18.06 - Spring 2005 - Problem Set 3

Solutions to the Challenge Problems

Problem 1

a) The column space is the space of all vectors whose last $m-r$ coordinates are zero. This is clear since the rank of the matrix R is r and the first r columns of R are independent.

Denote by $f_{i j}$ the entry in the (i, j) position in F. The nullspace of R is the space of all linear combinations of the $n-r$ vectors

$$
\left(\begin{array}{c}
-f_{11} \\
-f_{21} \\
\vdots \\
-f_{r 1} \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
-f_{12} \\
-f_{22} \\
\vdots \\
-f_{r 2} \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
-f_{1(n-r)} \\
-f_{2(n-r)} \\
\vdots \\
-f_{r(n-r)} \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Clearly these vectors are linearly independent and therefore the dimension of the nullspace is $n-r$.
b) The column space of the matrix B is the same as the column space of R.

Denote by $g_{i j}$ the entry in the (i, j) position in the $r \times(2 n-r)$ matrix $G:=\left(\begin{array}{lll}F & I & F\end{array}\right)$. Note that we have $B=\left(\begin{array}{cc}I & G \\ 0 & 0\end{array}\right)$. The nullspace of B is the space of all linear combinations of the $2 n-r$ vectors

$$
\left(\begin{array}{c}
-g_{11} \\
-g_{21} \\
\vdots \\
-g_{r 1} \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
-g_{12} \\
-g_{22} \\
\vdots \\
-g_{r 2} \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
-g_{1(2 n-r)} \\
-g_{2(2 n-r)} \\
\vdots \\
-g_{r(2 n-r)} \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

In terms of the matrix F we may write the same vectors as

These vectors are clearly linearly independent, and therefore the nullspace of B has dimension $2 n-r$.
c) The column space of C is the space of vectors in $2 m$-dimensional space whose coordinates b_{i} satisfy the equations

$$
\begin{aligned}
b_{i} & =b_{i+m} & & 1 \leq i \leq m \\
b_{j} & =0 & & r+1 \leq j \leq m
\end{aligned}
$$

i.e. they are the vectors of the form

$$
\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{r} \\
0 \\
\vdots \\
0 \\
b_{1} \\
\vdots \\
b_{r} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace of C is the same as the nullspace of R.
d) The column space of D is the same as the column space of C.

The nullspace of D is the same as the nullspace of B.

Problem 2

a) The nullspace of A is contained in the nullspace of A^{2}. The reason is that if $A x=0$, i.e. if x is in the nullspace of A, then $A^{2} x=A \cdot(A x)=0$. Thus x is also in the nullspace of A^{2}. Similarly we have

$$
N(A) \subset N\left(A^{2}\right) \subset N\left(A^{3}\right) \subset \ldots
$$

Note that one can prove that if A is an $n \times n$ matrix, then one has $N\left(A^{n}\right)=$ $N\left(A^{n+1}\right)=\ldots$.
b) The nullspace is by definition the set of all vectors v such that $\frac{d^{2}}{d x^{2}} v=0$. This means that the polynomial v must be linear: $v=c x+d$. Thus the nullspace is the space of polynomials of degree at most one.
The nullspace of $\left(\frac{d^{2}}{d x^{2}}\right)^{2}$ is the nullspace of the composition of $\frac{d^{2}}{d x^{2}}$ with itself: it is the nullspace of $\frac{d^{4}}{d x^{4}}$. Thus the nullspace of $\frac{d^{4}}{d x^{4}}$ is the space of all polynomials of degree at most three: $v=a x^{3}+b x^{2}+c x+d$.

