18.06 - Spring 2005 - Problem Set 2

Solution to the Challenge Problem

Denote by C_{ij} the $n \times n$ matrix having a 1 in the (i, j) entry, and 0's everywhere else. In terms of these matrices we may write $E_{ij} = I - \ell_{ij}C_{ij}$ and $E_{ij}^{-1} = I + \ell_{ij}C_{ij}$. Thus we have

$$ME_{ij}^{-1} = M(I + \ell_{ij}C_{ij}) = M + \ell_{ij}MC_{ij}$$

The matrix MC_{ij} has all columns different from the j-th consisting entirely of 0's. The *j*-th column of MC_{ij} is simply the *i*-th column of M. Since the matrix E_{ij} is a lower triangular matrix we have i > j, and since M is only filled in up to column j, the i-th column of M has exactly one 1 in the i-th row and 0's everywhere else. Therefore the matrix MC_{ij} has exactly one non-zero entry in position (i, j) and this entry is a 1, i.e. $MC_{ij} = C_{ij}$. We conclude that $ME_{ij}^{-1} = M + \ell_{ij}C_{ij} = N$, as required.

The effect of *right* multiplication by E_{ij}^{-1} on a matrix M is to leave the columns of M different from the j-th one unchanged, and replacing the j-th column of M by the sum of the j-th column of M with ℓ_{ij} times the i-th column of M.