrect Z-PML (from Ref. 253) or non-PML (con-

ductivity absorber for the electric �eld only) is stark. In the correct PML formulation

for isotropic and anisotropic media, the re
ection from theboundaries rapidly goes

to zero as resolution is increased, whereas the Z- and non- PML absorbers asymptote

to a constant nonzero re
ection.
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Figure 4-1: Results from 2d PWFD showing �eld convergence factor (a proxy for the
re
ection coe�cient) versus resolution in pixels=� v for both isotropic and anisotropic
media with PML, Z-PML (from Ref. 253) and non-PML (conductivity absorber in
electric �eld) absorbing boundaries. For the anisotropic medium, Z-PML fails to
be re
ectionless in the limit of high resolution. Inset: Ez �eld pro�le of a point
source at the center of the 2d computational cell surroundedby absorbing material
(blue/white/red = positive/zero/negative).

The inability to detect the failure of the Z-PML is a result of a common testing

procedure used by many researchers in the past who proposed various PML for-

mulations. The dominant veri�cation method typically consisted of computing low

re
ections from the PML absorbing regions as a function of the wave incident angle or

�xed position in the non-absorbing region of the computational cell. Unfortunately,

this method is not a su�cient condition to verify a true PML. T he key numerical

test to determine whether any absorber is a true PML, as just demonstrated, is to

show that re
ections from the absorbing region decrease to zero with increasing res-

olution. In other words, in the limit as the discretized waveequation approaches a

continuum, the re
ections must reduce to zero (corresponding to that of a true PML

in a non-discretized system).
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Figure 4-2: Results from 2d PWFD simulation showing �eld convergence factor
(� re
ection=L2) vs. absorber thickness in units of vacuum wavelength (L=� v) for
anisotropic media at a resolution of 9pixels=� v for various polynomial absorber func-
tions s(u) ranging from linear [s(u) = u] in blue to cubic [s(u) = u3] in green. As
the absorber becomes thicker and the absorption is turned onmore gradually, re-

ection goes to zero via the adiabatic theorem. For reference, the corresponding
asymptotic power laws are shown as dashed lines. Fixing the round-trip re
ection
yields similar scaling relationships and values between the three types of absorbers.
Inset: < [Ez] �eld pattern for the (point) source at the center (blue/white/red =
positive/zero/negative).

Additionally, any absorber whether a PML or conductivity absorber for one �eld

having �xed round-trip re
ection, shows a characteristic scaling of the transition

re
ections from the absorbing region with absorber length set by the smoothness

of the polynomial absorption pro�le (i.e., 1=L2d+4 for a s(u) = ud pro�le using the

�eld convergence factor of eq. (4.1) [177]). The reason for this is that all transition

re
ections can be understood via the same coupled-mode mechanism, and the 1=L8

rate is a consequence of the second-derivative discontinuity in s(u) = u2 [177]. Any

proposed PML formulation that satis�es both conditions is then guaranteed to be a

true PML.
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4.3 PML formulation for lossless, non-dispersive,

anisotropic media

We now present our implementation of UPML absorbing boundary layers for FDTD

simulations. It is assumed that the reader is already familiar with the basic stretched-

coordinate derivation of PML, as well as the general technique by which a coordinate

transformation can be expressed as a transformation of" and � (see Appendix of

Ref. 124), leading to the so-called \UPML" formulation. Theformulation presented

below has been implemented in our popular free software package for FDTD [176].

The subtlety is that the transformations/materials of PML are frequency-dependent,

and so to express them in time domain involves the evolution of appropriate auxil-

iary di�erential equations. (Equivalently, multiplicati on by a frequency-dependent

susceptibility corresponds in the time domain to a convolution, leading to so-called

\convolutional PML" formulations [192].) The emphasis is on keeping the number of

auxiliary di�erential equations (and the resulting memory and computational costs)

to a minimum, while not making the PML region too complicatedcompared to the

non-PML regions.

Because the treatment of" and � are identical except for interchange ofD with

B and E with H (and a sign 
ip from Ampere's to Faraday's law), we only describe

the " and dD =dt equations (Ampere's law) here.

We proceed slightly di�erently from the UPML as derived in e.g. the Ta
ove and

Hagness FDTD textbook [215]. As reviewed in the appendix, this \standard" UPML

performs a matrix factorization that relies on" commuting with the PML Jacobian,

and this is not the case for an arbitrary anisotropic" . Our factorization, instead,

works for anisotropic" , and turns out to have a nice property: the PML just adds

two auxiliary �elds U and W with diagonal relationships to D and E, and allow

us to use the non-PML timestepping operationsunchangedexcept for the addition

of these diagonal ODE updates. In particular, we get a true PML for anisotropic,

dispersive, media \for free" in the sense that the code for those portions is unchanged

(although the case of conducting media necessitates an extra auxiliary �eld [139]).
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Figure 4-3: Results from 2d FDTD simulations showing �eld convergence fac-
tor eq. (4.1) vs. absorber thickness in units of vacuum wavelength (L=� v) for
anisotropic media at a resolution of 20pixels=� v for various polynomial absorber func-
tions s(u) ranging from linear [s(u) = u] in blue to [s(u) = u3] in green. Left inset:
�eld convergence factor versus resolution in pixels=� v showing correct PML scaling
relationship. Top right inset: < [Ez] �eld pattern snapshot in time for the (point)
source at the center (blue/white/red = positive/zero/negative).

This is nice because the timestepping for anisotropic mediarequires special care for

stability, and dispersive media may have complicated polarization-update equations,

and this way we don't need to modify any of that in the slightest for the PML.

Our approach also makes a clean separation between theD update equation (from

r� H ) and terms that a�ect the E update equation (from the constitutive equations),

and correspondingly in the Meep code these are handled separately in step db and

update eh, respectively.
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4.4 Non-PML materials in Meep

In Meep [176], we support dispersive media"(! ) of the form:

"(! ) =
�

1 +
i� D

!

�
["1 + � E (! )] ;

where � D is a conductivity (which may be anisotropic, but must be diagonal in

Cartesian coordinates and hence commutes withJ ), "1 is a non-dispersive part of

the permittivity (which may be non-diagonal anisotropic) and � E (! ) is some ad-

ditional dispersive part (possibly anisotropic) implemented by auxiliary ODEs that

solveP = � (! )E (currently, a sum of Lorentzians). This corresponds, in time-domain,

to Ampere's law of the form:

K = r � H =
@D
@t

+ � D D ; (4.2)

denoting r � H by K for later convenience, and a constitutive equation

D = "1 E + P;

whereP is time-evolved via a system of ODEs derived fromP = � (! )E. (We don't

include free currentsJ here, since they have no impact on the PML equations, and

indeed one rarely puts free currents inside the PML anyway.)

In FDTD, we discretize these in space and time. Let us denote the time dis-

cretization by a superscript: D n denotesD (n� t), and similarly for Pn and En . The

magnetic �elds are o�set in time by half a time step, givingH n+0 :5 and K n+0 :5. To

time-step these �elds in FDTD, we �rst compute D n+1 from D n and K n+0 :5 by the

curl equation, then computeEn+1 from D n+1 and Pn+1 by the constitutive equation,

and �nally compute Pn+2 . (Note that, with Lorentzian dispersion, we can compute

Pn+2 from Pn+1 and Pn given En+1 .

Using the standard second-order center-di�erence approximations, the equation
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for D becomes:

K n+0 :5 =
D n+1 � D n

� t
+ � D

D n+1 + D n

2
;

giving

D n+1 =
�

1 +
� D � t

2

� � 1 ��
1 �

� D � t
2

�
D n + K n+0 :5

�
: (4.3)

The constitutive equation is simply:

En+1 = " � 1
1

�
D n+1 � Pn+1

�
: (4.4)

(This is nontrivial to implement correctly for anisotropic media [235], and the details

have been covered in Ch. 2.5.)

4.5 PML formulation in frequency domain

PML is simplest to derive in frequency domain, where the �elds all have time-

dependencee� i!t . An ordinary PML in Cartesian coordinates is derived by a complex

coordinate stretching, where each coordinate is stretchedby a factor

sx;y;z = 1 +
i� x;y;z

!
;

where! is the frequency and� is the PML \conductivity." For example, to terminate

the cell in the x direction, only � x is nonzero. These coordinate stretchings can be

absorbed into Maxwell's equations as a change in" and � . The original permittivity

" in the PML region is replaced by an e�ective tensor ~" given by

~" =
J "J T

det J
;

whereJ = diag(s� 1
x ; s� 1

y ; s� 1
z ) is the Jacobian matrix of the coordinate stretching.
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In frequency domain, replacing"(! ) with ~", eq. (4.2) becomes:

K = r� H = � i!s xsysz

�
1 +

i� D

!

�

0

B
B
B
@

s� 1
x

s� 1
y

s� 1
z

1

C
C
C
A

["1 + � E (! )]

0

B
B
B
@

s� 1
x

s� 1
y

s� 1
z

1

C
C
C
A

E:

(4.5)

Although this is straightforward to implement in frequencydomain, where one"(! )

is as good as another, in the time domain a frequency-dependent term requires care.

In time-domain, a frequency-dependent term can be thought of as a convolution with

a �lter (hence the viewpoint of a \convolutional PML" adopted by some authors),

where in the language of signal-processing we wish to �nd a stable recursive �lter to

implement this convolution with as few taps as possible (to minimize the memory and

computational burden). Equivalently, the frequency dependence may be implemented

by auxiliary ordinary di�erential equations (discretized ODE = recursive �lter) . The

most convenient ODEs to discretize are �rst-order ODEs. Forexample, a = sb =

(1 + i�=! )b gives � i!a = � i!b + �b , which corresponds to the �rst-order ODE
da
dt = db

dt + �b .

So, before we proceed to time domain, we want tofactorize eq. (4.17) into terms

with only one factor of s (or �=! ) each (or ratios of singles factors). In doing so, we

are free to change the de�nition ofD and introduce new auxiliary �elds as desired,

since the �elds in the PML region are not physical. A key trickis the factorization:

sxsysz

0

B
B
B
@

s� 1
x

s� 1
y

s� 1
z

1

C
C
C
A

=

0

B
B
B
@

sy

sz

sx

1

C
C
C
A

0

B
B
B
@

sz

sx

sy

1

C
C
C
A

:

Using this factorization, and de�ning new auxiliary �elds, C, U , and W , we can

factorize eq. (4.17) into the following equivalent form (giving the same relationship

betweenH and E):

K = r � H = � i!
�

1 +
i� D

!

�
C (4.6)
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U =

0

B
B
B
@

s� 1
y

s� 1
z

s� 1
x

1

C
C
C
A

C (4.7)

D =

0

B
B
B
@

s� 1
z

s� 1
x

s� 1
y

1

C
C
C
A

U (4.8)

W = " � 1
1 (D � P) (4.9)

P = � E (! )W (4.10)

E =

0

B
B
B
@

sx

sy

sz

1

C
C
C
A

W (4.11)

4.6 PML formulation in time domain

Given eqs. (4.6{4.11), a time-domain formulation is now easy because each equation

only includes �rst-order factors in ! (corresponding to �rst-order time derivatives).

Moreover, all of the nontrivial equations, namely (4.6), (4.9), and (4.10), areexactly

the same as in the non-PML case, meaning that we can useexactly the same code

except passing new �eldsC and W instead of D and E. The other equations are

diagonal ODEs that are trivial to implement. It may seem wasteful to have three

new auxiliary �elds, but in many cases they can be omitted: except in corners of the

computational cell, one has PML only in one direction that only one component of

sx;y;z is 6= 1, and in these cases one need only store one component ofU and one

component ofW (with the other components replaced byD and E, respectively);C

can be omitted in non-conducting materials (� D = 0).

For completeness, we write out the equations here, in the order that they would be

evaluated. TheC update from eq. (4.6) is identical to theD timestep from eq. (4.12)

Cn+1 =
�

1 +
� D � t

2

� � 1 ��
1 �

� D � t
2

�
Cn + K n+0 :5

�
: (4.12)
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Each componentUk of U is updated from the corresponding component ofC by the

ODE dUk=dt + � k+1 Uk = dCk=dt (where � k� 1 is interpreted as a cyclic shift, e.g.

� y+1 = � z, � z+1 = � x ), giving:

Un+1
k

�
1 +

� k+1 � t
2

� � 1 ��
1 �

� k+1 � t
2

�
Un

k + Cn
k � Cn� 1

k

�
: (4.13)

Each component ofD is then updated from the corresponding component ofU by

the ODE dDk=dt + � k� 1Dk = dUk=dt, giving:

D n+1
k

�
1 +

� k� 1� t
2

� � 1 ��
1 �

� k� 1� t
2

�
D n

k + Un
k � Un� 1

k

�
: (4.14)

W is then updated fromD � P exactly as in eq. (4.15):

W n+1 = " � 1
1

�
D n+1 � Pn+1

�
: (4.15)

Then, each component ofE is updated from each component ofW by the ODE

dEk=dt = dWk=dt + � kWk , giving:

E n+1
k = E n

k +
�

1 +
� k � t

2

�
W n+1

k �
�

1 �
� k � t

2

�
W n

k : (4.16)

Finally, Pn+2 is computed usingP = � E (! )W , exactly as for the non-PML case (but

with W replacingE).

Note that, in order to avoid having to save the �elds from the previous timestep

in yet more auxiliary arrays, theC, U , and D updates [eqs. (4.12{4.14)] have to be

performed in a single loop body, while theW and E updates [eqs. (4.15{4.16)] must

be performed in another single loop body. [One cannot easilymerge the two loops

because the o�diagonal anisotropic terms in" � 1
1 combined with the staggered Yee grid

mean that eq. (4.15) is e�ectively nonlocal in space, requiring D n+1 components at

several spatial points to determineW n+1 . Separating the two loops has the additional

advantage that it reduces the combinatorial explosion of the number of material cases

that must be handled.]
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4.7 Review of isotropic, nondispersive PML

In this appendix, we review the standard \textbook" UPML for isotropic nondisper-

sive media as found in, for example, Ta
ove and Hagness [215]. It is important to

distinguish mere di�erences in notation (the derivation inT&H is far less compact

than the one here) from substantive di�erences, and in particular the usual UPML

corresponds to a di�erent factorization of eq. (4.17) than ours. This textbook formu-

lation only works for isotropic (or at least diagonal)" , because it assumes that an

arbitrary diagonal matrix commutes with " .

In particular, dropping the � D and � E terms (assuming nondispersive media), the

textbook PML formulation corresponds to the following refactorization of eq. (4.17):

K = r � H = � i!

0

B
B
B
@

sy

sz

sx

1

C
C
C
A

"1

0

B
B
B
@

sz
sx

sx
sy

sy

sz

1

C
C
C
A

E: (4.17)

This then factorizes into two equations:

K = r � H = � i!

0

B
B
B
@

sy

sz

sx

1

C
C
C
A

D ;

E = " � 1
1

0

B
B
B
@

sx
sz

sy

sx

sz
sy

1

C
C
C
A

D :

The former discretizes similarly to eq. (4.3), with the PML� y;z;x taking the place of

� D , and the latter turns into the ODE dEk=dt+ � k� 1Ek = " � 1
1 [dDk=dt+ � kDk ] which

is easily discretized.

Only two �elds need be stored: D and E. If a conductivity � D (or similar) is

included, however, one needs an additional auxiliary �eldC (or similar). It turns out

that the case of a dispersiveP = � E (! )E can also be handled with no additional
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storage compared to the non-PML case, at least for a Lorentzian � E that requires

both Pn+1 and Pn to be stored anyway. So, the main cost of the Meep formulationis

that two additional auxiliary �elds U and W must be stored in the PML; however,

this is actually only a slight additional burden in storage since for most PML regions

only one component ofU and W actually must be stored (see above). The main

problem with the textbook implementation is that it fails for anisotropic media (even

if one naively plugs a tensor" � 1
1 into the E update, the re
ection will not go to zero

with increasing resolution). This is especially importantgiven the fact that, even for

nominally isotropic media, accurate subpixel averaging requires the discretization to

use e�ective anisotropic media at material boundaries.

4.8 Concluding remarks

We have demonstrated a straightforward method to verify thecorrectness of any PML

formulation. Our approach consists of two parts. The �rst test involves computing

the quantity known as the �eld convergence factor, related to the re
ection from an

absorbing boundary, as a function of the resolution of the discrete computational

grid. A correct PML, equivalent to a complex co-ordinate stretching of real space,

has re
ections that decrease to zero with increasing resolution. Any violation of this

property indicates a non-PML absorber. The second test consists of analyzing the

transition re
ections that arise for waves entering the absorbing regions when the

absorber's round-trip re
ection is �xed. All absorbers with the round-trip re
ection

properly set will show identical scaling relationships of the re
ection with absorber

length based on the smoothness of the absorber pro�le. We demonstrated the utility

of this method in showing that at least one previously proposed PML formulation

for anisotropic media was incorrect. We then derived our ownPML formulation and

veri�ed its correctness using this scheme. The deeper analytical insights into the

PML that these �ndings provide should now enable researchers to correctly develop

PML for a number of di�erent media and co-ordinate systems with ease.
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Chapter 5

Meep: A 
exible free-software

package

for electromagnetic simulations by

the FDTD method

5.1 Summary

This chapter describes Meep, a popular free implementationof the �nite-di�erence

time-domain (FDTD) method for simulating electromagnetism. In particular, we

focus on aspects of implementing a full-featured FDTD package that go beyond stan-

dard textbook descriptions of the algorithm, or ways in which Meep di�ers from

typical FDTD implementations. These include pervasive interpolation and accurate

modelling of subpixel features, advanced signal processing, support for nonlinear ma-

terials via Pad�e approximants, and 
exible scripting capabilities.

Program Summary

Program title: Meep

Program summary URL: http://ab-initio.mit.edu/meep

Licensing provisions: GNU GPL

No. of lines in distributed program, including test data, etc: 58000
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No. of bytes in distributed program, including test data, etc: 734K

Distribution format: tar.gz

Programming language:C++

Computer: any computer with a Unix-like system and a C++ compiler; opti onally exploits

additional free software packages: GNU Guile [1], libctl interface library [2], HDF5 [3], MPI

message-passing interface [4], and Harminv �lter-diagonalization [5]. Developed on 2.8 GHz

Intel Core 2 Duo.

Operating system: any Unix-like system; developed under Debian GNU/Linux 5.0.2

RAM: problem dependent (roughly 100 bytes per pixel/voxel)

Classi�cation: Electrostatics and Electromagnetics

External routines/libraries: optionally exploits additional free software packages: GNU

Guile [1], libctl interface library [2], HDF5 [3], MPI message-passing interface [4], and

Harminv �lter-diagonalization [5] (which requires LAPACK and BLAS linear-algebra soft-

ware [6]).

Nature of problem: classical electrodynamics

Solution method: �nite-di�erence time-domain (FDTD) method

Running time: problem dependent (typically about 10 ns per pixel per timestep)

References:

1. GNU Guile, http://www.gnu.org/software/guile

2. Libctl, http://ab-initio.mit.edu/libctl

3. M. Folk, R.E. McGrath, N. Yeager, HDF: An update and future directions, in: Proc.

1999 Geoscience and Remote Sensing Symposium (IGARSS), Hamburg, Germany,

vol. 1, IEEE Press, 273{275, 1999.

4. T.M. Forum, MPI: A Message Passing Interface, in: Supercomputing '93, Portland,

OR, 878{883, 1993.

5. Harminv, http://ab-initio.mit.edu/harminv

6. LAPACK, http://www.netlib.org/lapack/lug
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5.2 Overview

One of the most common computational tools in classical electromagnetism is the

�nite-di�erence time-domain (FDTD) algorithm, which divi des space and time into a

regular grid and simulates the time evolution of Maxwell's equations [64,127,212,215,

248]. This chapter describes our free, open-source implementation of the FDTD algo-

rithm: Meep (an acronym forMIT Electromagnetic Equation Propagation), available

online at http://ab-initio.mit.edu/meep . Meep is full-featured, including, for ex-

ample: arbitrary anisotropic, nonlinear, and dispersive electric and magnetic media;

a variety of boundary conditions including symmetries and perfectly matched layers

(PML); distributed-memory parallelism; Cartesian (1d/2d/3d) and cylindrical coor-

dinates; and 
exible output and �eld computations. It also includes some unusual

features, such as advanced signal processing to analyze resonant modes, accurate

subpixel averaging, a frequency-domain solver that exploits the time-domain code,

complete scriptability, and integrated optimization facilities. Here, rather than re-

view the well-known FDTD algorithm itself (which is thoroughly covered elsewhere),

we focus on the particular design decisions that went into the development of Meep

whose motivation may not be apparent from textbook FDTD descriptions, the ten-

sion between abstraction and performance in FDTD implementations, and the unique

or unusual features of our software.

Why implement yet another FDTD program? Literally dozens ofcommercial

FDTD software packages are available for purchase, but the needs of research often

demand the 
exibility provided by access to the source code (and relaxed licensing

constraints to speed porting to new clusters and supercomputers). Our interactions

with other photonics researchers suggest that many groups end up developing their

own FDTD code to serve their needs (our own groups have used atleast three distinct

in-house FDTD implementations over the past15 years), a duplication of e�ort that

seems wasteful. Most of these are not released to the public,and the handful of

other free-software FDTD programs that could be downloadedwhen Meep was �rst

released in2006were not nearly full-featured enough for our purposes. Since then,
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Meep has been cited in over100 journal publications and has been downloaded over

10,000times, rea�rming the demand for such a package.

FDTD algorithms are, of course, only one of many numerical tools that have been

developed in computational electromagnetism, and may perhaps seem primitive in

light of other sophisticated techniques, such as �nite-element methods (FEMs) with

high-order accuracy and/or adaptive unstructured meshes [98,198,245], or even radi-

cally di�erent approaches such as boundary-element methods (BEMs) that discretize

only interfaces between homogeneous materials rather thanvolumes [25,41,188,225].

Each tool, of course, has its strengths and weaknesses, and we do not believe that any

single one is a panacea. The nonuniform unstructured grids of FEMs, for example,

have compelling advantages for metallic structures where micrometer wavelengths

may be paired with nanometer skin depths. On the other hand, this 
exibility comes

at a price of substantial software complexity, which may notbe worthwhile for dielec-

tric devices at infrared wavelengths (such as in integratedoptics or �bers) where the

refractive index (and hence the typical resolution required) varies by less than a factor

of four between materials, while small features such as surface roughness can be ac-

curately handled by perturbative techniques [105]. BEMs, based on integral-equation

formulations of electromagnetism, are especially powerful for scattering problems in-

volving small objects in a large volume, since the volume need not be discretized and

no arti�cial \absorbing boundaries" are needed. On the other hand, BEMs have a

number of limitations: they may still require arti�cial absorbers for interfaces extend-

ing to in�nity (such as input/output waveguides) [250]; any change to the Green's

function (such as introduction of anisotropic materials, imposition of periodic or sym-

metry boundary conditions, or a switch from three to two dimensions) requires re-

implementation of large portions of the software (e.g. singular panel integrations

and fast solvers) rather than purely local changes as in FDTDor FEM; continuously

varying (as opposed to piecewise-constant) materials are ine�cient; and solution in

the time domain (rather than frequency domain, which is inadequate for nonlinear or

active systems in which frequency is not conserved) with BEMrequires an expensive

solver that is nonlocal in time as well as in space [25]. And then, of course, there are
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specialized tools that solve only a particular type of electromagnetic problem, such as

our own MPB software that only computes eigenmodes (e.g. waveguide modes) [107],

which are powerful and robust within their domain but are nota substitute for a

general-purpose Maxwell simulation. FDTD has the advantages of simplicity, gen-

erality, and robustness: it is straightforward to implement the full time-dependent

Maxwell equations for nearly arbitrary materials (including nonlinear, anisotropic,

dispersive, and time-varying materials) and a wide varietyof boundary conditions,

one can quickly experiment with new physics coupled to Maxwell's equations (such

as populations of excited atoms for lasing [19, 35, 89, 167, 257]), and the algorithm is

easily parallelized to run on clusters or supercomputers. This simplicity is especially

attractive to researchers whose primary concern is investigating new interactions of

physical processes, and for whom programmer time and the training of new students

is far more expensive than computer time.

The starting point for any FDTD solver is the time-derivative parts of Maxwell's

equations, which in their simplest form can be written:

@B
@t

= �r � E � JB (5.1)

@D
@t

= + r � H � J; (5.2)

where (respectively)E and H are the macroscopic electric and magnetic �elds,D and

B are the electric displacement and magnetic induction �elds[94], J is the electric-

charge current density, andJB is a �ctitious magnetic-charge current density (some-

times convenient in calculations, e.g. for magnetic-dipole sources). In time-domain

calculations, one typically solves the initial-value problem where the �elds and cur-

rents are zero fort < 0, and then nonzero values evolve in response to some currents

J(x; t) and/or JB (x; t). (In contrast, a frequency-domainsolver assumes a time de-

pendence ofe� i!t for all currents and �elds, and solves the resulting linear equations

for the steady-state response or eigenmodes [99, app. D].) We prefer to use dimen-

sionless units"0 = � 0 = c = 1. From our perspective, this choice emphasizes both the

scale invariance of Maxwell's equations [99, chap. 2] and also the fact that the most
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meaningful quantities to calculate are almost always dimensionless ratios (such as

scattered power over incident power, or wavelength over some characteristic length-

scale). The user can pick any desired unit of distancea (either an SI unit such as

a = 1 � m or some typical lengthscale of a given problem), and all distances are given

in units of a, all times in units of a=c, and all frequencies in units ofc=a. In a linear

dispersionless medium, the constituent relations areD = "E and B = � H , where "

and � are the relative permittivity and permeability (possibly tensors); the case of

nonlinear and/or dispersive media (including conductivities) is discussed further in

Ch. 5.6.

The remaining chapter is organized as follows. Chapter 5.3 gives a brief history

of Meep's development. In Ch. 5.4, we discuss the discretization and coordinate

system; in addition to the standard Yee discretization [215], this raises the question

of how exactly the grid is described and divided into \chunks" for parallelization,

PML, and other purposes. Chapter 5.5 describes a central principle of Meep's design,

pervasive interpolationproviding (as much as possible) the illusion of continuity in the

speci�cation of sources, materials, outputs, and so on. This led to the development of

several techniques unique to Meep, such as a scheme for subpixel material averaging

designed to eliminate the �rst-order error usually associated with averaging techniques

or stairstepping of interfaces. In Ch. 5.6, we describe and motivate our techniques

for implementing nonlinear and dispersive materials, including a slightly unusual

method to implement nonlinear materials using a Pad�e approximant that eliminates

the need to solve cubic equations for every pixel. Chapter 5.7 describes how typical

computations are performed in Meep, such as memory-e�cienttransmission spectra

or sophisticated analysis of resonant modes via harmonic inversion. This section also

describes how we have adapted the time-domain code, almost without modi�cation,

to solve frequency-domain problems with much faster convergence to the steady-

state response than merely time-stepping. The user interface of Meep is discussed

in Ch. 5.8, explaining the considerations that led us to a scripting interface (rather

than a GUI or CAD interface). Chapter 5.9 describes some of the tradeo�s between

performance and generality in this type of code and the speci�c compromises chosen
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in Meep. Finally, we make some concluding remarks in Ch. 5.10.

5.3 Development History

Prior to Meep, the Ab Initio physics group of Professor John Joannopoulos had

been using a custom-built FDTD software program written in Fortran by Shanhui

Fan (with contributions from other group members includingChiyan Luo) known as

\TD3D". This code, as its name implies supported only 3d simulations, was used

extensively in the early years of the group's photonic crystal research throughout the

1990s and early 2000s. However its in
exible user interfaceand unsuitability for sim-

ulating other co-ordinate systems, particularly cylindrical, was becoming increasingly

evident as the research frontier evolved towards more exotic material systems as well

as larger and more complicated geometries. In early 2003, David Roundy, then a

postdoctoral researcher in the Joannopoulos group, initiated a new FDTD software

program written from scratch in C++ known as \Dactyl" as it wa s originally designed

to perform simulations in only 2d and cylindrical co-ordinates. David was soon joined

by graduate students Mihai Ibanescu and Peter Bermel working together to expand

its features to include polarization �elds to model dispersive dielectrics, third-order

Kerr nonlinearities, split-�eld perfectly matched layers, various symmetry and bound-

ary conditions with a C++ object-oriented interface. At the time, David, Mihai and

Peter were primarily interested in simulating �ber structures that required cylindrical

co-ordinates and so this was where the initial emphasis was placed. The notion of

pervasive interpolation to create an illusion of continuity for the end user was �rst

conceived by David Roundy and made into a central design philosophy of the code.

Steven Johnson became involved in this nascent project latein 2003 and provided a

loop-in-chunks routine that greatly simpli�ed calculations involving �elds that were

spread out arbitrarily over the computational cell, parallelization of the code using

chunks and a Scheme front-end interface that was bolted on from another electro-

magnetics software he had developed (MPB). I started working on Meep soon after

joining the group in Fall 2004 following FDTD research at theIBM Almaden Research
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Center under the guidance of Dr. Geo�rey W. Burr and have beenresponsible for:

implementing the subpixel averaging algorithm, implementing anisotropic permittiv-

ity and permeability, implementing second-order Pockel'snonlinearity, rewriting the

entire time stepping portion of the code for improved stability and to replace the

original unwieldy Haskell generated �les, implementing uniaxial-PML to replace the

split-�eld PML, implementing the frequency-domain solveramong many other �xes

and improvements. The code, now renamed as Meep, gradually evolved to include

more functionality and was released as open-source software in April 2006. The latest

release of Meep is currently version 1.1 and the project continues to mature with an

expanded feature set that now includes more than just classical electromagnetism

but also quantum Casimir phenomena through the work of Alejandro Rodriguez-

Wong and Alexander McCauley. Meep has now been made into standard Debian

and Ubuntu packages and several researchers at Moscow StateUniversity and Ghent

University have developed their own freely available Python interface. I am con�dent

that Meep will continue to be enhanced well into the future toentail an even broader

set of physical phenomena in optics-related research.

5.4 Grids and Boundary Conditions

The starting point for the FDTD algorithm is the discretization of space and time

into a grid. In particular, Meep uses the standardYee grid discretization which stag-

gers the electric and magnetic �elds in time and in space, with each �eld component

sampled at di�erent spatial locations o�set by half a pixel, allowing the time and

space derivatives to be formulated as center-di�erence approximations [246]. This

much is common to nearly every FDTD implementation and is described in detail

elsewhere [215]. In order to parallelize Meep, e�ciently support simulations with

symmetries, and to e�ciently store auxiliary �elds only in certain regions (for PML

absorbing layers), Meep further divides the grid intochunksthat are joined together

into an arbitrary topology via boundary conditions. (In the future, di�erent chunks

may have di�erent resolutions to implement a nonuniform grid [18, 117, 173, 258]).
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Furthermore, we distinguish two coordinate systems: one consisting of integer co-

ordinates on the Yee grid, and one of continuous coordinatesin \physical" space

that are interpolated as necessary onto the grid (see Ch. 5.5). This section describes

those concepts as they are implemented in Meep, as they form afoundation for the

remaining sections and the overall design of the Meep software.

5.4.1 Coordinates and grids

The two spatial coordinate systems in Meep are described by the vec, a continuous

vector in Rd (in d dimensions), and theivec , an integer-valued vector inZd describing

locations on the Yee grid. Ifn is an ivec , the correspondingvec is given by 0:5� xn,

where � x is the spatial resolution (the same alongx, y, and z)|that is, the integer

coordinates in anivec correspond tohalf -pixels, as shown in the right panel of Fig. 5-

1. This is to represent locations on the spatial Yee grid, which o�sets di�erent �eld

components in space by half a pixel as shown (in 2d) in the right panel of Fig. 5-1.

In 3d, the Ex and Dx components are sampled ativec s (2̀ + 1; 2m; 2n), Ey and Dy

are sampled ativec s (2̀ ; 2m + 1; 2n), and so on;Hx and Bx are sampled ativec s

(2`; 2m + 1; 2n + 1), Hy and By are sampled ativec s (2̀ + 1; 2m; 2n + 1), and so

on. In addition to these grids for the di�erent �eld components, we also occasionally

refer to the centeredgrid, at odd ivec s (2̀ + 1; 2m + 1; 2n + 1) corresponding to the

\center" of each pixel. (The origin of the coordinate systems is an arbitrary ivec

that can be set by the user, but is typically the center of the computational volume.)

The philosophy of Meep, as described in Ch. 5.5, is that as much as possible the

user should be concerned only with continuous physical coordinates (vecs), and the

interpolation/discretization onto ivec s occurs internally as transparently as possible.

5.4.2 Grid chunks and owned points

An FDTD simulation must occur within a �nite volume of space, the computational

cell, terminated with some boundary conditions and possibly by absorbing PML re-

gions as described below. This (rectilinear) computational cell, however, is further
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Figure 5-1: The computational cell is divided into chunks (left) that have a one-
pixel overlap (gray regions). Each chunk (right) represents a portion of the Yee grid,
partitioned into owned points (chunk interior) and not-owned points (gray regions
around the chunk edges) that are determined from other chunks and/or via boundary
conditions. Every point in the interior of the computational cell is owned by exactly
one chunk, the chunk responsible for timestepping that point.

subdivided into convex rectilinearchunks. On a parallel computer, for example,

di�erent chunks may be stored at di�erent processors. In order to simplify the cal-

culations for each chunk, we employ the common technique of padding each chunk

with extra \boundary" pixels that store the boundary values [137] (shown as gray

regions in Fig. 5-1)|this means that the chunks are overlapping in the interior of

the computational cell, where the overlaps require communication to synchronize the

values.

More precisely, the grid points in each chunk are partitioned into ownedand not-

owned points. The not-owned points are determined by communication with other

chunks and/or by boundary conditions. Theowned points are time-stepped within

the chunk, independently of the other chunks (and possibly in parallel), and every

grid point inside the computational cell is owned by exactlyone chunk.

The question then arises: how do we decide which points within the chunk are

owned? In order for a grid point to be owned, the chunk must contain all the infor-

mation necessary for timestepping that point (once the not-owned points have been
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communicated). For example, for aDy point (2`; 2m + 1; 2n) to be owned, theHz

points at (2` � 1; 2m + 1; 2n) must both be in the chunk in order to computer � H

for timestepping D at that point. This means that the Dy points along the left

(minimum-x) edge of the chunk (as shown in the right panel of Fig. 5-1)cannot be

owned: there is noHz point to the left of it. An additional dependency is imposed

by the case of anisotropic media: if there is an" xy coupling Ex to Dy , then updating

Ex at (2` +1; 2m; 2n) requires the fourDy values at (2̀ +1 � 1; 2m � 1; 2n) (these are

the surrounding Dy values, as seen in the right panel of Fig. 5-1). This means that

the Ex (and Dx ) points along theright (maximum-x) edge of the chunk (as shown in

the right panel of Fig. 5-1) cannot be owned either: there is no Dy point to the right

of it. Similarly for r � D and anisotropic� .

All of these considerations result in the shaded-gray region of Fig. 5-1(right) being

not-owned. That is, if the chunk intersectsk+1 pixels along a given direction starting

at an ivec coordinate of 0 (e.g.k = 5 in Fig. 5-1), the endpoint ivec coordinates

0 and 2k + 1 are not-owned and the interior coordinates from 1 to 2k (inclusive) are

owned.

5.4.3 Boundary conditions and symmetries

All of the not-owned points in a chunk must be determined by boundary conditions

of some sort. The simplest boundary conditions are when the not-owned points are

owned by some other chunk, in which case the values are simplycopied from that

chunk (possibly requiring communication on a multiprocessor system) each time they

are updated. In order to minimize communications overhead,all communications

between two chunks are batched into a single message (by copying the relevant not-

owned points to/from a contiguous bu�er) rather than sending one message per point

to be copied.

At the edges of the computational cell, some user-selected boundary condition

must be imposed. For example, one can use perfect electric ormagnetic conductors

where the relevant electric/magnetic-�eld components areset to zero at the bound-

aries. One can also use Bloch-periodic boundary conditions, where the �elds on one
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side of the computational cell are copied from the other sideof the computational

cell, optionally multiplied by a complex phase factoreik i � i where ki is the propagation

constant in the ith direction, and � i is the length of the computational cell in the same

direction. Meep doesnot implement any absorbing boundary conditions|absorbing

boundaries are, instead, handled by an arti�cial material,perfectly matched layers

(PML), placed adjacent to the boundaries [215].

Bloch-periodic boundary conditions are useful in periodicsystems [99], but this

is only one example of a useful symmetry that may be exploitedvia boundary con-

ditions. One may also have mirror and rotational symmetries. For example, if the

materials and the �eld sources have a mirror symmetry, one can cut the computa-

tional costs in two by storing chunks only in half the computational cell and applying

mirror boundary conditions to obtain the not-owned pixels adjacent to the mirror

plane. As a more unusual example, consider an S-shaped structure as in Fig. 5-2,

which has no mirror symmetry but is symmetric under 180-degree rotation, calledC2

symmetry [93]. Meep can exploit this case as well (assuming the current sources have

the same symmetry), storing only half of the computational cell as in Fig. 5-2 and

inferring the not-owned values along the dashed line by a 180-degree rotation. (In the

simple case where the stored region is a single chunk, this means that the not-owned

points are determined by owned points in the same chunk, requiring copies, possibly

with sign 
ips.) Depending on the sources, of course, the �elds can be even or odd

under mirror 
ips or C2 rotations [99], so the user can specify an additional sign 
ip

for the transformation of the vector �elds (and pseudovector H and B �elds, which

incur an additional sign 
ip under mirror re
ections [94, 99]). Meep also supports

fourfold rotation symmetry (C4), where the �eld can be multiplied by factors of 1,i ,

� 1, or � i under each 90-degree rotation [93]. (Other rotations, suchas threefold or

sixfold, are not supported because they do not preserve the Cartesian Yee grid.) In

2d, the xy plane is itself a mirror plane (unless in the presence of anisotropic mate-

rials) and the symmetry decouples TE modes (with �elds Ex , Ey, and Hz) from TM

modes (Hx , Hy , and Ez) [99]; in this case Meep only allocates those �elds for which

the corresponding sources are present.
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+ C2 stored

not stored

Figure 5-2: Meep can exploit mirror and rotational symmetries, such as the 180-degree
(C2) rotational symmetry of the S-shaped structure in this schematic example. Al-
though Meep maintains the illusion that the entire structure is stored and simulated,
internally only half of the structure is stored (as shown at right), and the other half
is inferred by rotation. The rotation gives a boundary condition for the not-owned
grid points along the dashed line.

A central principle of Meep is that symmetry optimizations be transparent to the

user once the desired symmetries are speci�ed. Meep maintains the illusion that the

entire computational cell is computed|for example, the �el ds in the entire compu-

tational cell can still be queried or exported to a �le, 
ux planes and similar com-

putations can still extend anywhere within the computational cell, and so on. The

�elds in the non-stored regions are simply computed behind the scenes (without ever

allocating memory for them) by transforming the stored chunks as needed. A key en-

abling factor for maintaining this illusion e�ciently is th e loop-in-chunksabstraction

employed by the Meep code, described in Ch. 5.9.

Meep also supports continuous rotational symmetry around agiven axis, where the

structure is invariant under rotations and the �elds transform aseim� for somem [99],

but this is implemented separately by providing the option to simulate Maxwell's

equations in the (r; z) plane with cylindrical coordinates, for which operators like

r � change form.

5.5 Interpolation and the illusion of continuity

A core design philosophy of Meep is to provide the illusion ofcontinuous space and

time, masking the underlying discretization from the user as much as possible. There
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Figure 5-3: A key principle of Meep is that continuously varying inputs yield contin-
uously varying outputs. Here, an eigenfrequency of a photonic crystal varies continu-
ously with the eccentricity of a dielectric rod, accomplished by subpixel smoothing of
the material parameters, whereas the nonsmoothed result is\stairstepped." Speci�-
cally, the plot shows a TE eigenfrequency of 2d square lattice (period a of dielectric
ellipses ("=12) in air versus one semi-axis diameter of the ellipse (in gradations of
0:005a) for no smoothing (red squares, resolution of 20 pixels/a), subpixel smoothing
(blue circles, resolution of 20 pixels/a) and \exact" results (black line, no smoothing
at resolution of 200 pixels/a)
.

are two components to this approach: the input and the outputs. Continuously

varying inputs, such as the geometry, materials, and the source currents, lead to

continuously varying outputs, as in the example of Fig. 5-3.Similarly, the value

of any �eld (or any function of the �elds) can be output at any point in space or

integrated over any region. Furthermore, the e�ects of these inputs and the resulting

outputs must converge as quickly as possible to the exact solution as the resolution

increases. In this section, we discuss how this illusion of continuity is implemented

for �eld outputs, current inputs, and geometry/materials.

Any �eld component (or any combinations such as 
ux, energy,and user-de�ned

functions) can be evaluated at any point in space. In general, this requires inter-

polation from the Yee grid. Since the underlying FDTD center-di�erence algorithm
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has second-order accuracy, we linearly interpolate �elds as needed (which also has

second-order accuracy for smooth functions). Similarly, we provide an interface to

integrate any function of the �elds over any convex rectilinear region (boxes, planes,

or lines), and the integral is computed by integrating the linear interpolation of the

�elds within the integration region. This is straightforward, but there are two sub-

tleties due to the staggered Yee grid. First, computation ofquantities like E � H that

mix di�erent �eld components requires an additional interpolation: �rst, the �elds

are interpolated onto the centered grid (Ch. 5.4), then the integrand is computed, and

then the linear interpolation of the integrand is integrated over the speci�ed region.

Second, the computation of quantities likeE � H mixes two �elds that are stored at

di�erent times: H is stored at times (n � 0:5)� t, while E is stored at timesn� t [215].

Simply using these time-o�set �elds together is only �rst-order accurate. If second-

order accuracy is desired, Meep provides the option to temporarily synchronize the

electric and magnetic �elds: the magnetic �elds are saved toa backup array, stepped

by � t, and they are averaged with the backup array to obtain the magnetic �elds

at n� t with O(� t2) accuracy. (The �elds are restored from backup before resuming

timestepping.) This restores second-order accuracy at theexpense of an extra half

a timestep's computation, which is usually negligible because such �eld computa-

tions are rarely required at every timestep of a simulation|see Ch. 5.7 for how Meep

performs typical transmission simulations and other calculations e�ciently.

The conceptually reversed process is required for specifying sources: the cur-

rent density is speci�ed at some point (for dipole sources) or in some region (for

distributed current sources) in continuous space, and thenmust be restricted to a

corresponding current source on the Yee grid. Meep performsthis restriction us-

ing exactly the same code (the loop-in-chunks abstraction of Ch. 5.9) and the same

weights as the interpolation procedure above. Mathematically, we are exploiting a

well-known concept (originating in multigrid methods) that restriction can be de-

�ned as the transposeof interpolation [223]. This is illustrated by a 2d example in

Fig. 5-4. Suppose that the bilinear interpolationf (blue) of four grid points (red) is

f = 0:32f 1 + 0:48f 2 + 0:08f 3 + 0:12f 4, which can be viewed as multiplying a vector of
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Figure 5-4: Left: a bilinear interpolation of valuesf 1;2;3;4 on the grid (red) to the
value f at an arbitrary point. Right: the reverse process isrestriction, taking a value
J at an arbitrary point (e.g. a current source) and convertinginto values on the
grid. Restriction can be viewed as the transpose of interpolation and uses the same
coe�cients.
.

those �elds by the row-vector [0:32; 0:48; 0:08; 0:12]. Conversely, if we place a point-

dipole current sourceJ (blue) at the same point, it is restricted on the grid (red) to

values J1 = 0:32J , J2 = 0:48J , J3 = 0:08J , and J4 = 0:12J as shown in Fig. 5-4,

corresponding to multiplying J by the column vector [0:32; 0:48; 0:08; 0:12]T .1 Such

a restriction has the property of preserving the sum (integral) of the currents, and

typically leads to second-order convergence of the resulting �elds as the resolution

increases (see below). An example of the utility of this continuous restriction process

is shown in Fig. 5-5 via the phenomenon of Cerenkov radiation[129]: a point chargeq

moving at a constant velocityv with a magnitude 1:05c=nexceeding the phase velocity

c=n in the medium emits a shockwave-like radiation pattern, andthis can be directly

modelled in Meep by a continuously moving current sourceJ = � vq�(x � v t) [142].

In contrast, pixelizing the motion into discrete jumps to the nearest grid point leads

to visible numerical artifacts in the radiation, as seen in the right panel of Fig. 5-5.

All of the second-order accuracy of FDTD and the above interpolations is gen-

erally spoiled to only �rst-order, however, if one directlydiscretizes a discontinuous

material boundary [57, 69]. Moreover, directly discretizing a discontinuity in " or �

leads to \stairstepped" interfaces that can only be varied in discrete jumps of one

1Technically, for a dipole-current source given by a delta function with amplitude I , the corre-
sponding current density is J = I=� xd in d dimensions.
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v=1.05 c/n (0.35 pixels/Dt)

v

Figure 5-5: Cerenkov radiation emitted by a point charge moving at a speed
v = 1:05c=n exceeding the phase velocity of light in a homogeneous medium of in-
dex n=1.5. Thanks to Meep's interpolation (or technically restriction ), the smooth
motion of the source current (left panel) can be expressed ascontinuously varying
currents on the grid, whereas the non-smooth pixelized motion (no interpolation)
(right panel) reveals high-frequency numerical artifactsof the discretization (counter-
propagating wavefronts behind the moving charge).

pixel at a time. Both of these problems are solved in Meep by using an appropri-

ate subpixel smoothing of" and � : before discretizing, discontinuities are smoothed

into continuous transitions over a distance of one pixel �x, using a carefully de-

signed averaging procedure. Any subpixel smoothing technique will achieve the goal

of continuously varying results as the geometry is continuously varied. In the case

of Meep this is illustrated by Fig. 5-3: in a 2d photonic crystal (square lattice of

dielectric rods), the lowest TE-polarization eigenfrequency (computed as in Ch. 5.7)

varies continuously with the eccentricity of the elliptical rods for subpixel averaging,

whereas the nonaveraged discontinuous discretization produces a stairstepped dis-

continuous eigenfrequency. On the other hand, most subpixel smoothing techniques

will not increase the accuracy of FDTD|on the contrary, smoothing discontinuous

interfaces changes the structure, and generally introduces additional error into the

simulation [69]. In order to design an accurate smoothing technique, we exploited

recent results in perturbation theory that show how a particular subpixel smooth-
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Figure 5-6: Appropriate subpixel averaging canincreasethe accuracy of FDTD with
discontinuous materials [69,175]. Here, relative error �!=! (comparing to the \exact"
! 0 from a planewave calculation [107]) for an eigenmode calculation (as in Ch. 5.7)
for a cubic lattice (period a) of 3d anisotropic-" ellipsoids (right inset) versus spa-
tial resolution (units of pixels per vacuum wavelength� ), for a variety of subpixel
smoothing techniques. Straight lines for perfect linear (black dashed) and perfect
quadratic (black solid) convergence are shown for reference. Most curves are for the
�rst eigenvalue band (left inset showsEx in xy cross-section of unit cell), with vac-
uum wavelength� = 5:15a. Hollow squares show Meep's method for band 13 (middle
inset), with � = 2:52a. Meep's method for bands 1 and 13 is shown for resolutions
up to 100 pixels/a.

ing can be chosen to yield zero �rst-order error [69, 105, 124, 175]. The results are

shown in Fig. 5-6 and Fig. 5-7: for both computation of the eigenfrequencies (of an

anisotropic photonic crystal) in Fig. 5-6 and the scattering loss from a bump on a strip

waveguide in Fig. 5-7, the errors in Meep's results decreasequadratically [O(� x2)],

whereas doing no averaging leads to erratic linear convergence [O(� x)]. Furthermore,

Fig. 5-6 compares to other subpixel-averaging schemes, including the obvious strategy

of simply averaging" within each pixel [56], and shows that they lead to �rst-order

convergence no better than no averaging at all.

The subpixel averaging is discussed in more detail elsewhere [69, 124, 175], so we
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only brie
y summarize it here. In order for the smoothing to yield zero �rst-order

perturbation, the smoothing scheme must be anisotropic. Even if the initial interface

is between isotropic materials, one obtains a tensor" (or � ) which uses the mean" for

�elds parallel to the interface and the harmonic mean (inverse of mean of" � 1) for �elds

perpendicular to the interface|this was initially proposed heuristically [153] and

later shown to be justi�ed via perturbation theory [69, 105]. (If the initial materials

are anisotropic, a more complicated formula is needed [124,175].) The key point

is that, even if the physical structure consists entirely ofisotropic materials, the

discretized structure will use anisotropic materials. Stable simulation of anisotropic

media requires an FDTD variant recently proposed in Ref. 235.

There are a few limitations to this subpixel averaging. First, the case of perfect

metals requires a di�erent approach [6, 158] that is not yet implemented in Meep.

Although Meep does not yet implement subpixel averaging fordispersive materials,
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there is numerical evidence that similar accuracy improvements are obtained in that

case by the same technique [54], and we suspect that a similarderivation can be ap-

plied (using the unconjugated form of perturbation theory for the complex-symmetric

Maxwell equations in reciprocal media with losses [133]. Second, once the smoothing

eliminates the �rst-order error, the presence of sharp corners (associated with �eld sin-

gularities) introduce an error intermediate between �rst-and second-order [69], which

we hope to address in future work. Third, the �elds directlyon the interface are still

at best �rst-order accurate even with subpixel smoothing|however, these localized

errors are equivalent to currents that radiate zero power to�rst order [108,124]. The

improved accuracy from smoothing is therefore obtained for�elds evaluated o� of the

interface as in scattered 
ux integrated over a surface awayfrom the interface (Fig. 5-

7), for nonlocal properties like resonant frequencies and eigenfrequencies (Fig. 5-6),

and for overall integrals of �elds and energies [to which theinterface contributes only

O(� x) of the integration domain and hence �rst-order errors on the interface have a

second-order e�ect].

5.6 Materials

Time-dependent methods for electromagnetism, given theirgenerality, allow for the

simulation of a broad range of material systems. Certain classes of materials, par-

ticularly active and nonlinear materials which do not conserve frequency, are ide-

ally suited for modelling by such methods. Materials are represented in Maxwell's

equations (5.1) and (5.2) via the relative permittivity " (x) and permeability � (x)

which in general depend on position, frequency (material dispersion) and the �elds

themselves (nonlinearities). Meep currently supports arbitrary anisotropic material

tensors, anisotropic dispersive materials (Lorentz{Drude models and conductivities,

both magnetic and electric), and nonlinear materials (bothsecond- and third-order

nonlinearities), which taken together permit investigations of a wide range of physical

phenomena. The implementation of these materials in Meep ismostly based on stan-

dard techniques [215], so we will focus here on two places where Meep di�ers from
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Figure 5-8: The performance of a quasi-PML in the radial direction (cylindrical co-
ordinates, left panel) at a resolution 20 pixels=� is nearly equivalent to that of a true
PML (in Cartesian coordinates, right panel). The plot showsthe di�erence in the
electric �eld Ez (insets) from a point source between simulations with PML thickness
L and L + 1, which is a simple proxy for the PML re
ections [177]. The di�erent
curves are for PML conductivities that turn on as (x=L)d for d = 1; 2; 3 in the PML,
leading to di�erent rates of convergence of the re
ection [177].

the usual approach. For nonlinearities, we use a Pad�e approximant to avoid solving

cubic equations at each step. For PML absorbing media in cylindrical coordinates,

we only use a \quasi-PML" [138] based on a Cartesian PML, but explain why its

performance is comparable to a true PML while requiring lesscomputational e�ort.

5.6.1 Nonlinear materials

Optical nonlinearities arise when large �eld intensities induce changes in the local"

or � to produce a number of interesting e�ects: temporal and spatial soliton propa-

gation, optical bistability, self-focusing of optical beams, second- and third-harmonic

generation, and many other e�ects [2,24]. Such materials are usually described by a

power-series expansion ofD in terms of E and various susceptibilities. In many com-

mon materials, or when considering phenomena in a su�ciently narrow bandwidth
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(such as the resonantly enhanced nonlinear e�ects [194] well-suited to FDTD calcula-

tions), these nonlinear susceptibilities can be accurately approximated via nondisper-

sive (instantaneous) e�ects [28]. Meep supports instantaneous isotropic (or diagonal

anisotropic) nonlinear e�ects of the form:

D i � Pi = " (1) E i + � (2)
i E 2

i + � (3)
i jEj2E i ; (5.3)

where " (1) represents all the linear nondispersive terms andPi is a dispersive polar-

ization P = � (1)
dispersive(! )E from dispersive materials such as Lorentz media [215]. (A

similar equation relatesB and H .) Implementing this equation directly, however,

would require one to solve a cubic equation at each time step [215, sec. 9.6], sinceD

is updated fromr � H before updatingE from D .

However, eq. (5.3) is merely a power series approximation for the true material

response, valid for su�ciently small �eld intensities, so it is not necessary to insist

that it be solved exactly. Instead, we approximate the solution of eq. (5.3) by a Pad�e

approximant [11], which matches the \exact" cubic solutionto high-order accuracy

by the rational function:

E i =

2

4
1 +

�
� (2)

[" (1) ]2
~D i

�
+ 2

�
� (3)

[" (1) ]3 k ~D k2
�

1 + 2
�

� (2)

[" (1) ]2
~D i

�
+ 3

�
� (3)

[" (1) ]3 k ~D k2
�

3

5
�
" (1)

� � 1 ~D i ; (5.4)

where ~D i = D i � Pi . For the case of isotropic" (1) and � (2) = 0, so that we have a

purely Kerr (� (3) ) material, this matches the \exact" cubic E to O(D 7) error. With

� (2) 6= 0, the error is O(D 4).

For more complicated dispersive nonlinear media or for arbitrary anisotropy in

� (2) or � (3) , one approach that Meep may implement in the future is to incorporate

the nonlinear terms in the auxiliary di�erential equationsfor a Lorentz medium [215].
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5.6.2 Absorbing boundary layers: PML, pseudo-PML, and

quasi-PML

A perfectly matched layer (PML) is an arti�cial absorbing medium that is commonly

used to truncate computational grids for simulating wave equations (e.g. Maxwell's

equations), and is designed to have the property that interfaces between the PML

and adjacent media are re
ectionless in the exact wave equation [215]. There are

various interchangeable formulations of PML for FDTD methods [215], which are all

equivalent to a coordinate stretching of Maxwell's equations into complex spatial co-

ordinates; Meep implements a version of the uniaxial PML (UPML), expressing the

PML as an e�ective dispersive anisotropic" and � [215]. Meep provides support for

arbitrary user-speci�ed PML absorption pro�les (which have an important in
uence

on re
ections due to discretization error and other e�ects)for a given round-trip re-


ection (describing the strength of the PML in terms of the amplitude of light passing

through the PML, re
ecting o� the edge of the computational cell, and propagating

back) [177]. For the case of periodic media such as photonic crystals, the medium

is not analytic and the premise of PML's re
ectionless property is violated; in this

case, a \PML" material overlapped with the photonic crystalis only a \pseudo-PML"

that is re
ectionless only in the limit of a su�ciently thick and gradual absorber, and

control over the absorption pro�le is important [177].

For the radial direction in cylindrical coordinates, a truePML can be derived by

coordinate-stretching, but it requires more storage and computational e�ort than the

Cartesian UPML [84, 217], as well as increasing code complexity. Instead, we chose

to implement a quasi-PML [138], which simply consists of using the Cartesian UPML

materials as an approximation for the true radial PML. This approximation becomes

more and more accurate as the outer radius of the computational cell increases, be-

cause the implicit curvature of the PML region decreases with radius and approaches

the Cartesian case. Furthermore, one must recall thatevery PML has re
ections

once space is discretized [215], which can be mitigated by gradually turning on the

PML absorption over a �nite-thickness PML layer. The quasi-PML approximation
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is likewise mitigated by the same gradual absorption pro�le, and the only question is

that of the constant factor in the re
ection convergence: how thick does the quasi-

PML need to be to achieve low re
ections, compared to a true PML? Figure 5-8

shows that, for a typical calculation, the performance of the quasi-PML in cylindri-

cal coordinates (left) is comparable to that of a true PML in Cartesian coordinates

(right). Here, we plot a measure of the re
ection from the PMLas a function of the

PML absorber length L, for a �xed round-trip re
ection [177], using as a measure

of the re
ection the \�eld convergence" factor: the di�erence between theE �eld at

a given point for simulations with PML absorber lengthsL and L + 1. The PML

conductivity � (x) is turned on gradually as (x=L)d for d = 1; 2; 3, and it can be shown

that this leads to re
ections that decrease as 1=L2d+2 and �eld-convergence factors

that decrease as 1=L2d+4 [177]. Precisely these decay rates are observed in Fig. 5-8,

with similar constant coe�cients. As the resolution is increased (approaching the

exact wave equations), the constant coe�cient in the Cartesian PML plot will de-

crease (approaching zero re
ection), while the quasi-PML's constant coe�cient will

saturate at some minimum (corresponding to its �nite re
ectivity in the exact wave

equation for a �xed L). This di�erence seems of little practical concern, however, be-

cause the re
ection from a one-wavelength thick quasi-PML at a moderate resolution

(20 pixels=� ) is already so low.

5.7 Enabling typical computations

Simulating Maxwell's equations in the time domain enables the investigation of prob-

lems inherently involving multiple frequencies, such as nonlinearities and active media.

However, it is also well adapted to solving frequency domainproblems since it can

solve large bandwidths at once, for example analyzing resonant modes or computing

transmission/re
ection spectra. In this section, we describe techniques Meep uses

to e�ciently compute scattering spectra and resonant modesin the time domain.

Furthermore, we describe how the time domain method can be adapted to a purely

frequency domain solver while sharing almost all of the underlying code.

130



5.7.1 Computing 
ux spectra

A principle task of computational time-domain tools are investigations of transmission

or scattering spectra from arbitrary structures, where onewants to compute the

transmitted or scattered power in a particular direction asa function of the frequency

of incident light. One can solve for the power at many frequencies in a single time-

domain simulation by Fourier transforming the response to ashort pulse. Speci�cally,

for a given surfaceS, one wishes to compute the integral of the Poynting 
ux:

P(! ) = <
I

S
E ! (x)� � H ! (x) dA ; (5.5)

whereE ! and H ! are the �elds produced by a source at frequency! , and < denotes

the real part of the expression. The basic idea, in time-domain, is to use a short-pulse

source (covering a wide bandwidth including all frequencies of interest), and compute

E ! and H ! from the Fourier transforms ofE(t) and H (t). There are several di�erent

ways to compute these Fourier transforms. For example, one could store the electric

and magnetic �elds throughout S over all times and at the end of the simulation

perform a discrete-time Fourier transform (DTFT) of the �elds:

E ! =
X

n

ei!n � tE(n� t)� t; (5.6)

for all frequencies (! ) of interest, possibly exploiting a fast Fourier transform(FFT)

algorithm. Such an approach has the following computational cost: for a simulation

having T timesteps, F � T frequencies to compute,NS �elds in the 
ux region

and N pixels in the entire computational cell this approach requires �( N + NST)

storage and �( NT + T logT) time (using a FFT-based chirp-z algorithm [10]).2 The

di�culty with this approach is that if a long simulation (lar geT) is required to obtain

a high frequency resolution by the usual uncertainty relation [174], then the �( NST)

storage requirements for the �eldsE(t) and H (t) at each point in S become excessive.

Instead, Meep accumulates the DTFT summation of the �elds atevery point in

2Here, � has the usual meaning of an asymptotic tight bound [50].
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Figure 5-9: Relative error in the quality factor Q for a photonic-crystal resonant
cavity (inset, period a) with Q � 106, versus simulation time in units of optical
periods of the resonance. Blue circles: �lter-diagonalization method. Red squares:
least-squares �t of energy in cavity to a decaying exponential. Filter-diagonalization
requires many fewer optical periods than the decay timeQ, whereas curve �tting
requires a simulation long enough for the �elds to decay signi�cantly.

S as the simulation progresses; once the time stepping has terminated, eq. (5.5)

can be evaluated using these Fourier-transformed �elds.3 The computational cost

of this approach is �( N + NSF ) storage [much less than �(NST) if F � T] and

�( NT + NSF T) time. Although our current approach works well, another possible

approach that we have been considering is to use Pad�e approximation: one stores the

�elds at every timestep onS, but instead of using the DTFT one constructs a Pad�e

approximant to extrapolate the in�nite-time DTFT from a sho rt time series [79].

This requires �( N + NST) storage (but T is potentially much smaller) andO(NT +

T log2 T) time [31].

3It is tempting to instead accumulate the Fourier transform of the Poynting 
ux at each time,
but this is not correct since the 
ux is not a linear function o f the �elds.
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5.7.2 Analyzing resonant modes

Another major goal of time-domain simulations is analysis of resonant phenomena,

speci�cally by determining the resonant frequency! 0 and the quality factors Q (i.e.,

the number of optical cycles 2�=! 0 for the �eld to decay by e� 2� ) of one or more

resonant modes. One straightforward and common approach tocompute ! 0 and Q

is by computing the DTFT of the �eld at some point in the cavity in response to

a short pulse [215]:! 0 is then the center of a peak in the DTFT and 1=Q is the

fractional width of the peak at half maximum. The problem with this approach is

that the Fourier uncertainty relation (equivalently, spectral leakage from the �nite

time window [174]) means that resolving the peak in this way requires a simulation

much longer thanQ=! 0 (problematic for structures that may have very highQ, even

109 or higher [193]). Alternatively, one can perform a least squares �t of the �eld

time-series within the cavity to an exponentially decayingsinusoid, but this leads to

an ill-conditioned, non-convex, nonlinear �tting problem (and is especially di�cult

if more than one resonant mode may be present). If only a single resonant mode is

present, one can perform a least-squares �t of the energy in the cavity to a decaying

exponential in order to determineQ, but a long simulation is still required to accu-

rately resolve a largeQ (as shown below). A more accurate and e�cient approach,

requiring only a short simulation even for very largeQ values, is the technique of�l-

ter diagonalizationoriginally developed for NMR spectroscopy, which transforms the

time-series data into a small eigenproblem that is solved for all resonant frequencies

and quality factors at once (even for multiple overlapping resonances) [145]. Chap-

ter 16 of Ref. 215 compared the DFT peak-�nding method with �lter-diagonalization

by attempting to resolve two near-degenerate modes in a microcavity, and demon-

strated the latter's ability to accurately resolve closely-spaced peaks with as much as

a factor of �ve times fewer timesteps. Rodriguez et al. [193]have used �lter diag-

onalization to compute quality factors of 108 or more using simulations only a few

hundred optical cycles in length. We quantify the ability of�lter diagonalization to

resolve a largeQ � 106 in Fig. 5-9, comparing the relative error inQ versus simu-
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lation time for �lter diagonalization and the least-squares energy-�t method above.

(The speci�c cavity is formed by a missing rod in a two-dimensional photonic crystal

consisting of a square lattice of dielectric rods in air withperiod a, radius 0:2a, and

" = 12 [99].) Figure 5-9 demonstrates that �lter diagonalization is able to identify

the quality factor using almost an order of magnitude fewer time steps than the curve

�tting method. (Another possible technique to identify resonant modes uses Pad�e

approximants, which can also achieve high accuracy from a short simulation [55,79].)

5.7.3 Frequency-domain solver

A common electromagnetic problem is to �nd the �elds that areproduced in a geom-

etry in response to a source at a single frequency! . In principle, the solution of such

problems need not involve time at all, but involve solving a linear equation purely in

the frequency domain [99, appendix D]; this can be achieved by many methods, such

as �nite-element methods [98,198,245], boundary-elementmethods [25,41,188,225],

or �nite-di�erence frequency-domain methods [44]. However, if one already has a full-

featured parallel FDTD solver, it is attractive to exploit that solver for frequency-

domain problems when they arise. The most straightforward approach is to sim-

ply run a simulation with a constant-frequency source|after a long time, when all

transient e�ects from the source turn-on have disappeared,the result is the desired

frequency-domain response. The di�culty with this approach is that a very long sim-

ulation may be required, especially if long-lived resonantmodes are present at nearby

frequencies (in which case a time� Q=! is required to reach steady state). Instead,

we show how the FDTD time-step can be used to directly plug a frequency-domain

problem into an iterative linear solver, �nding the frequency-domain response in the

equivalent of many fewer timesteps while exploiting the FDTD code almost without

modi�cation.

The central component of any FDTD algorithm is the time step:an operation

that advances the �eld by � t in time. In order to extract a frequency-domain problem

from this operation, we �rst express the timestep as an abstract linear operation: if

f n represents all of the �elds (electric and magnetic) at time step n, then (in a linear
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time-invariant structure) the time step operation can be expressed in the form:

f n+1 = T̂0f n + sn ; (5.7)

where T̂0 is the timestep operator with no sources andsn are the source terms (cur-

rents) from that time step. Now, suppose that one has a time-harmonic source

sn = e� i!n � ts and wish to solve for the resulting time-harmonic (steady state) �elds

f n = e� i!n � t f . Substituting these into eq. (5.7), we obtain the followinglinear equa-

tion for the �eld amplitudes f :

�
T̂0 � e� i! � t

�
f = � s: (5.8)

This can then be solved by an iterative method, and the key fact is that iterative

methods forAx = b only require one to supply a function that multiplies the linear

operator A by a vector [13]. Here,A is represented byT̂0 � e� i! � t and hence one can

simply use a standard iterative method by calling the unmodi�ed timestep function

from FDTD to provide the linear operator. To obtain the proper right-hand side

s, one merely needs to execute a single timestep (5.7), with sources, starting from

zero �eld f = 0. Since in general this linear operator is not Hermitian (especially in

the presence of PML absorbing regions), we employ the BiCGSTAB-L algorithm (a

generalization of the stabilized biconjugate gradient algorithm, where increasing the

integer parameterL trades o� increased storage for faster convergence) [204,205].

This technique means that all of the features implemented inour time-domain

solver (not only arbitrary materials, subpixel averaging,and other physical features,

but also parallelization, visualization, and user-interface features) are immediately

available as a frequency-domain solver. To demonstrate theperformance of this

frequency-domain solver over the straightforward approach of simply running a long

simulation until transients have disappeared, we computedthe root-mean-square er-

ror in the �eld as a function of the number of time steps (or evaluations of T̂0 by

BiCGSTAB-L) for two typical simulations. The �rst simulation, shown in Fig. 5-10,

consists of a point source in vacuum surrounded by PML (inset). The frequency-
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Figure 5-10: Root-mean-square error in �elds in response toa constant-frequency
point source in vacuum (inset), for frequency-domain solver (red squares, adapted
from Meep time-stepping code) vs. time-domain method (bluecircles, running until
transients decay away).

domain solver (red squares) shows rapid, near-exponentialconvergence, while the

error in the time-domain method (blue circles) decreases far more gradually (in fact,

only polynomially). A much more challenging problem is to obtain the frequency-

domain response of a cavity (ring resonator) with multiple long-lived resonant modes:

in the time domain, these modes require a long simulation (� Q) to reach steady

state, whereas in the frequency domain the resonances correspond to poles (near-

zero eigenvalues ofA) that increase the condition number and hence slow conver-

gence [13]. Figure 5-11 shows the results for a ring resonator cavity with multiple

closely-spaced resonant modes, excited at one of the resonant frequencies (inset)|

although both frequency- and time-domain methods take longer to converge than for

the non-resonant case of Fig. 5-10, the advantage of the frequency-domain's expo-

nential convergence is even more clear. The convergence is accelerated in frequency

domain by usingL = 10 (green diamonds) rather thanL = 2 (at the expense of more

136



10
2

10
3

10
4

10
5

10
6

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

time steps or matrix-vector products

R
M

S
 e

rr
or

 in
 fi

el
ds

PML

PML

P
M

LP
M

L

frequency domain 

(L=10)

frequency domain 

(L=2)

time domain 

(width=175 periods)

time domain 

(width=0)

Figure 5-11: Root-mean-square error in �elds in response toa constant-frequency
point source exciting one of several resonant modes of a dielectric ring resonator
(inset, " = 11:56), for frequency-domain solver (red squares, adapted from Meep time-
stepping code) vs. time-domain method (magenta triangles,running until transients
decay away). Green diamonds show frequency-domain BiCGSTAB-L solver for �ve
times more storage, accelerating convergence. Blue circles show time-domain method
for a more gradual turn-on of source, which avoids exciting long-lived resonances at
other frequencies.

storage). In time domain, the convergence is limited by the decay of high-Q modes

at other frequencies, and the impact of these modes can be reduced by turning on

the constant-frequency source more gradually (magenta triangles, hyperbolic-tangent

turn-on of the source over 175 optical periods).

This is by no means the most sophisticated possible frequency-domain solver. For

example, we currently do not use any preconditioner for the iterative scheme [13].

In two dimensions, a sparse-direct solver may be far more e�cient than an itera-

tive scheme [13]. The key point, however, is that programmertime is much more

expensive than computer time, and this technique allows us to obtain substantial

improvements in solving frequency-domain problems with only minimal changes to
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an existing FDTD program.

5.8 User interface and scripting

In designing the style of user interaction in Meep, we were guided by two principles.

First, in research or design one hardly ever needs justone simulation|one almost

always performs a whole series of simulations for a class of related problems, exploring

the parameter dependencies of the results, optimizing someoutput as a function of

the input parameters, or looking at the same geometry under asequence of di�erent

stimuli. Second, there is the Unix philosophy: \Write programs that do one thing

and do it well" [200]|Meep should perform electromagnetic simulations, while for

additional functionality it should be combined with other programs and libraries via

standard interfaces like �les and scripts.

Both of these principles argue against the graphical CAD-style interface common

in commercial FDTD software. First, while graphical interfaces provide a quick and

attractive route to setting up a single simulation, they arenot so convenient for a series

of related simulations. One commonly encounters problems where the size/position of

certain objects is determined by the size/position of otherobjects, where the number

of objects is itself a parameter (such as a photonic-crystalcavity surrounded by a

variable number of periods [99]), where the length of the simulation is controlled by

a complicated function of the �elds, where one output is optimized as a function of

some parameter, and many other situations that become increasingly cumbersome

to express via a set of graphical tools and dialog boxes. Second, we don't want to

write a mediocre CAD program|if we wanted to use a CAD program, we would

use a professional-quality one, export the design to a standard interchange format,

and write a conversion program to turn this format into what Meep expects. The

most 
exible and self-contained interface is, instead, to allow the user to control

the simulation via an arbitrary program. Meep allows this style of interaction at two

levels: via a low-level C++ interface, and via a standard high-level scripting language

(Scheme) implemented by an external library (GNU Guile). The potential slowness
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(set! geometry-lattice  (make lattice ( size 16 8 no-size ))) 
(set! geometry  (list 
                (make block  (center 0 0) ( size infinity 1 ) 
                      (material (make dielectric ( epsilon 12 )))))) 
(set! pml-layers  (list (make pml (thickness 1.0)))) 
 
 
 
 
 
 
 
 
 
 
(set! sources  (list 
               (make source 
                 (src (make continuous-src (frequency 0.15) )) 
                 ( component  Ez) 
                 (center -7 0)))) 
(set! resolution 10) 
(run-until 200 
           (at-beginning output-epsilon ) 
           (at-end output-efield-z )) 
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Figure 5-12: A simple Meep example showing theEz �eld in a dielectric waveg-
uide (" = 12) from a point source at a given frequency. A plot of the resulting
�eld (blue/white/red = positive/zero/negative) is in the b ackground, and in the fore-
ground is the input �le in the high-level scripting interface (the Scheme language).

of the scripting language is irrelevant because all of the expensive parts of the FDTD

calculation are implemented in C/C++.

The high-level scripting interface to Meep is documented indetail, with several

tutorials, on the Meep web page (http://ab-initio.mit.edu/meep ), so we restrict

ourselves to a single short example in order to convey the basic 
avor. This example,

in Fig. 5-12, computes the (2d) �elds in response to a point source located within a

dielectric waveguide. We �rst set the size of the computational cell to 16� 8 (via

geometry-lattice , so-called because it determines the lattice vectors in theperiodic

case)|recall that the interpretation of the unit of distanc e is arbitrary and up to

the user (it could be 16� m � 8� m, in which case the frequency units arec=� m, or

16 mm� 8 mm with frequency units ofc=mm, or any other convenient distance unit).

Let us call this arbitrary unit of distance a. Then we specify the geometry within

the cell as a list of geometric objects like blocks, cylinders, etcetera|in this case by a

single block de�ning the waveguide with" = 12|or optionally by an arbitrary user-

de�ned function "(x; y) (and � , etcetera). A layer of PML is then speci�ed around the
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boundaries with thickness 1; this layer liesinside the computational cell and overlaps

the waveguide, which is necessary in order to absorb waveguide modes when they

reach the edge of the cell. We add a point source, in this case an electric-current

sourceJ in the z direction (sources of arbitrary spatial pro�le can also be speci�ed).

The time-dependence of the source is a sharp turn-on to a continuous-wave source

cos(!t ) at the beginning of the simulation; gradual turn-ons, Gaussian pulses, or

arbitrary user-speci�ed functions of time can also be speci�ed. The frequency is 0:15

in units of c=a, corresponding to a vacuum wavelength� = a=0:15 (e.g. � � 6:67� m

if a = 1 � m). We set the resolution to 10 pixels per unit distance (10 pixels/a), so

that the entire computational cell is 160� 80 pixels, and then run for 200 time units

(units of a=c), corresponding to 200� 0:15 = 30 optical periods. We output the

dielectric function at the beginning, and theEz �eld at the end.

In keeping with the Unix philosophy, Meep is not a plotting program; instead, it

outputs �elds and related data to the standard HDF5 format for scienti�c datasets [71],

which can be read by many other programs and visualized in various ways. (We also

provide a way to e�ectively \pipe" the HDF5 output to an exter nal program within

Meep: for example, to output the HDF5 �le, convert it immediately to an image

with a plotting program, and then delete the HDF5 �le; this is especially useful for

producing animations consisting of hundreds of frames.)

Another important technique to maintain 
exibility is that of higher-order func-

tions [1]: wherever it is practical, our functions take functions as arguments instead

of (or in addition to) numbers. Thus, for example, instead ofspecifying special in-

put codes for all possible source distributions in space andtime, we simply allow

a user-de�ned function to be used. More subtly, the arguments output-epsilon

and output-efield-z to the run-until function in Fig. 5-12 are actually functions

themselves: we allow the user to pass arbitrary \step functions" to run-until that

are called after every FDTD timestep and which can perform arbitrary computations

on the �elds as desired (or halt the computation if a desired condition is reached).

The output-efield-z is simply a prede�ned step function that outputsEz. These

step-functions can be modi�ed by transformation functionslike at-end , which take
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step functions as arguments and return a new step function that only calls the origi-

nal step functions at speci�ed times (at the end of the simulation, or the beginning,

or at certain intervals, for example). In this way, great 
exibility in the output and

computations is achieved. One can, for example, output a given �eld component

only at certain time intervals after a given time, and only within a certain subvolume

or slice of the computational cell, simply by composing several of these transforma-

tions. One can even output an arbitrary user-de�ned function of the �elds instead of

predetermined components.

There is an additional subtlety when it comes to �eld output,because of the Yee

lattice in which di�erent �eld components are stored at di�erent points; presented

in this way to the user, it would be di�cult to perform post-pr ocessing involving

multiple �eld components, or even to compare plots of di�erent �eld components.

As mentioned in Ch. 5.5 and again in Ch. 5.9.2, therefore, the�eld components are

automatically interpolated from the Yee grid onto a �xed \centered" grid in each

pixel when exported to a �le.

Although at a simplistic level the input format can just be considered as a �le

format with a lot of parentheses, because Scheme is a full-
edged programming lan-

guage one can control the simulation in essentially arbitrary ways. Not only can one

write loops and use arithmetic to de�ne the geometry and the relationships between

the objects or perform parameter sweeps, but we also expose external libraries for

multivariable optimization, integration, root-�nding, a nd other tasks in order that

they can be coupled with simulations.

Parallelism is completely transparent to the user: exactlythe same input script is

fed to the parallel version of Meep (written with the MPI message-passing standard

for distributed-memory parallelism [72]) as to the serial version, and the distribution

of the data across processors and the collection of results is handled automatically.

141



5.9 Abstraction versus performance

In an FDTD simulation, essentially just one thing has to be fast: inner loops over all

the grid points or some large fraction thereof. Everything else is negligible in terms of

computation time (but not programmer time!), so it can use high-level abstractions

without penalty|for example, the use of a Scheme interpreter as the user interface

has no performance consequences for a typical computation,because the inner loops

are not written in Scheme.4 For these inner loops, however, there is a distinct tension

between abstraction (or simplicity) and performance, and in this section we discuss

some of the tradeo�s that result from this tension and the choices that have been

made in Meep.

The primacy of inner loops means that some popular principles of abstraction

must be discarded. A few years ago, a colleague of ours attempted to write a new

FDTD program in textbook object-oriented C++ style: every pixel in the grid would

be an object, and every type of material would be a subclass overriding the necessary

timestepping and �eld-access operations. Timestepping would consist of looping over

the grid, calling some \step" method of each object, so that objects of di�erent ma-

terials (magnetic, dielectric, nonlinear etcetera) woulddynamically apply the corre-

sponding �eld-update procedures. The result of this noble experiment was a working

program but a performance failure, many times slower than the aging Fortran soft-

ware it was intended to replace: the performance overhead ofobject dereferencing,

virtual method dispatch, and function calls in the inner loop overwhelmed all other

considerations. In Meep, each �eld's components are storedas simple linear arrays of


oating-point numbers in row-major (C) order (parallel-array data structures worthy

of Fortran 66), and there are separate inner loops for each type of material (more on

this below). In a simple experiment on a 2.8 GHz Intel Core 2 CPU, merely moving

the if statements for the di�erent material types into these innerloops decreased

4The exception to this rule is when the user supplies a Scheme function and asks that it be
evaluated for every grid point, for example to integrate some function of the �elds. If this is done
frequently during the simulation, it is slow; in these circumstances, however, the user can replace
the Scheme function with one written in C/C++ if needed. This is rare because most such functions
that might be used frequently during a simulation, such as energy or 
ux, are already supplied in
C/C++ within Meep.

142



Meep's performance by a factor of two in a typical 3d calculation and and by a fac-

tor of six in 2d (where the calculations are simpler and hencethe overhead of the

conditionals is more signi�cant). The cost of the conditionals, including the cost of

mispredicted branches and subsequent pipeline stalls [85]along with the frustration of

compiler unrolling and vectorization, easily overwhelmedthe small cost of computing,

e.g., r � H at a single point.

5.9.1 Timestepping and cache tradeo�s

One of the dominant factors in performance on modern computer systems is not

arithmetic, but memory: random memory access is far slower than arithmetic, and

the organization of memory into a hierarchy of caches is designed to favor locality

of access [85]. That is, one should organize the computationso that as much work

as possible is done with a given datum once it is fetched (temporal locality) and so

that subsequent data that are read or written are located nearby in memory (spatial

locality). The optimal strategies to exploit both kinds of locality, however, appear

to lead to sacri�ces of abstraction and code simplicity so severe that we have chosen

instead to sacri�ce some potential performance in the name of simplicity.

As it is typically described, the FDTD algorithm has very little temporal locality:

the �eld at each point is advanced in time by � t, and then is not modi�ed again

until all the �elds at every other point in the computational cell have been advanced.

In order to gain temporal locality, one must employasynchronous timestepping: es-

sentially, points in small regions of space are advanced several steps in time before

advancing points far away, since over a short time interval the e�ects of far-away

points cannot cannot be felt. A detailed analysis of the characteristics of this prob-

lem, as well as a beautiful \cache-oblivious" algorithm that automatically exploits

a cache of any size for grids of any dimensionality, is described in Ref. 73. On the

other hand, an important part of Meep's usability is the abstraction that the user can

perform arbitrary computations or output using the �elds in any spatial region at any

time, which seems incompatible with the �elds at di�erent points in space being out-

of-sync until a predetermined end of the computation. The bookkeeping di�culty of

143



reconciling these two viewpoints led us to reject the asynchronous approach, despite

its potential bene�ts.

However, there may appear to be at least a small amount of temporal locality

in the synchronous FDTD algorithm: �rst B is advanced fromr � E, then H is

computed from B and � , then D is advanced fromr � H , then E is computed

from D and ". Since most �elds are used at least once after they are advanced,

surely the updates of the di�erent �elds can be merged into a single loop, for example

advancingD at a point and then immediately computingE at the same point|the

D �eld need not even be stored. Furthermore, since by merging the updates one is

accessing several �elds around the same point at the same time, perhaps one can gain

spatial locality by interleaving the data, say by storing an array of(E; H ; "; � ) tuples

instead of separate arrays. Meep does not do either of these things, however, for two

reasons, the �rst of which is more fundamental. As is well-known, one cannot easily

merge theB and H updates with the D and E updates at the same point, because

the discretizedr � operation is nonlocal (involves multiple grid points)|thi s is why

one normally updatesH everywhere in space before updatingD from r� H , because

in computing r � H one uses the values ofH at di�erent grid points and all of them

must be in sync. A similar reasoning, however, applies to updating E from D and

H from B, once the possibility of anisotropic materials is included|because the Yee

grid stores di�erent �eld components at di�erent locations, any accurate handling of

o�-diagonal susceptibilities must also inevitably involve �elds at multiple points (as

in Ref. 235). To handle this,D must be stored explicitly and the update ofE from

D must take place afterD has been updated everywhere, in a separate loop. And

since each �eld is updated in a separate loop, the spatial-locality motivation to merge

the �eld data structures rather than using parallel arrays is largely removed.

Of course, not all simulations involve anisotropic materials|although they appear

even in many simulations with nominally isotropic materials thanks to the subpixel

averaging discussed in Ch. 5.5|but this leads to the second practical problem with

merging the E and D (or H and B) update loops: the combinatorial explosion of

the possible material cases. The update ofD from r � H must handle 16 possible
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cases, each of which is a separate loop (see above for the costof putting conditionals

inside the loops): with or without PML (4 cases, depending upon the number of PML

conductivities and their orientation relative to the �eld) , with or without conductiv-

ity, and with the derivative of two H components (3d) or only oneH component

(2d TE polarization). The update of E from D involves 12 cases: with or without

PML (2 cases, distinct from those in theD update), the number of o�-diagonal" � 1

components (3 cases: 0, 1, or 2), and with or without nonlinearity (2 cases). If we

attempted to join these into a single loop, we would have 16� 12 = 192 cases, a

code-maintenance headache. (Note that the multiplicity ofPML cases comes from

the fact that, including the corners of the computational cell, we might have 0 to 3

directions of PML, and the orientation of the PML directionsrelative to a given �eld

component matters greatly.)

The performance penalty of separateE and D (or H and B) updates appears to

be modest. Even if, by somehow merging the loops, one assumesthat the time to

compute E = " � 1D could becomezero, benchmarking the relative time spent in this

operation indicates that a typical 3d transmission calculation would be accelerated

by only around 30% (and less in 2d).

5.9.2 The loop-in-chunks abstraction

Finally, let us brie
y mention a central abstraction that, while not directly visible

to end-users of Meep, is key to the e�ciency and maintainability of large portions

of the software (�eld output, current sources, 
ux/energy computations and other

�eld integrals, and so on). The purpose of this abstraction is to mask the complexity

of the partitioning of the computational cell into overlapping chunks connected by

symmetries, communication, and other boundary conditionsas described in Ch. 5.4.

Consider the output of the �elds at a given timestep to an HDF5data�le. Meep

provides a routineget-field-pt that, given a point in space, interpolates it onto

the Yee grid and returns a desired �eld component at that point. In addition to

interpolation, this routine must also transform the point onto a chunk that is actu-

ally stored (using rotations, periodicity, etcetera) and communicate the data from
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another processor if necessary. If the point is on a boundarybetween two chunks,

the interpolation process may involve multiple chunks, multiple rotations etcetera,

and communications from multiple processors. Because thisprocess involves only a

single point, it is not easily parallelizable. Now, to output the �elds everywhere in

some region to a �le, one approach is to simply callget-field-pt for every point in

a grid for that region and output the results, but this turns out to be tremendously

slow because of the repeated transformations and communications for every single

point. We nevertheless want to interpolate �elds for output rather than dumping

the raw Yee grid, because it is much easier for post-processing if the di�erent �eld

components are interpolated onto the same grid; also, to maintain transparency of

features like symmetry one would like to be able to output thewhole computational

cell (or an arbitrary subset) even if only a part of it is stored. Almost exactly the

same problems arise for integrating things like 
uxE � H or energy or user-de�ned

functions of the �elds (noting that functions combining multiple �eld components

require interpolation), and also for implementing volume (or line, or surface) sources

which must be projected onto the grid in some arbitrary volume.

One key to solving this di�culty is to realize that, when the � eld in some volumeV

is needed (for output, integration, and so on), the rotations, communications, etcetera

for points in V are identical for all the points in the intersection ofV with some chunk

(or one of its rotations/translations). The second is to realize that, when interpolation

is needed, there is a particular grid for which interpolation is easy: forownedpoints

of the centeredgrid (Ch. 5.4) lying at the center of each pixel, it is always possible to

interpolate from �elds on any Yee grid without any inter-chunk communication and

by a simple equal-weight averaging of at most 2d points in d dimensions.

The combination of these two observations leads to theloop-in-chunksabstrac-

tion. Given a (convex rectilinear) volumeV and a given grid (either centered, or

one of the Yee-�eld grids), it computes the intersection of all the chunks and their

rotations/translations with V . For each intersection it invokes a caller-speci�ed func-

tion, passing the portion of the chunk, the necessary rotations (etc.) of the �elds,

and interpolation weights (if needed, for the boundary ofV). That function then
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processes the speci�ed portion of the chunk (for example, outputting it to the corre-

sponding portion of a �le, or integrating the desired �elds). All of this can proceed

in parallel (with each processor considering only those chunks stored locally). This is

(relatively) fast because the rotations, interpolations,and so on are computed only

once per chunk intersection, while the inner loop over all grid points in each chunk

can be as tight as necessary. Moreover, all of the rather complicated and error-prone

logic involved in computing V 's intersection with the chunks (e.g., special care is

required to ensure that each conceptual grid point is processed exactly once despite

chunk overlaps and symmetries) is localized to one place in the source code; �eld

output, integration, sources, and other functions of the �elds are isolated from this

complexity.

5.10 Concluding remarks

We have reviewed in this chapter a number of the unusual implementation details of

Meep that distinguish our software package from standard textbook FDTD methods.

Beginning with a discussion of the fundamental structural unit of chunks that con-

stitute the Yee grid and enable parallelization: we provided an overview of Meep's

core design philosophy of creating an illusion of continuous space and time for inputs

and outputs; we explained and motivated the somewhat unusual design intricacies of

nonlinear materials and PMLs; we discussed important aspects of Meep's computa-

tional methods for 
ux spectra and resonant modes; we demonstrated the formulation

of a frequency-domain solver requiring only minimal modi�cations to the underlying

time-stepping algorithm. In addition to the inner workingsof Meep's internal struc-

ture, we reviewed how such features are accessible to users via an external scripting

interface.

We believe that a free/open-source, full-featured FDTD package like Meep can

play a vital role in enabling new research in electromagnetic phenomena. Not only

does it provide a low barrier to entry for standard FDTD simulations, but the sim-

plicity of the FDTD algorithm combined with access to the source code o�ers an easy
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route to investigate new physical phenomena coupled with electromagnetism. For ex-

ample, we have colleagues working on coupling multi-level atoms to electromagnetism

within Meep for modelling lasing and saturable absorption,adapting published tech-

niques from our and other groups [19,35,89,167,257], but also including new physics

such as di�usion of excited gases. Other colleagues have modi�ed Meep for modelling

gyromagnetic media in order to design new classes of \one-way" waveguides [229].

Meep is even being used to simulate the quantum phenomena of Casimir forces (from

quantum vacuum 
uctuations, which can be computed from classical Green's func-

tions) [150,195]|in fact, this was possible without any modi�cations of the Meep code

due to the 
exibility of Meep's scripting interface. We hopethat other researchers,

with the help of the understanding of Meep's architecture that this chapter provides,

will be able to adapt Meep to future phenomena that we have notyet envisioned.
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Chapter 6

Zero{group-velocity modes in

chalcogenide holey photonic-crystal

�bers

6.1 Summary

We demonstrate that a holey photonic-crystal �ber with chalcogenide-glass index

contrast can be designed to have a complete gap at a propagation constant� = 0 that

also extends into the non-zero� region. This type of bandgap (previously identi�ed

only at index contrasts unattainable in glasses) opens up a regime for guiding zero{

group-velocity modes not possible in holey �bers with the more common �nger-like

gaps originating from� ! 1 . Such modes could be used to enhance nonlinear and

other material interactions, such as for hollow-core �bersin gas-sensor applications.

6.2 Introduction

Photonic-crystal holey �bers have been of great interest for a variety of di�erent

applications, mainly using silica or polymers with low index contrasts (� 1:5 : 1) [196].

Researchers have also studied photonic-crystal �ber-likegeometries with high index

contrast materials (eg. Si or GaAs, index� 3:4) [70,80,90,147,154,184,237] and shown
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that they support interesting zero{group-velocity modes [90], but to our knowledge

such modes have not been described for �bers made of easily drawable materials. In

this work, we demonstrate the possibility of obtaining zero{group-velocity modes in

uniform �ber geometries using chalcogenide glasses (index� 2:8 [16]), which have

proven amenable to drawn microstructured �bers [30, 115, 126, 161, 170, 180]. Holey

�bers, formed by a lattice of air holes in the �ber cross section, are best known for

supporting \�nger-like" band gaps opening towards the high-frequency regime, which

can open even for arbitrarily low index contrasts [7,99,118,184,196]. However, these

gaps close before reaching a zero propagation constant� , and the guided modes that

they support have all been found to have nonzero group velocity. If the index contrast

is high enough to support a complete band gap for all polarizations in two dimensions,

however, then the resultingthree dimensional holey �ber has a gap extending from

� = 0 to some nonzero� . Although such gaps appear in some earlier work for very

high index contrasts (3.3{3.5:1), [70, 80, 90, 147, 154, 184, 237] here we point out that

they are attainable in lower-contrast glassy materials (chalcogenides). Moreover, we

argue that the key advantage of these gaps is that they can support guided �ber

modes that have a zero group velocity at� = 0. The slow-light modes close to

the zero-velocity band edge should enhance a wide variety ofnonlinear phenomena

and material interactions [99, 209], such as �ber-based sensors [87, 95, 121, 191], �ber

lasers [136,227], or Raman scattering [15,151], and the band edge should also support

gap solitons [210]. Numerous experiments have demonstrated slow-light e�ects in

planar optical devices [9,151,172,202,226]. One simple structure that has a complete

two-dimensional (2d) gap for chalcogenide/air index contrast is a triangular lattice

of circular air holes. In this chapter, we employ a modi�cation of this structure

that is optimized to have a slightly larger gap, but either structure (and any future

complete-gap 2d designs) creates well-localized zero{group-velocity �ber modes.
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6.3 Review of �ber properties

Let us �rst review the basic terminology and characteristics of holey �bers [99,196],

and the origin of the gaps and zero{group-velocity modes in this chapter. The prop-

agating modes of a �ber with a constant permittivity cross-section "(x; y) can be

described as somexy electric �eld pattern E(x; y) multiplied by ei (�z � !t ) , where� is

the propagation constant and! is the frequency. A holey �ber consists of a periodic

cladding (usually a triangular lattice of air holes), as well as a core (solid or hollow)

that breaks the periodicity and supports guided modes. The dispersion relation, the

plot of ! (� ) for all solutions, can be divided into several regions (as in Figs. 6-1

and 6-2). First, there is a continuous (shaded) region, the light cone, consisting of all

cladding (non-guided) modes that can propagate in the cladding far from the core.

There are also regions of (�; ! ) that have no cladding modes: band gaps within the

light cone, which can con�ne gap-guided modes, and also an empty space below the

light cone that can con�ne index-guided modes. The guided modes, exponentially

localized to the vicinity of the core, appear as discrete bands ! n (� ) within the gaps

and/or under the light cone. (Technically, in a �nite-size �ber the gap-guided modes

are leaky, but as this leakage rate decreases exponentiallywith the periodic cladding

thickness it can be made negligible in practical contexts.)In order to con�ne light

in an air core, the gaps and guided modes must lie above the light line ! = c� of air

(since modes below the light line of air are evanescent in airregions). Normally, these

guided bands are monotonically increasing, correspondingto a positive group veloc-

ity d!=d� (and there is a proof that this is always the case for index-guided modes

with a homogeneous cladding [12]). Zero group velocity (standing-wave modes) typ-

ically occurs only at values of� that have z ! � z re
ection symmetry (with rare

exceptions [90, 96]), which in a uniform{cross-section �ber only occurs at � = 0.

Index-guided modes are not possible at� = 0 (they become rapidly more weakly

con�ned as � ! 0), so one must consider bandgap-guided modes. Unfortunately, the

typical gaps that arise in holey �bers have their origin in the � ! 1 limit (where the

�eld patterns approximate those of a 2d metallic system [23,99]), and are observed to
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Figure 6-1: Projected band diagram (frequency! vs. propagation constant� ), for
a triangular lattice of holes (inset). Inset: optimized 2d (� = 0) gap size vs. index
contrast.

close well before� = 0 is reached. The� = 0 point corresponds to atwo-dimensional

photonic crystal with in-plane propagation, whose modes can be decomposed into TE

(E in xy plane) and TM (E in z direction) polarizations [99]. Typically, low-contrast

materials such as silica/air will have a gap only for one of these polarizations (e.g.

TE for air holes) [99]. Such a single-polarization 2d gap is not useful for guiding

modes in a �ber, because the TE/TM distinction disappears for � 6= 0 and hence

a single-polarization gap disappears [99]. On the other hand, if one can obtain an

overlapping TE/TM gap at � = 0, which typically requires higher index contrasts,

then it should be expected to persist for a nonzero range of� , even after the TE/TM

distinction disappears [70,80,90,147,154,184,237]. We demonstrate that this, in fact,

occurs, for index contrasts attainable in chalcogenide glasses that have been used for

�ber drawing [30,115,126,161,170,180], contrary to some previous suggestions [184].

The resulting gap around� = 0 therefore supports guided modes that attain zero

group velocity as� ! 0. In practice, one does not operate at the zero-velocity point

itself, but rather at nearby frequencies, so that by operating closer and closer to the

zero-velocity band edge one can make the group velocity of light arbitrarily small

in principle (at the expense of bandwidth and greater sensitivity to absorption and

other loss, as discussed below).
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Figure 6-2: Projected band diagram (frequency! vs. propagation constant� ), for a
triangular lattice of hexagonal-shaped holes (inset). Inset: optimized 2d (� = 0) gap
size vs. index contrast.

Several other mechanisms have been proposed for creating zero{group-velocity

modes in �bers. Bragg �bers, consisting of concentric ringsof two or more materials

forming a one-dimensional photonic crystal, have a gap originating at � = 0 [99,196]

and consequently their guided modes attain zero group velocity at this point. (Al-

though Bragg �bers do not have a complete 2d gap, this is compensated for by the ro-

tational symmetry which eliminates modes propagating in the azimuthal direction at

large radii [99].) These �ber modes resemble those of hollowmetallic waveguides [91],

which also have zero group velocity at their cuto� frequencies. However, Bragg �bers

require two solid materials in the cladding, which makes fabrication more challenging,

while metallic waveguides become lossy at infrared frequencies. With a traditional

core-clad �ber or with a holey �ber, zero group velocity can instead be attained by

periodic modulation of the structure along the axial direction. For example, a �ber

Bragg grating is formed by a weak modulation of the refractive index \burned" in by

a photorefractive e�ect. Because this index modulation is typically much less than

1%, however, the low group-velocity bandwidth is small in �ber Bragg gratings. Fur-

thermore, one can only modulate the index of a solid material, greatly reducing the

grating e�ect for modes con�ned in an air core. It has been proposed that spherical

particles could be introduced into an air core in order to create a periodic modula-
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a) b)

c) d)

Figure 6-3: Doubly-degenerate �6 defect modes for a triangular lattice of hexagonal-
shaped holes with periodicitya obtained by varying inscribed defect diameter of a
hexagonal-shaped air core: a)D = 1:6a (fundamental-like) b) D = 3:2a c) D = 6:2a
d) D = 6:76a (blue/white/red = negative/zero/positive).

tion [208], but such structures seem challenging to produceon large scales compared

to drawn �bers. Previous work showed that semiconductor (silicon) index contrasts

(3.5:1) could support zero-group velocity modes in �ber-like geometries [90], and here

we underline the existence and utility of analogous modes with conventional �ber ma-

terials. Furthermore, our previous work demonstrated thatsuch zero group-velocity

modes can even be converted into backwards-wave and ultra-
at bands by careful

tuning of the waveguide core [90], and we expect that similarphenomena should be

possible in chalcogenide �bers and other lower-contrast materials.

154



3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

inscribed circle radius

fr
ac

tio
n 

of
 e

ne
rg

y 
in

 a
ir 

co
re

   
   

  

3.15 3.2 3.25 3.3 3.35 3.4 3.45
0.48

0.485

0.49

0.495

inscribed circle radius

fr
eq

ue
nc

y 
w

a/
2p

c
Figure 6-4: Fraction of electric-�eld energy" jEj2 in the hexagonal-shaped air core
(as in Fig. 6-3) as a function of the core radius (radius of inscribed circle). Inset:
frequency! at � = 0 of guided mode vs. core radius.

6.4 Gaps and defect modes

One 2d photonic crystal structure that is well known to have acomplete gap for

su�ciently large index contrast is a triangular lattice (period a) of cylindrical air

holes (radiusr ) in dielectric [99], similar to the geometry of many fabricated holey

�bers [196]. This geometry with r = 0:45a turns out to have a 4.4% complete gap

at � = 0 for a refractive index of 2.8, chosen to correspond to thatof a typical

chalcogenide glass (e.g., As2Se3 at � = 1:5�m [16]). We also considered a slightly

modi�ed 2d photonic crystal consisting of a triangular lattice of dielectric rods in

air connected by thin veins (resembling hexagonal-shaped holes) [38, 242]. The gap

size was optimized over two parameters, rod radius and vein thickness, yielding a

5.4% gap-to-midgap ratio for a rod radius of 0:16a and a vein thickness of 0:2a. The

gap in this structure persisted for index contrasts as low as2.6:1 (as shown in the

inset of Fig. 6-2). The Maxwell eigenproblem was solved withan iterative (conjugate

gradient) method in a planewave basis [107]. The resulting band diagrams, with gaps

that extend over a range of nonzero� , are shown in Figs. 6-1 and 6-2. Since the

modi�ed structure of Fig. 6-2 has a slightly larger gap, we focus on this structure for

the remainder of the chapter; similar results can be obtained for the cylindrical-hole
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Figure 6-5: Air-core guided mode in gap of Fig. 6-2, with insets showing electric-�eld
Ez and Poynting vector Sz (blue/white/red = negative/zero/positive).

structure.

An air core is formed by removing some dielectric material, and here we do so

by a hexagonal-shaped air core with an inscribed-circle diameter D in a 15a by 15a

supercell. (This supercell is large enough that, for all guided modes considered here,

the guided-mode �eld has decayed to negligible values by theedge of the supercell

and hence the �nite supercell size is irrelevant.) Depending on the core diameterD,

di�erent types of modes with varying symmetry and degrees ofcon�nement can be

localized [99]. We choseD to satisfy two criteria. First, the con�ned mode should be

of the right symmetry to be excited by an incident planewave source|technically, this

means that the mode is doubly degenerate and belongs to the �6 representation of the

sixfold (C6v) symmetry group [92] of the hexagonal core. AsD is varied, we obtain

a variety of di�erent � 6 defect modes, as shown in Fig. 6-3. For smallD , we obtain

fundamental-like �elds patterns as in Fig. 6-3(a), whereasfor larger D we obtain

more complicated �eld patterns that are, however, better con�ned in the air core as

in Fig. 6-3(d). For a given mode with strong air-core con�nement, we then choseD

to maximize the fraction of the electric-�eld energy (" jEj2) in the air core at � = 0

(see Fig. 6-4) while also eliminating the in
uence of surface states [116,199,236]. This

is desirable in air-core �ber applications to reduce absorption loss from the cladding

and increase light-gas interactions. In particular, we chose the mode from Fig. 6-
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Figure 6-6: Solid-core guided mode in gap of Fig. 6-2, with insets showing electric-�eld
Ez and Poynting vector Sz (blue/white/red = negative/zero/positive).

3(d) (D = 6:76a) for speci�city, and the resulting structure is shown alongwith its

dispersion relation in Fig. 6-5. The �eld pro�le (which is TM at � = 0) is still strongly

con�ned at a non-zero axial wavevector (�a= 2� = 0:14), as shown by the inset.

6.5 Topology optimization of cladding structure

Another approach to �nding a cladding structure with low index contrast instead of

starting with a pre-determined lattice and unit cell would be to makeevery pixel in

the unit cell a free parameter. The" of each pixel could then be constrained to lie in

some interval (between say 1 and 12) and we could proceed to maximize the bandgap

between any set of two adjacent bands. Cox and Dobson [51, 52]optimized the

bandgap of square lattice designs of 2d photonic crystals using evolutionary algorithms

while Yablonovitch et al. [111] employed level-set methodsin a similar approach.

Both groups used the absolute size of the gap as their objective function and only

considered one type of unit cell arrangement. Maximizing a gap's absolute size is

misleading since it is by de�nition relative to an arbitrary frequency of one where the

lattice constant is unity. In practical circumstances, therelevant �gure of merit is the

fractional gap as this quantity is normalized by the operating frequency.

We thus choose the fractional gap as our objective function.A potential objective
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function could then be,

max
"

�
2

[mink ! n+1 (k)] � [maxk ! n (k)]
[mink ! n+1 (k)] + [max k ! n(k)]

�
: (6.1)

However the problem with expressing the problem this way is that the objective

function in eq. (6.1) is not di�erentiable at accidental degeneracies in the dispersion

relation corresponding to two di�erent wavevector points in the irreducible Brillouin

zone with the same frequency. These accidental degeneracies are bound to arise as

the optimization algorithm seeks to align the frequencies at two wavevectors and then

proceeds to \push" them up together to maximize the gap. A non-gradient based

algorithm for these types of problems is computationally intractable given that the

number of iterations would be at least several times the number of dimensions (for

example, ind dimensions without gradient information,d+1 evaluations are required

just to explore the variation along each dimension in order to make the�rst update

of the design variables). Our only recourse then is to use gradient-based optimization

algorithms but any such method would encounter obstacles inexploring the large

design space as just described. Fortunately, we can reformulate the minimax problem

of eq. (6.1) as an equivalent problem with nonlinear constraints [231],

max
";f 1;f 2

2f 2 � f 1
f 2+ f 1

subject to f 1 � ! n(k), f 2 � ! n+1 (k):
(6.2)

Equation (6.2) and its associated gradient can now be solvedwith suitable inequality-

constrained nonlinear algorithms. In this case we chose a recent re�nement of the

method of moving asymptotes (MMA) [214] implemented in a free-software package

of nonlinear-optimization algorithms [101]. The key property of the MMA algorithm

that makes it suitable for such problems is that it produces afeasible solution at every

iteration enabling the algorithm to be terminated at any time (most methods typi-

cally satisfy constraints only when they are close to converging). This is particularly

useful as we are not interested in computing the fractional bandgap to a very high

degree of accuracy and can thus quickly explore the design space with many di�erent
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initial designs. Another useful attribute of the MMA algorithm is that it is globally

convergent (that is, it provably converges tosome local optimum from any feasi-

ble starting point). We combined the MMA algorithm with our frequency-domain

planewave expansion Maxwell solver [107] for a 2d computational cell consisting of

64 by 64 pixels (4096 degrees of freedom). The unit cell symmetry was �xed to be

either square (symmetry group C4v) or triangular (C6v) since if a unique global op-

timum exists it must be symmetric (on intuitive grounds we would normally expect

the optimal unit cell to be symmetric in order that it have the same overlapping

gap in di�erent directions of the Brillouin zone). The MMA algorithm found opti-

mal structures having a triangular lattice at high-index contrasts but unexpectedly

a square-lattice arrangement at low-index contrasts having an 8% complete 2d gap

at an index contrast of 2.6:1 (see Fig. 6-7). We then used thisdesign to formulate a

simple two-parameter, non-gradient optimization involving the inner and outer radius

of the ring and width of the connected rod. This design produced a 4.5% gap at even

smaller index contrast of 2.4:1.

Such an approach combining the results from a nonlinear optimization having

inequality constraints with low-parameter topology optimization presents intriguing

possibilities for future explorations of cladding designs. The example presented here

demonstrates the potential utility of these hybrid methodsto �nd non-conventional

cladding designs.

6.6 Cladding losses in hollow-core �bers

One source of loss is the material absorption in the cladding, which for bulk As2Se3

is about 36 dB/m at � = 1:5 � m [16]. For a guided mode in the hollow core, this

absorption loss is suppressed by a factor offc=vgn, where f is the fraction of the

electric-�eld energy in the cladding,vg is the group velocity, andn is the cladding

refractive index [99,106]. For the mode of Fig. 6-5 at�a= 2� = 0:14, wherevg = 0:22c

and f = 0:19, the absorption loss of the mode is therefore 11.1 dB/m, which is

su�cient for short-distance �ber devices. Lower loss couldbe obtained by operating
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Figure 6-7: Left: the square lattice design with the largestfractional gap discov-
ered by the nonlinear optimization algorithm where every pixel in the unit cell was
a free parameter having refractive index in the rangef 1: : : 3:4g. Right: a simple
two-parameter (radius and width) shape optimization basedon the adjacent design
produces a complete 2d gap at an even lower index contrast.

at a longer wavelength such as 3 or 10� m, where the losses of chalcogenide are much

lower while the index of refraction remains larger than 2.7 [16].

Another general strategy to counteract such cladding-based losses is to increase

the diameter of the air core [106], which means that a smallerfraction of the air-

guided mode will reside in the cladding. Unfortunately, increasing the core diameter

leads to other problems, such as increased bending losses and other inter-modal cou-

pling [106], very similar to the tradeo�s that were faced decades ago in designing

low-loss microwave transmission tubes (where the �elds in the cladding gave Ohmic

losses) [232], and so it is desirable to increase the core diameter as little as possible.

Johnson et al. [106] previously showed the scaling losses for the case of a cylindrical

omniguide �ber and here we show that for a holey photonic crystal �ber having a

cladding structure made of a much more complicated triangular lattice. This is a

review of the general argument, based on the scalar limit, that the cladding-related

losses should (asymptotically) scale inversely with thecubeof the core diameter, sim-

ilar to the well-known result for metallic tubes [232], and we demonstrate this scaling

with numerical results.
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All cladding-based losses in a dielectric waveguide scale with the fraction of the

electric-�eld energy in the cladding. Material absorptionlosses, in fact, can be shown

from perturbation theory to be exactly equal to the fractionof
R

" jEj2 residing in

the cladding material, multiplied by a constant factor proportional to the material's

extinction coe�cient and divided by the mode's group velocity [106,233]. The precise

analysis of surface-roughness losses is complicated [108], but nevertheless is propor-

tional to the mean jEj2 at the surfaces (with a complicated proportionality factor

depending on the roughness shapes and correlations [108]) and hence also scales as

the fraction of the �eld energy in the cladding [106]. The �eld leakage through the

�nite number of crystal layers can easily be reduced exponentially by adding more

layers [99,106], so it is less of a concern, but it too scales with the squared �eld am-

plitude in the cladding [106]. Therefore it is su�cient to consider the scaling of the

absorption loss, or of the fraction of �eld energy in the cladding, with the air-core

radius R.

For any given mode, in the limit of largeR the mode becomes more and more sim-

ilar to a plane wave propagating along thez axis. Its dispersion relation approaches

the air light line, and its penetration depth into the cladding becomes negligible com-

pared to the scale of the transverse oscillations. This condition, of the penetration

into the inhomogeneous materials becoming small compared to the transverse wave-

length (2�=k t ), was precisely the condition in which the scalar limit applies. In this

limit, we can describe the mode as a linear polarization multiplied by a scalar am-

plitude  (x; y) that is zero in the cladding. In reality, there is some smallnonzero

amplitude in the cladding, but because of the approximate zero boundary condition

at r = R, the amplitude of the cladding �eld goes as 1=R just as we explained for

te01. Thus, all modes approach a 1=R3 scaling.

This is true in two-dimensionally periodic photonic-crystal �bers, such as the

hollow-core holey structures described in this chapter. Overall, the same asymptotic

1=R3 scaling applies: the core interface/area ratio goes as 1=R and there is an addi-

tional 1=R2 factor from the cladding �eld amplitude in the scalar limit. However, an

additional wrinkle is provided by the proliferation of surface states. Unless a crystal
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pattern (time-average Poynting 
ux) of the fundamental mode for two core radii,
R = 0:83a and R = 12:1a. The dielectric interfaces are shown as black lines; the air
core is hexagonal and terminates the crystal in such a way as to remove the possibility
of surface states [236].

termination is chosen that eliminates surface states [116,199,236], as the core size is

increased we will get more and more surface states. These surface states cross the

guided band and chop up its usable bandwidth [236]. Precisely such a phenomenon

was observed experimentally when Ref. 146 replaced the air core of an earlier holey-

�ber experiment by Ref. 206 with one of about 2.2 times the diameter: the losses

were reduced by a factor of eight (from 13 dB/km to 1.6 dB/km),but the bandwidth

was reduced by a factor of �ve because the surface states werenot eliminated. (The

surface states below the light line donot have absorption/leakage/scattering losses

that decrease withR, because they remain localized at the cladding surface regardless

of R.)

To see the 1=R3 scaling more convincingly in a holey �ber, however, one mustlook

at a larger range of core diameters, in a computer simulationwhere all other things

can be kept rigorously equal (as opposed to two experiments by di�erent groups that
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may or may not be comparable), and choose terminations so that the in
uence of

surface states is eliminated. We have done so, looking at thefundamental air-guided

mode of a hollow-core holey �ber in" = 2:1025 silica with radius 0:47a air holes

in a triangular lattice with period a, similar to Fig. 6-1. The core is a hexagonal-

shaped air region carved out of the crystal with \radius"R, where 2R is the distance

between two parallel sides of the hexagon. This structure, along with the intensity

pattern of the fundamental mode, is shown for two sample coreradii in the insets

of Fig. 6-8. The core termination is chosen to roughly bisecta layer of holes, as in

Ref. 236, to eliminate surface states. Then, we varied the core radius R (in steps of

a
p

3=2 to preserve the termination) and computed the fraction of the fundamental

mode's electric-�eld energy in the silica cladding material (equivalently, the absorption

suppression factor) using a planewave-based eigensolver [107]; the fundamental mode

was computed near mid-gap, at�a= 2� = 1:65. The result is shown in Fig. 6-8, and

indeed quickly approaches the expected 1=R3 asymptotic scaling.

6.7 Coupling to slow-light modes

Another practical challenge in all slow-light structures is coupling from a non-slow

source; one very general technique is a gradual \taper" transition to a higher-velocity

waveguide [102,165,177,186], for example by gradually scaling the structure [131,144]

to a larger diameter to shift the band edge down to increase the group velocity at

the operating ! . (Alternatively, rather than rescaling the whole structure, gradually

decreasingthe core diameter while keeping the cladding unchanged turns out to shift

the band edge down in this geometry.) (Theoretically, a gradual enough transition

can couple any pair of waveguides, no matter how di�erent, with arbitrarily low

re
ection limited only by fabrication capabilities [102].) Minimization of re
ections

by proper design of couplers between very di�erent modes of dielectric and photonic-

crystal waveguides, including slow-light modes, has been studied elsewhere [102,156,

163, 165, 186, 216], and a speci�c design for this �ber lies beyond the scope of this

manuscript.
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6.8 Solid cores

In contrast to air cores, solid (dielectric-�lled) cores can be used to enhance interac-

tions and nonlinearities with solid materials, such as for �ber lasers [136,227]. Here,

we form a small solid core by �lling a hexagonal-shaped core (D = 1:62a) with di-

electric. This con�nes a doubly-degenerate mode with an extremely 
at dispersion

relation, in addition to its zero{group-velocity point at � = 0, as shown in Fig. 6-6.

This extreme 
atness could potentially be transformed intoa higher-order (e.g. quar-

tic) band edge or even a concave backward-wave band-edge, via proper tuning of the

solid core geometry [90].

6.9 Concluding remarks

Any holey photonic-crystal geometry with a complete gap forboth polarizations in

two dimensions can be used to obtain zero{group-velocity modes in a �ber geometry|

our triangular lattice structure of hexagonal holes, here,is only one such example.

An opportunity for future designs is to �nd complete gap structures with even lower

index contrasts, in order that a wider range of materials become available for the

fabrication of such slow-light devices. The ideal result would be a structure that

has a complete 2d gap at silica/air index contrasts (1.5:1),but we are not currently

aware of any geometry with this property. We have also highlighted the importance

of the scalar short-wavelength limit, which has many informative consequences even

at moderate wavelengths, by analyzing the scaling of the cladding losses with core

radius.
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Chapter 7

Robust design of slow-light tapers

in periodic waveguides

7.1 Summary

This chapter describes the design of tapers for coupling power between uniform and

slow-light periodic waveguides. New optimization methodsare reviewed for designing

robust tapers that had previously been proposed, which not only perform well under

nominal conditions, but also over a given set of parameter variations. When the set

of parameter variations models the inevitable variation typical in the manufacture or

operation of the coupler, a robust design is one that will have a high yield, despite

these parameter variations.

We review the notion of successive re�nement, and robust optimization based on

multi-scenario optimization with iterative sampling of uncertain parameters, using

a fast method for approximately evaluating the re
ection coe�cient. Robust tapers

designed over a range of di�erent lengths are compared to a linear taper and to

optimized tapers that do not take parameter variation into account. Finally, robust

performance of the resulting designs is veri�ed using an accurate, but much more

expensive, method for evaluating the re
ection coe�cient.
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7.2 Introduction

This chapter begins by reviewing optimization methods �rstpresented by Mutapcic

et al. [165] for designingrobust tapers, which not only perform well under nominal

conditions, but also over a given set of parameter variations. In contrast, the nominal

optimum produced by straightforward optimization of this problem relies on delicate

interference e�ects that are destroyed by any deviation from the design. Here we

present results that extend our previous work in Ref. 165 (spearheaded by Almir Mu-

tapcic) which involved optimizing taper designs at a singletaper length to a range

of lengths. In this work, we incorporate uncertainties in the taper shape and length,

di�erent from Mutapcic et al. which considered the taper length and operating fre-

quency as we have now discovered that our semi-analytical computational method is

inaccurate for calculating taper re
ections over a set of di�erent frequencies. We now

also provide insights into the few key parameters among the many degrees of control

in the optimization algorithm that strongly govern robust taper designs. Further-

more, we study the trade o� between re
ection and taper length by optimizing each

taper length separately. This analysis will demonstrate the impact of robustness on

device design more clearly. We also focus on more realistic designs having shorter

taper lengths (1-20 lattice constants) amenable to fabrication whereas Mutapcic et

al. [165] considered a relatively large range of taper lengths (1-100) as part of our

initial work demonstrating the proof-of-concept of this approach.

The methods outlined optimize over an arbitrary variable taper rate, described

by hundreds (or thousands) of degrees of freedom, in order to�nd a design with

performance orders of magnitude better than that of a simplelinear (constant-rate)

taper. Accurate techniques from coupled-mode theory [102]are used to quickly ex-

plore di�erent shapes; the results are validated against a direct numerical solution

of Maxwell's equations [21, 22]. Because the set of parameter variations models the

inevitable variations typical in the manufacture or operation of the coupler, and is

explicitly accounted for in the optimization, a robust design will have a high yield

despite these parameter variations.
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A standard component of optical and microwave devices is a waveguide taper

which couples light from one waveguide to another by means ofa gradual transition.

Although a su�ciently gradual taper approaches an adiabatic limit of 100% trans-

mission, in a practical setting the challenge is to design a taper as short as possible,

or with as low a loss as possible for a given length. Perhaps the most challenging

case is to design a short taper between an ordinary uniform waveguide and a periodic

waveguide [62], a special case of a general class of periodicoptical structures known

as `photonic crystals' [99]. Periodic waveguides are both useful and challenging for

the same reason: a periodic waveguide has a `slow-light' band edge for which the

group velocity of light slows down as it approaches a certainfrequency. Operating in

this slow-light region is useful because it increases the interaction of light with the

material, enhancing nonlinearities [209, 239], tunability [186], gain [244], and other

e�ects. However, as the group velocity decreases, the `impedance mismatch' between

the periodic and uniform waveguide increases, and a longer taper is generally required

to achieve the same coupling loss [186]. If the waveguides are simply butt-coupled

without a taper, the transmission goes to zero as the zero-velocity band-edge is ap-

proached [201].

A variety of techniques have been employed to select a taper shape for coupling

to periodic waveguides. Most of this previous work examinescases operating far

from any band edge (so the group velocity is not small) and focuses on simple linear

(constant-rate) tapers [20, 42, 83, 104, 156, 178, 185, 216,240] or families of quadratic

shapes [60, 114]. Genetic algorithms have also been employed to design couplers

using arbitrarily placed scattering cylinders [82, 97]. Non-taper-based couplers from

free space or parallel waveguides have also been considered[125,187]. Although this

previous work did not explicitly account for uncertaintiesin the model parameters,

the mostly small number of design parameters combined with the moderate group

velocities help avoid non-manufacturable designs. As soonas the design involves

optimization over a large number of free parameters, the nominal optimum tends to

be a non-robust design that relies on delicate interferencee�ects. (A similar result was

observed as a strong frequency sensitivity in genetic optimization over many degrees
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of freedom [81]). Previously, Povinelli et al. [186] considered a slow-light periodic-

waveguide coupler with higher-degree polynomial taper shapes, and used a simple

regularization technique to avoid non-robust solutions.

There are several general models of parameter uncertainty,as well as general ap-

proaches for dealing with uncertain parameters. The approach taken in this design

is worst-case robust optimizationor (minimax optimization), as �rst described in our

previous work spearheaded by Almir Mutapcic [165]. Here theparameters are mod-

elled as lying in some given set of possible values, but without any known distribution;

a taper design is chosen, whose worst-case objective value,over the given set of pos-

sible uncertainties, is minimized. In this model, one does not rely on any knowledge

of the distribution of uncertain parameters (which indeed,need not be stochastic).

There is no claim that worst-case robust optimization is superior to other approaches;

but it is generally found that worst-case robust designs produced by the methods of

this project also perform well when analyzed under a stochastic model of parameter

variation.

7.3 Nominal and robust taper design problems

This section reviews material presented in Ref. 165.

7.3.1 Taper shape and re
ection magnitude

Consider a taper with lengthL that couples a uniform and a slow-light waveguide

structure with period �. The taper is a quasi-periodic structure that is parametrized

by the taper shape functions : [0; 1] ! R+ . The argument of the taper shape function

is the normalized length variableu = z=L, wherez is the physical coordinate along

the taper. Each value ofs corresponds to an intermediate periodic structure between

the taper endpoints, for example in Fig. 7-1,s could correspond to the width of the


anges, the radius of the holes, or the separation of the blocks. The varying periodic

structure described bys(u) de�nes a taper as described in Ref. 102; essentially, the

taper matches the cross-section of the periodic structures(u) at z = Lu. The taper

168



Figure 7-1: Various tapers between uniform and periodic dielectric waveguides. (a)
Periodic sequence of holes, where taper varies the radius and period of the holes, in
2d or 3d. (b) Periodic set of 
anges, where taper varies the width of the 
ange, in
2d or 3d. (c) Periodic sequence of dielectric blocks, where taper varies the period �
between the blocks. All three of these tapers, in 2d or 3d, canbe e�ciently optimized
by the robust coupled-mode method, but this chapter focuseson (c) because it is also
amenable to brute-force computation for veri�cation purposes.

shape function is constrained at its starting and its �nal point, with s(0) = 0 denoting

the starting uniform structure, and s(1) = 1 denoting the �nal periodic structure.

Figure 7-2 illustrates a sample taper and its shape function, where in this cases is

simply proportional to the continuously varying width of the 
anges.

Given a taper shape function, one can evaluate the magnitudeof the re
ection

from an incoming light wave coupled from the uniform into theslow-light waveguide,

for example by numerical simulation of the wave equation. The re
ection magnitude

is denotedR; it depends on the taper shape functions, as well as various parameters

such as the refractive index (which might, indeed, vary spatially), the wavelength,

and so on. These parameters are denoted by a vector� 2 R m ; to emphasize that

R is a function (or, sinces is a function, a functional) of the taper shapes and the

parameter vector� , it will sometimes be written asR(s; � ).

Let � nom be the nominal value of � , i.e. a typical (or expected) value of the
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Figure 7-2: Top. A taper coupling uniform and slow-light waveguide structures.
Bottom. Its taper shape functions.

parameter vector. Thenominal re
ection magnitude is de�ned as

Rnom (s) = R(s; � nom ): (7.1)

The nominal re
ection magnitude is a functional of the tapershape functions,

and gives the magnitude of the re
ection when the parameter vector is equal to its

nominal value.

7.3.2 Parameter uncertainty and worst-case re
ection mag-

nitude

Parameter uncertainty, which can be caused by manufacturing imperfections, wave-

length variation, model parameter errors, etc., is modelled by a set V � R m . The

set V can be thought of as the set of possible values of the parameter vector. It
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will be assumed that� nom 2 V . As a simple (but important) example, V can be a

�nite set V = � 1; : : : ; � K . In this case the indexi is referred to as ascenario, with

associated parameter vector� i . As another common example,V can be a box inRm ,

for example, centered at the nominal parameter value,

V = � jj � i � � nom;i j � � i ; i = 1; : : : ; m; (7.2)

where� i gives the radius or half-range of the variation in parameteri . (This type

of parameter variation can be described as� i = � nom;i � � i .)

The performance of a taper design, in the presence of parameter uncertainty,

is judged by the worst-case (largest possible) re
ection magnitude over all possible

� 2 V . The worst-case re
ection magnitudeis de�ned as

Rwc(s) = sup
� 2V

R(s; � ): (7.3)

The worst-case magnitude re
ectionRwc is a functional of the taper functions. It

is always the case thatRwc(s) � Rnom (s) for any s; indeed the ratioRwc(s)=Rnom (s)

gives a measure of (worst-case) performance degradation ofthe taper, due to param-

eter variation.

For a scenario model of parameter uncertainty, i.e. whenV = � 1; : : : ; � K , the

worst-case re
ection magnitude has the form

Rwc(s) = max
i =1 ;:::;K

R(s; � i ); (7.4)

the maximum re
ection magnitude over the K scenarios. But in most cases,

Rwc(s) cannot be computed exactly, since this involves solving a non-convex opti-

mization problem. It can be approximately computed, however, using several meth-

ods below.
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7.3.3 Nominal and robust taper shape problems

In the nominal taper shape problem, a taper shape functions is found that minimizes

the nominal re
ection magnitude Rnom , subject to some constraints:

minimize Rnom (s)

subject to s(0) = 0, s(1) = 1

0 � s(u) � Smax , js0(u)j � D max for 0 � u � 1:

(7.5)

The optimization variable is the taper shape functions : [0; 1] ! R + The problem

parameters are the maximum allowed shape valueSmax , the maximum allowed taper

slopeD max , and of course, the objective functionRnom . A solution of this problem is

called anominal optimal taper.

In the robust taper shape problem, the goal is to �nd a taper shape functions that

minimizes the worst-case re
ection magnitudeRwc, subject to some constraints:

minimize Rwc(s)

subject to s(0) = 0, s(1) = 1

0 � s(u) � Smax , js0(u)j � D max for 0 � u � 1:

(7.6)

A solution of this problem is called arobust optimal taper. The main goal of this

chapter is to present a tractable way to (approximately) solve the robust taper shape

problem eq. (7.6).

Both the nominal and robust taper shape problems eqs. (7.5) and (7.6) are in�nite-

dimensional optimization problems, since the optimization variable is a function [5],

and they include semi-in�nite constraints [86], i.e. an in�nite set of constraints in-

dexed by a continuous variable (u). Both of these issues willbe (approximately)

handled by searching over a �nite-dimensional set of shape functions, for which the

semi-in�nite constraints can be expressed in a simple way. The complexity of the al-

gorithm grows linearly with the dimension of the �nite-dimensional parametrization,

and easily scales to dimensions large enough (e.g. thousands) that errors due to the

�nite-dimensional parametrization are negligible.

A more fundamental issue is that the problems eqs. (7.5) and (7.6) are not
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Figure 7-3: A piecewise-linear taper shapes with n = 4, with grid points u1; : : : ; u4.
The taper shape satis�ess(0) = 0, s(u1) = x1; : : : ; s(u4) = x4, and s(1) = 1.

convex (since the objectives are, in general, not convex), which makes it unlikely

that the global solutions can be found e�ciently. So one mustsettle for locally

optimal solutions of the problems, which need not be globally optimal. In Ch. 7.3.5,

a successive re�nement approach is described, which appears to be quite resistant to

getting trapped in poor local minima.

7.3.4 Piecewise-linear taper shape parametrization

It is assumed that the taper shape functions are piecewise-linear, parametrized by

their values at n �xed control or break or grid points u1; : : : ; un with 0 < u 1 < : : : <

un < 1, and passing through the endpointss(0) = 0 and s(1) = 1. This is illustrated

for n = 4 grid points in Fig. 7-3. This can be expressed as

s(u) = x1f 1(u) + : : : + xn f n (u) + f n+1 (u); (7.7)

with

f i (u) =

8
>>><

>>>:

(u � ui � 1)=(ui � ui � 1) ui � 1 � u � ui ,

(ui +1 � u)=(ui +1 � ui ) ui � u � ui +1 ,

0 otherwise,

whereu0 = 0 and un+1 = 1, and

f n+1 (u) =

8
<

:

(u � 1)=(un � 1) un � u � 1,

0 otherwise.
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The vector x 2 Rn is referred to as thetaper shape vector. Evidently s(ui ) = x i .

With this parametrization, the endpoint constraints s(0) = 0 and s(1) = 1 hold

automatically, for any shape vectorx. Moreover, the semi-in�nite constraints

0 � s(u) � Smax , js0(u)j � D max for 0 � u � 1;

hold if and only if

0 � x i � Smax ; i = 1; : : : ; n;

jx i +1 � x i j � D max (ui +1 � ui ); i = 1; : : : ; n � 1;

jx1j � D max u1; j1 � xn j � D max (1 � un):

(7.8)

These are a set of 4n linear inequalities on the shape vectorx. The notation x 2 S

will be used to denote this, whereS is the (polyhedral) set ofx for which eq. (7.8)

holds.

With some abuse of the notation,Rnom (x) and Rwc(x) will be used to denote the

values of Rnom (s) and Rwc(s), for the shape functions associated with the shape

vector x. With piecewise-linear parametrization of taper shapes, the nominal taper

design problem can be expressed as

minimize Rnom (x)

subject to x 2 S;
(7.9)

and the robust taper design problem as

minimize Rwc(x)

subject to x 2 S:
(7.10)

These are �nite-dimensional optimization problems, with optimization variable

x 2 R n , and 4n linear inequality constraints.
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7.3.5 Successive re�nement

The taper design problems described in eqs. (7.9) and (7.10)are non-convex and local

methods which can (and do) get stuck in poor locally optimal points. A common

method to �x this problem is to run the algorithm multiple tim es, starting with

di�erent initial taper designs, picking the best design obtained among the runs of the

algorithm. In previous work lead by Mutapcic et al. [165], a method calledsuccessive

re�nement was presented, however, which seems to avoid the problem of getting

caught in poor local minima, and eliminates the need for multiple runs from di�erent

starting points.

In successive re�nement, a sequence of design problems withsuccessively �ner

piecewise-linear taper shape functions is solved, in each case starting from the previous

design. One starts with a single grid point, i.e.n = 1, and runs a global search of

the optimal robust taper, which is tractable only for this single dimensional problem.

One then adds two more grid points, in between 0 and the �rst grid point, and the

�rst grid point and 1, so that n = 3, and runs the robust taper shape (RTS) algorithm

(as described in [165]), starting from the previous design.This is repeated until some

maximum value ofn is reached. This is illustrated in Fig. 7-4.

In numerical experiments we started with the initial grid point at 1/2, and in each

successive re�nement step, new grid points are added halfway in-between the old ones

(and 0 and 1). At the Mth re�nement step there will be n = 2M � 1 grid points, with

values

uM
i = i2� M , i = 1; : : : ; 2M � 1: (7.11)

This approach is related in spirit to the multigrid methods [29], where the latter

uses both successive re�nements and coarsenings in order tospeed up convergence of

a linear solver rather than to avoid local minima. Successive re�nement have been

successfully applied in circuit design [34], in motion estimation for video coding [45],

etc.
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Figure 7-4: Top left. Linear taper with a single grid point. Top right. Full search
performed to obtain a global optimum taper with a single gridpoint. Bottom left. Two
new grid points added and taper values interpolated atu(2)

1 and u(2)
3 . Optimization

algorithm is run starting from this taper. Bottom right. New local optimum.

7.4 Computation of re
ection magnitude

This section reviews material presented in Ref. 165. To optimize the taper shape

function s, one needs a rapid method to compute the re
ected power fraction R and

its gradient for light incident on a particular taper structure. This project employs

two such methods, described below: a fast approximate method for the optimization

(including the computation of the gradient), and a slower brute-force method for

veri�cation of the �nal design.

7.4.1 Coupled-mode theory

In general, computing the re
ection from an arbitrary structure could require an

expensive solution of the complete Maxwell equations, evaluated to high accuracy

in order to distinguish the tiny re
ected �eld in a well-designed gradual taper. In

the present case, however, the fact that the structure isnearly periodic (slowly-

varying) and the re
ection is consequently small, can be exploited to utilize a fast

semi-analytical method based oncoupled-mode theory.
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Coupled-mode theory, also known ascoupled-wave theoryor the slowly-varying en-

velope approximate(SVEA), involves an expansion of the electromagnetic �eld along

the waveguide taper in terms of the eigenmodes (indexed byk) of a uniform periodic

waveguide matching the cross-section at each point. The expansion coe�cients ck in

this basis are then determined by a set of ordinary di�erential equations for dck /d z

along the taper direction (z), where the di�erent modes are coupled by terms propor-

tional to the rate of change of the structure. Because the structure is slowly varying,

the expansion coe�cients approach an `adiabatic' limit in which the ck are nearly

constant. In this limit, the equations can be integrated approximately, to �rst-order

in the taper rate, to yield a simple integral for the re
ection coe�cient. (Re
ection

dominates the loss in slow-light tapers.)

The most common form of coupled-mode theory was developed for nearly uniform

waveguides [148] but has recently been generalized to strongly periodic waveguides of

the type considered in this chapter [102]. The results of a simple �rst-order calculation

were found to be nearly exact as long as the re
ections were under 10%, making them

ideal for the present case where the taper designs all have re
ections well under 1%.

In particular, coupled-mode theory of a taper shapes(u) with length L leads to a

�rst-order re
ection amplitude cr , where the fraction of re
ected power isR = jcr j2,

given by an integral of the form:

cf s(u)g =
Z 1

0
du

ds
du

X

k

M k [s(u)]
� � k [s(u)]

eiL
Ru

0 � � k [s(u0)]du0
: (7.12)

Here, M k and � � k are given functions of the taper parametrizations. That is,

each s denotes a given intermediate periodic structure,M k(s) is a complex-valued

coupling coe�cient determined from the eigen�elds of that structure, and � � k is a

real phase-mismatch factor. The summation must in principle run over all integers

k, but in practice only a handful of terms are required becausethe contributions

decrease rapidly withk. (In particular, � � k(s) = � � (s) + 2 �k= �( s), where �( s) is

the variable period along the taper.)

The derivation of these coupled-mode equations is rather complicated and will not
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be reproduced here1. The key point, however, is that the full Maxwell equations need

only be solved once: a set of small calculations for the eigenmodes of the periodic

structures at eachs, by a spectral method [107], yields the functionsM k(s) and

� � (s). One can then re-use these functions to compute the re
ection for any taper

shapes(u) and any length L by a single integral, which allows quick exploration and

optimization over many di�erent shapes.

The equations are the same regardless of the dimensionalityof the problem, and

have previously been used by Povinelli et al. to compute taper re
ections and perform

simple optimizations in large three-dimensional structures where direct simulation was

not possible [186].

7.4.2 Coupled-mode re
ection gradient

To carry out taper shape optimization we need to evaluate notonly the re
ection

magnitude R but also its functional derivative (gradient) @R=@s. In general, such

gradients can be computed by an adjoint method [32], but in this case the prob-

lem is simple enough that one can derive the same thing without resorting to such

cumbersome techniques.

In particular, since R = jcr j2 and cr is a summation overk, it su�ces to compute

the gradient of eachk term in the summation equation forcr above. Dropping thek

subscript for simplicity, eachk term corresponds to the functional:

cf s(u)g =
Z 1

0
dus0(u)F [s(u)]e

Ru
0 f [s(u0)]du0

; (7.13)

where F (s) = M k(s)=� � k(s) and f (s) = iL � � k(s). The gradient g(u) of this

functional is de�ned by the �rst-order change ofcf s(u)g under a small change�s (u)

(where �s (0) = �s (1) = 0 to preserve the boundary conditions):

�c = cf s + �s g � cf sg =
Z 1

0
g(u)�s (u)du: (7.14)

1The original derivation [102] did not include an explicit shape function s(u). However, it was
noted that the coupling matrix elements were simply proportional to the taper rate, and this is what
allows us to pull out the taper-rate dependence as ans0(u) term in the integral
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The explicit gradient g can be derived by substitutings+ �s into c, dropping terms

higher than �rst-order in �s , and integrating by parts to eliminate the�s 0 term. After

some algebra, one obtains:

g(u) = � F [s(u)]f [s(u)]e
Ru

0 f [s(u0)]du0
+ f 0[s(u)]

Z 1

u
d~us0(~u)F [s(~u)]e

R~u
0 f [s(~u)]du0

; (7.15)

which is a single integral in terms ofs(u) and the known functions F and f

and their derivatives, which means that the gradient can be evaluated with roughly

the same cost as evaluatingcf s(u)g (similar to what one would expect for adjoint

methods).

In practice, of course, in�nitely many degrees of freedom are not present ins(u).

As explained in Ch. 7.3.4, a piecewise-linear parametrization s(u) =
P

i x i f i (u), for

'tent' functions f i (u) and parametersx i , is employed. One therefore needs only the

�nite-dimensional gradient with respect to thex i :

@c
@xi

=
Z 1

0
g(u)f i (u)du: (7.16)

The gradient of the re
ection R is then found by �rst summing @c=@xi over k to

obtain @cr =@xi , and then @R=@xi is the real part of 2c�
r @cr =@xi .

7.4.3 Brute-force veri�cation

Because coupled-mode theory involves some approximations, it is also desirable to

directly solve the Maxwell equations, with no assumptions,in order to verify the

correctness of the solutions. Such a direct solution allowsone to consider the e�ect

of imperfections that violate the slow-taper assumption underlying coupled-mode

theory; in particular, one can include rapid small variations in the structure cor-

responding to fabrication imperfections (e.g., surface roughness). We use two dif-

ferent computational methods to validate the coupled-modetheory: the �rst is an

eigenmode-expansion, or transfer-matrix, method that is implemented in a free soft-
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ware package called CAMFR [21, 22], the second is our Meep software package for

FDTD simulations described in Chapter 4.

CAMFR works by expanding the �elds at everyz in terms of the eigenmodes of

that cross-section, with perfectly-matched layer (PML) absorbing boundaries in the

lateral directions [17]. In this sense, it is related to the classic coupled-mode method

mentioned above [148]. Unlike the �rst-order integration above, however, CAMFR

makes no assumption of small scattering or slow variation, and computes a complete

transfer matrix at each point where the cross-section changes that couples all the

modes according to the continuity conditions on the electromagnetic �eld. In this

sense, it is a `brute-force' method: it solves the complete Maxwell equations with no

assumptions, to an arbitrary accuracy given enough computational time and memory

(i.e. a large enough eigenmode basis).

Moreover, CAMFR imposes the incident-wave boundary conditions (at z = 0 and

z = L) analytically, thanks to its eigenmode basis, and hence candistinguish even a

tiny re
ection coe�cient with high accuracy. It is most e�ec tive, however, when the

two ends of the simulation are terminated by semi-in�nite uniform waveguide, and

so the CAMFR simulations are performed using a double taper,which tapers from

uniform to periodic, then �ve periods in the periodic structure, and then tapers back

from periodic to uniform.

7.4.4 Worst-case re
ection magnitude

The problem of �nding the worst, or at least a bad, value of theparameter� 2 V , for

a given taper shapes, is calledpessimizing, since the goal is to �nd the least favorable

value of the parameter for the given shape. WhenV is �nite, exact pessimizing can be

carried out by evaluatingR under each scenario and taking the largest value found.

When V is in�nite it is di�cult to compute the exact value of the wors t-case

re
ection magnitude

Rwc(s) = sup
� 2V

R(s; � )
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along with a (worst-case) parameter� � that achieves this supremum, since in

generalR(s; � ) is not concave in� (and V need not be convex). Options for pessimiz-

ing include direct search methods [119, 168, 238], or any standard local optimization

method such as sequential quadratic programming methods [76, 171]. With any of

these methods, the algorithm is run from a number of startingpoints in V; the largest

value of R found is then an estimate ofRwc.

When V is a box (1), one can easily guess a value of� that often leads to large

(if not largest) R. The gradient of R with respect to � is evaluated at � nom ; the

approximate pessimizer is then

� �
i �

8
<

:

� nom;i + � i ; @R=@�i > 0

� nom;i � � i ; @R=@�i < 0

(This is the maximizer of the �rst-order approximation of R over V.) This point

can, of course, be used as the starting point for a local optimization method.

7.5 Numerical results

In this section some numerical results for a particular structure are presented. The

details of the optimization algorithms are discussed in ourprevious publication else-

where [165].

7.5.1 Taper geometry and uncertainty model

The two dimensional taper depicted in Fig. 7-1 (c), similar to the one considered

in Ref. 102 and identical to the structure considered by Mutapcic et al. [165], is

optimized, in order to have a structure where the brute-force CAMFR method is

e�cient (and thus can be used to validate the coupled-mode theory for a large number

of values of the parameters). The periodic structure is a sequence of dielectric blocks

with period � 0, size 0:4� 0 � 0:4� 0, and dielectric constant " = 12. The blocks

are surrounded by air (" = 1). The electric �eld is polarized perpendicular to the

2d plane (`TM' polarization). As described in Ref. 102, thisstructure supports true
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localized guided modes by the mechanism of index-guiding [65], and has a zero{group-

velocity band edge at a frequency of! � 0=2� = 0:2434. The operating frequency is

! � 0=2�c = 0:23, 2 which is slightly below the band edge, where the group velocity is

under c=4 and the waveguide is single-mode at every point along the taper.

A uniform waveguide width of 0:4� 0, which can be treated as a sequence of (touch-

ing) blocks with period 0:4� 0, is tapered to the periodic structure by gradually spread-

ing the blocks apart. That is, their period varies as �(s) = � 0[s+ 0:4(1� s)], so that

s = 0 corresponds to the uniform structure with pitch 0:4� 0 and s = 1 corresponds

to the periodic structure with pitch � 0. The problem is then to determine the func-

tion s describing how fast the period (pitch) varies along the taper. The taper will

be optimized individually at each length from 1 to 100 with maximum shape value

Smax = 1, and maximum slopeD max = 5.

On physical grounds, one expects the optimal taper to be morerapid at the u = 0

corresponding to the uniform waveguide where the group velocity is larger, and to be

more gradual at theu = 1 end corresponding to the periodic waveguide where the

group velocity is low (and thus the structure is more sensitive to small changes [186]).

This is precisely what is found, below, although the exact taper rate is di�cult to

predict a priori .

The following parameter uncertainty model is used. The taper length varies 1%

around its nominal value (Mutapcic et al. [165] had previously considered a 1% vari-

ation of the operating frequency while using the same coupling coe�cients in the

coupled-mode theory for all frequencies which we have determined to be inaccurate

and thus avoided); variation in the taper shape function is bounded at each grid point

by � 0:001 around the current value, with the perturbed shape within the bounds 0

and 1. The shape variation is meant to model, for example, manufacturing variation.

2It is convenient to use dimensionless frequency units of 2�c= � 0, where c is the speed of light in
vacuum, due to the scale invariance of Maxwell's equations [99].
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Figure 7-5: Comparison of coupled-mode theory and brute force veri�cation method
(CAMFR [21, 22]) for a linear taper from length of 1 taper period through 100.
The excellent agreement between the fast coupled-mode theory semi-analytical solver
(blue circles) and the much slower brute-force method (red squares) to compute the
objective function permits use of the former to quickly explore a large parameter
space in the robust optimization.

7.5.2 Pessimizing method

The following method is used to carry out approximate worst-case analysis. At each

of 11 values of the taper length, uniformly spaced over the interval of 1% around its

nominal value, the approximate worst-case shape perturbation at the current point s

is found using the derivative heuristic as described in Ch. 7.4.4, i.e.

s� (u) =

8
<

:

minf s(u) + 0 :001; 1g; @R=@s(u) > 0

maxf s(u) � 0:001; 0g; @R=@s(u) < 0

(The worst-case shape perturbation depends on the taper length L.) The re
ec-

tion magnitude is evaluated for each taper lengthL with its associated approximate

worst-case taper shape. The result is the approximate worst-case re
ection over the

shape uncertainty; maximizing over the 11 values of the taper length yields the ap-

proximation of Rwc.
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Figure 7-6: Comparison of brute force computation (solid circles) and coupled-mode
theory (hollow circles) of re
ections from nominal taper designs optimized for each
taper length. The performance of the nominal taper is clearly ruined by the slight
pixellization e�ects introduced by the brute-force solver.

We cannot claim that this pessimization heuristic gives thetrue worst-case value.

However it has been tested extensively, by attempting to �ndworse parameter values

using other methods, such as derivative-free optimization, SQP, and simply sampling

random parameter values inV. In no case was a signi�cantly worse value of the

parameter found.

7.5.3 Optimization

Tapers were found using the nominal taper shape (NTS) and robust taper shape

(RTS) algorithms as described in Ref. 165, with the following parameters: initial

� = 0:1Smax , � min = 0:001Smax , � max = 0:5Smax , � decr = 0:75, � incr = 1:25, and

N max = 150, terminating also if no improvement is made. 10 iterations of successive

re�nement are used, with evenly-spaced grid points, which results in a �nal taper

with n = 1023 grid points. Global optimization is carried out during the �rst step of

the successive re�nement, after which the obtained shape isused to construct initial

184



0 10 20 30 40 50 60 70 80 90 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

taper length (periods)

re
fle

ct
io

n 
fr

om
 d

ou
bl

e 
ta

pe
r

 

 

linear taper

nominal taper design

robust taper design

Figure 7-7: Brute force computation of re
ections from linear (green), nominal (blue)
and robust (red) taper designs for each length. The superiorperformance of the robust
tapers, showing an exponential decrease of the re
ection atshorter taper lengths
before reaching a noise 
oor, is evident under the slight perturbation introduced by
the brute-force solver's pixellization.

points for the subsequent steps.

The NTS algorithm, and the multi-scenario taper shape (MSTS) algorithms car-

ried out in each iteration of the RTS algorithm, usually terminate in 50-70 steps,

due to no improvement in objective value. The RTS algorithm converged around

30-40 steps (each of which consisted of an approximate worst-case analysis and a

multi-scenario optimization). For the highest level of re�nement, the RTS algorithm

required a total of around 2000 basic iterations (each requiring an approximate worst-

case analysis, the solution of an LP, etc.).

The algorithms were implemented in Matlab, solving the update step subproblems

using CVX [77], which calls the SeDuMi solver [211]. The subproblem calculation for

the NTS algorithm with n = 1023 variables (the last step in successive re�nement)

takes about a second, while the subproblem calculation for the MSTS algorithm with

n = 1023 and K = 50 scenarios takes about ten seconds (on a personal computer).

Solving the NTS problem required a total of around 40 seconds, and solving the RTS
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problem required a total of around 20 minutes. Had algorithms been implemented in

C, using a custom LP solver for the particular structure thatarises in these problems,

these times would likely have been far smaller, by a factor exceeding 10.

7.5.4 Results

Figure 7-5 shows the re
ections from a linear taper structure spanning taper lengths

1 to 100 computed using two di�erent methods: the slow, exact(apart from dis-

cretizations), brute-force CAMFR method and the much faster, approximate, semi-

analytical coupled-mode theory. (In order to minimize numerical errors from the

boundaries in the simulations the double taper setup as described in [102] Ch. 7.4 is

used.) The excellent agreement between the two methods con�rms the validity of the

coupled-mode theory which, given its speed, is used in the optimization algorithms.

Coupled-mode theory's ability to quickly and accurately evaluate the taper re
ection

objective function thus permits exploration of a large design parameter space.

The nominal taper designs, on the other hand, show very di�erent performance

as illustrated in Fig. 7-6. The delicate interference e�ects give rise to taper designs

that have low re
ections using coupled-mode theory, but in the presence of slight

perturbations (e.g. the pixellization e�ects of the brute-force solver) their performance

is degraded by as much as four orders of magnitude at certain taper lengths.

The robust taper designs outperform the linear and nominal taper designs at all

taper lengths as demonstrated in Fig. 7-7. The optimal robust design has a re
ection

coe�cient that is nearly two orders of magnitude lower than the nominal design,

and almost three orders of magnitude lower than the simple linear design under the

slight pixellization e�ects introduced by the discrete brute-force solver. Among all the

parameters used in the robust optimization, the taper-slope trust region was found to

be dominant for producing smooth taper shapes without strange features. This was

true regardless of the inclusion of taper slope constraintsand modi�cations to the

number of iterations of the multi-scenario taper shape algorithm ( N max ) and robust

taper algorithm.

An investigation of the taper pro�les produced by the nominal and robust taper
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Figure 7-8: Taper pro�les of linear (green), nominal (blue)and robust (red) designs
for taper length of 20. The slow-light, periodic waveguide structure is at u = 0 on the
left and the standard, strip waveguide is on the right of the axis. Note the delicate
features of the nominal taper which arise from sensitive interference e�ects. The
robust taper pro�le varies more gradually and has superior performance under the
slight pixellizations e�ects of the brute-force solver.

shape optimization algorithms provides insight into theirperformance. Figure 7-8

shows the linear, nominal and robust taper pro�les designedat a taper length of 20.

The nominal taper design has very �ne, non-robust features that arise from delicate

interference e�ects required to produce small re
ections.The robust taper design

varies more gradually and thus should be expected to tolerate slight perturbations as

its performance con�rms.

7.6 Conclusions

In this chapter, an approach to non-convex robust optimization has been reviewed

that was �rst presented by Mutapcic et al. [165], which is applied to the challenging

problem of designing robust taper transitions to 'slow-light' periodic waveguides. The

robust optimization algorithm is based on multi-scenario optimization with iterative
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sampling of uncertain parameters, and uses fast and accurate coupled-mode compu-

tations in order to quickly explore di�erent taper designs. The approach also uses

the idea of successive re�nement in order to avoid poor locally optimal points and to

improve design robustness to taper shape uncertainty.

Numerical experiments verify that the obtained robust tapers perform well under

the slight pixellization e�ects introduced by the brute-force solver, while the optimized

tapers that do not take parameter variation into account perform quite poorly. An

inspection of the taper shape pro�les provides clear insight into their performance

as only smooth designs lacking �ne features are insensitiveto slight perturbations.

The parameters having the dominant e�ect on producing suitable robust taper shapes

have also been identi�ed.

In the future, we aim to further extend the techniques reviewed in this chapter to

more complicated 3d taper structures where brute-force calculation of the objective

function would be intractable. Our hope is to design robust tapers for complicated

geometries that can ultimately be fabricated, tested and deployed in real-world ex-

periments.
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Chapter 8

Conclusion

This thesis has explored a number of areas relevant in the computation and design

of nanophotonics. The �rst half was devoted to resolving keyissues limiting the use

of large, bulky simulations in computational electromagnetism for device optimiza-

tion. We developed a novel subpixel smoothing algorithm, for both isotropic and

anisotropic media, based on rigorous analytical argumentsand demonstrated its su-

perior performance over that of previously published results. Our method restores the

quadratic accuracy of the underlying second-order �nite di�erences and thereby per-

mits simulations with high accuracy at low resolutions and thus computational cost.

Next we demonstrated the irrecoverable failure of perfectly matched layer (PML) ab-

sorbing boundaries for a number of important problems and proposed a workaround

involving adiabatic absorbers. We demonstrated the fundamental connection between

re
ections from any type of absorber, PML or non-PML, by making a link with the

smoothness of the absorption pro�le. From these fundamental properties of PMLs,

we then introduced a simple method to verify the correctnessof any PML formulation

and demonstrated its utility by proposing and validating a uniaxial-PML (UPML)

formulation for anisotropic media in FDTD simulations. We then incorporated these

and many other enhancements into a 
exible, free-software package for electromag-

netism, Meep, that is becoming increasingly popular in the optics community. Meep

is an implementation of the FDTD method that has a rich set of features and func-

tionalities and continues to evolve. The second half of thisthesis was devoted to the
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design of nanophotonic devices. We used topology optimization to design cladding

structures for holey-photonic crystal �bers having a low-index contrast which now

permits a new class of materials known as chalcogenide glasses to be used to fabri-

cate such �bers. Finally, we developed fast, semi-analytical tools to design adiabatic

tapers for coupling to slow-light modes of a photonic-crystal waveguide. The tapers

were designed with careful performance metrics to withstand small manufacturing

and operational perturbations. These robust tapers were shown to be a signi�cant

improvement over nominal tapers that were not designed withthese principals in

mind. Several enhancements relating to PDE-constrained optimization were intro-

duced to overcome technical challenges in the design of suchtaper structures. The

tools and design methodologies described in this thesis canbe readily extended to

other problems in electromagnetism. It is our hope that the work presented here has

opened new lines of inquiry and will continue to be developedand improved upon by

future generations of researchers.
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