18.06	Professor Strang	Quiz 2	April 1, 2005
			Grading
			1
			2
Your	PRINTED name is: _		3
			4
			5
			6

1 (17 pts.) If the output vectors from Gram-Schmidt are

$$q_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $q_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

describe all possible input vectors a_1 and a_2 .

2 (15 pts.) If a and b are nonzero vectors in \mathbb{R}^n , what number x minimizes the squared length $||b - xa||^2$?

3 (17 pts.) Find the projection p of the vector b = (1, 2, 6) onto the plane x + y + z = 0in \mathbb{R}^3 . (You may want to find a basis for this 2-dimensional subspace, even an orthogonal basis.)

4 (17 pts.) Find the determinants of A and A^{-1} and the (1, 2) entry of A^{-1} if

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 3 \\ 1 & 3 & 1 & 7 \end{bmatrix}.$$

5 (17 pts.) By recursion or cofactors or otherwise(!) compute the determinant of this
5 by 5 circulant matrix C:

$$C = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$

6 (17 pts.) Suppose P_1 is the projection matrix onto the 1-dimensional subspace spanned by the first column of A. Suppose P_2 is the projection matrix onto the 2dimensional column space of A. After thinking a little, compute the product P_2P_1 .

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}.$$