Solution to 18.06 Challenge Problem Set 5, Spring 2005

1. Minimize
$$\int_0^1 (c+dt-t^2)^2 dt = \int_0^1 (c^2+2cd+d^2t-2ct^2-2dt^3+t^4) dt$$

$$= c^2+cd+\frac{1}{3}d^2-\frac{2}{3}c-\frac{2}{4}d+\frac{1}{5}$$

c-derivative:
$$2c + d = \frac{2}{3}$$

d-derivative: $c + \frac{2}{3}d = \frac{2}{4}$

Solution: $c = -\frac{1}{6}$ and d = 1: Best line $y = t - \frac{1}{6}$.

Note: Dividing by 2 shows the 2 by 2 Hilbert matrix with $h_{ij} = 1/(i+j-1)$:

$$\mathtt{hilb}(2) = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}$$

2. The 10 by 2 matrix is $A = [ones(10,1) \quad (1:10)'/10]$ and the column vector is b = (1:10)'.*(1:10)'/100.

$$A^{\mathrm{T}}A\begin{bmatrix}C\\D\end{bmatrix} = A^{\mathrm{T}}b$$
 is $\begin{bmatrix}10&5.5\\5.5&3.85\end{bmatrix}\begin{bmatrix}C\\D\end{bmatrix} = \begin{bmatrix}3.85\\3.02\end{bmatrix}$ giving $\begin{bmatrix}C\\D\end{bmatrix} = \begin{bmatrix}-.22\\1.1\end{bmatrix}$.

3. The same calculation with 10 changed to 20 (and 100 to 400) comes closer to $c=-\frac{1}{6}, d=1$:

$$\begin{split} A^{\mathrm{T}}A \begin{bmatrix} C \\ D \end{bmatrix} &= A^{\mathrm{T}}b \quad \text{is} \quad \begin{bmatrix} 20 & 10.5 \\ 10.5 & 7.175 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} &= \begin{bmatrix} 7.175 \\ 5.5125 \end{bmatrix} \\ \text{giving} \quad \begin{bmatrix} C \\ D \end{bmatrix} &= \begin{bmatrix} -.1925 \\ 1.0500 \end{bmatrix}. \end{split}$$

The error in comparing D to d=1 dropped from .1 to .05 (exactly in half). The error in comparing C to $c=-\frac{1}{6}$ dropped from c-C=.0533 to c-C=.0258 (almost exactly half).