
18.06 - Final Exam, Monday May 16th, 2005 

solutions


1.	 (a) We want the coordinates (ai1, . . . , ain) to satisfy the equation c1x1 + . . . + cnxn = 1;  thus  
the system of equations we want to solve is Ac = ones: 

c1a11 + c2a12 + . . . + cna1n = 1  

c1a21 + c2a22 + . . . + cna2n = 1  

. . .  

c1an1 + c2an2 + . . . + cnann = 1  

(b) There is no plane of the given form, if one of the points Pi is the origin. In R3 an example 
is given by the points (0, 0, 0), (1, 0, 0) and (0, 1, 0): they lie in the (unique) plane x3 = 0  
and this plane does not have the required form. 

More than one plane contains the Pi’s if the three points are on a line not through the origin. 

(c) There is not a unique solution precisely det A = 0. This means geometrically that the 
points Pi lie in an (n − 1)−dimensional subspace of Rn . 

2.	 (a) Subtracting the first row from the second, we find the matrix 
⎡	 ⎤ 

1 2 3 4 5  ⎦U = ⎣ 0 0 0 0 1  . 
0 0 0 0 0  

(In the row reduced echelon form R, the 5 changes to 0.) The pivot variables are the first 
and the last, while the remaining ones are the free variables. Thus the “special solutions” 
to Ax = 0  are  ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ −2 −3 −4 ⎢ 1 ⎥ ⎥ ⎢ 0 ⎥⎢ 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎥ ⎥ ⎥⎢ 0 , ⎢ 1 , ⎢ 0 . ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ 0 ⎦ ⎦ ⎣ 1 ⎦⎣ 0 

0 0 0 

(b) and (c) We need to prove that these three vectors are linearly independent and they 
span the nullspace. By considering the second, third and fourth coordinates, a combination 
of the vectors adding to zero must have zero coefficients. The vectors span the nullspace, 
since the dimension of the nullspace is three (note that the rank of the matrix A is 2). 

3.	 (a) The condition that Ax = b has no solution means that the column space of A has 
dimension strictly smaller than m. In particular, the rank is r <  m. Since  ATy = c has 
exactly one solution, the columns of AT are independent. This means that the rank of AT 

is r = m. This contradiction proves that we cannot find A, b and c. 
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(b) We need to check two statements: the vector b − p is orthogonal to the space generated 
by a1, . . . , an and the vector p lies in that subspace. The first condition we check by seeing if 
the scalar products a1 · (b− p), . . . , an · (b− p) all equal zero. The second condition we check 
by considering the (n + 1)  × m matrix whose first n rows are the coordinates of the ai’s and 
whose last row consists of the coordinates of p. The vector p is in the span of the ai’s if and 
only if the last row becomes the zero row at the last step of elimination. 

4. (a) To compute the determinant, subtract the second row from all the other rows: 

⎡ ⎤ ⎡ ⎤0 1 0 0  
1 1 1  ⎢ 1 ⎥1 1 1  

det B = det  ⎢ ⎥ = − det ⎣ 0 1 0  ⎦ = −1 . ⎣ 0 ⎦0 1 0  
0 0 1  

0 0 0 1  

(b) λ = 1, 1, 1, 1, 6. Since A − I has all equal rows, it has rank one. It follows that it has 
four zero eigenvalues. The eigenvalues of A are the eigenvalues of A − I increased by one, 
so A has the eigenvalue 1 with multiplicity four. The trace of A equals 10 so 10 − 4 =  6  is  
an eigenvalue. 

(c) A is symmetric, and thus so is A−1 . The cofactor formula gives: 

(A−1)13 = (−1)1+3 det B 
,

det A 

and det A = 6 since it equals the product of the eigenvalues of A. We conclude that the 
(1, 3) and the (3, 1) entries of A−1 are both equal to −1/6. 

5. (a) The matrix A is the matrix 
2 6  

A = . −1 7  

Let a b  be the second row of the matrix A. Since  x1 is an eigenvector, it follows that 
Ax1 = λ1x1 and 

3 12 
Ax1 = λ1 = . 

1 3a + b 

We deduce that λ1 = 4 and therefore that 3a + b = 4. Similarly, since x2 is an eigenvector 
we have [ ] [ ] 

2 10 
Ax2 = λ2 = . 

1 2a + b 

We deduce that λ2 = 5 and therefore that 2a+b = 5. We conclude that a = −1 and  b = 7.  

(b) B = SΛS−1, where  S is the matrix whose columns are the vectors x1 and x2 and Λ is 
the diagonal matrix with entries 1 and 0: 

[ ] [  ] [  ] [ ] 

B = 
3 2  
1 1  

1 0  
0 0  

1 
−1 

−2 
3 

= 
3 
1 

−6 
−2 

. 

= SΛ10S−1It follows that Λ10 = Λ and therefore that B10 = SΛS−1 = B. 
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6. (a) We would solve the equations 

c
c
c
c0 + c1 + c2 + c3 = y1 

0 + i c1 − c2 − i c3 = y2 

0 − c1 + c2 − c3 = y3 

0 − i c1 − c2 + i c3 = y4 . 

and the matrix of coefficients is ⎡ ⎤ ⎡ ⎤ 
1 1 1 1 1 1 1 1 

F = 
⎢ ⎢ ⎣ 

1 
1 

i 
−1 

−1 
1 

−i 
−1 

⎥ ⎥ ⎦ = 
⎢ ⎢ ⎣ 

1 
12 

i 
i2 

i2 

i4 
i3 

i6 
⎥ ⎥ ⎦ . 

1 −i −1 i 13 i3 i6 i9 

(b) F has orthogonal columns and it is symmetric. It is also a Vandermonde matrix: each 
column consists of the first four powers of a number (starting from the zero-th power). 

(c) Since the columns of F are orthogonal and non-zero, the matrix is invertible. Its in-
verse is F/4. The determinant of this Vandermonde matrix is equal to the product of the 
differences of 1, i, i2, i3: 

det F = (i − 1)(−1 − 1)(−1 − i)(−i − 1)(−i − i)(−i + 1)  =  −16i .  

7. (a) The seven eigenvalues of P are 1, 1, 1, 1, 0, 0, 0. 

(b) The eigenvectors with eigenvalue 1 are the non-zero vectors of S. The eigenvectors with 
eigenvalue 0 are the non-zero vectors in the orthogonal complement of S. 

(c) The solution u(t) to the differential equation has the form 

u(t) =  v1e −t + v2 , 

where v1 is a vector in S and v2 is a vector in the orthogonal complement of S. We deduce 
that u(∞) =  v2, and it is therefore equal to the orthogonal projection of u(0) onto the 
orthogonal complement of S. 

8. (a) Let P be the matrix ⎡ ⎤ 
1 0 0 0  ⎥⎢ 0 0 1 0  ⎢ ⎥ . ⎦⎣ 0 1 0 0  
0 0 0 1  

Then we easily check that P is the required matrix. 

(b) Since B is block diagonal, its eigenvalues are the eigenvalues of the diagonal blocks. In 
our case, the two blocks are the same and the eigenvalues of each block are 3 and 1. Thus 
the eigenvalues of B are 3, 3, 1, 1. 

(c) Since P is a permutation matrix, it is orthogonal and therefore P T = P−1 . The matrix 
B is thus similar to the matrix A and we conclude that A and B have  the same eigenvalues.  
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The function of u, v, w, z which is positive except if u = v = w = z = 0  is  thus  ⎡	 ⎤ 
u [ ] ⎢ v ⎥ (


2 + v
2 + w
2 + z
2 − uw − vz .u v w z 
 ⎢	 ⎥ = 2A u ⎣ w ⎦ 

z 

9.	 (a) The vectors orthogonal to the nullspace of A are the rows of A. Since we know that the 
matrix A is singular and it is clearly not rank one, it follows that the rank of A is two. The 
first two rows are independent and therefore the orthogonal complement of the nullspace of 
A is spanned by the two vectors ⎡ ⎤ ⎡ ⎤ 

1 2 ⎣ 3 ⎦ ⎦and ⎣ 2 . 
7 6 

(b) We get the vectors ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
1 2 0

1 1 ⎣ 2 ⎦ , √ ⎣	 ⎣ 0 ⎦0 ⎦ and . 
3 52 −1 0 

(c) The “reduced” LU decomposition, from ignoring the zero row in U , is  ⎡ ⎤ 
1 0  

1 3 7 ⎦Answer A = ⎣ 2 1 	 . 
0 −4 −8 

2 5
4 

Here are the details: Starting to perform elimination we find ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
1 0 0 1 3 7  1 3 7 ⎣ −2 1 0  ⎦ ⎣ 2 2 6  ⎦ = ⎣ 0 −4 −8 ⎦ , (1) 

−2 0 1  2 1 4  0 −5 −10 

and proceeding further we find ⎡ ⎤⎡ ⎤ ⎡ ⎤ 
1 0 0 1 3 7 1 3 7 ⎣ 0 ⎦⎣ 0 ⎦1 0 −4 −8 ⎦ = ⎣ 0 −4 −8 . 
0 −
5

4
1 0
 −5 −10
 0 0 0 

Collecting all the information together we obtain ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
1 3 7  1 0 0  1 0 0  1 3 7 ⎣ 2 2 6  ⎦ = ⎣ 2 1 0  ⎦ ⎣ 0 1 0  ⎦ ⎣ 0 −4 −8 ⎦ , 
2 1 4  2 0 1  0 5

4
1 0 0 0 

and multiplying the first two matrices in the right-hand side we deduce that
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
1 3 7  1 0 0  1 3 7 ⎣ 2 2 6  ⎦ = ⎣ 2 1 0  ⎦ ⎣ 0 −4 −8 ⎦ . 
2 1 4  2 5

4
1 0 0 0
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[ ] [ ] 

Since the last row of the last matrix in the previous expression consists entirely of zeros, we 
conclude that ⎡ ⎤ ⎡ ⎤ 

1 3  7  1 0  [ ] 
1 3 7 ⎣ 2 2  6  ⎦ = ⎣ 2 1  ⎦ . 
0 −4 −852 1  4  2 

4 

This is the “reduced” LU factorization of A. Multiplying columns of L by rows of U , this  is  
⎡ ⎤ ⎡ ⎤ 

1	 0 ⎣ 0 ⎦A = 1 3 7 + ⎣ 1 ⎦ 0 −4 −8 . 
0 5 
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10.	 (a) The eigenvalues of ATA are the same as the eigenvalues of ΣTΣ which  is  the 4×4 diagonal 
matrix with entries 1, 16, 0, 0 along the diagonal. 

(b) The nullspace N (A) is spanned by the last two columns of V . 

(c) The column space of A is spanned by the first two columns of U , and again these two 
vectors are independent, since U is invertible. 

(d) Write a singular value decomposition of −AT as −AT = (−V )ΣTU T . 
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