18.06 Final Exam, Spring, 2001

Name	Optional Code	
Recitation Instructor	Email Address	
Recitation Time		
This final exam is closed book and closed	notes. No calculators, laptops, cell phones or other	
electronic devices may be used during the ex	kam.	
There are 6 problems.		
Additional paper for your calculations is pro	ovided at the back of this booklet.	
Good luck.		

Problem	Maximum Points	Your Points
1.	15	
2.	15	
3.	15	
4.	20	
5.	20	
6.	15	
Total	100	

1. (15pts.)

(a) Show that the system S:

has no solutions if b = 0 or a = b.

- (b) Calculate the solution for $a=2,\ b=1.$
- (c) Find a general formula for the solution of the system S for $b \neq 0$ and $a \neq b$.

Additional paper for your calculations at the back of this booklet.

- 2. (15pts.)
 - (a) Decide whether or not the following vectors form a basis for \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}.$$

(b) Find an orthonormal basis for $\mathrm{Sp}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3).$

3. (15pts.) Let

$$A_n = \left(egin{array}{cccccc} a_1 & -1 & 0 & 0 & \cdots & 0 \ 1 & a_2 & -1 & 0 & \cdots & 0 \ 0 & 1 & a_3 & -1 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & 0 & \cdots & 1 & a_{n-1} & -1 \ 0 & 0 & \cdots & 0 & 1 & a_n \end{array}
ight).$$

- (a) Show for $n \geq 3$ that $\det A_n = a_n \det A_{n-1} + \det A_{n-2}$.
- (b) Calculate det A_6 for the cases that (i) $a_j=j$ for all $j=1,\ldots,6$, and (ii) $a_j=6-j$, for all $j=1,\ldots,6$.

- 4. (20pts.) Let U and V be vector spaces.
 - (a) Define the kernel and image of a linear transformation $T: U \to V$.
 - (b) Show that the kernel of T is a subspace of U.
 - (c) Let T be a linear transformation from U to V and let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ form a basis of Ker T. The following steps help you to show that if $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ form a basis of U, then $T\mathbf{u}_{k+1}, \ldots, T\mathbf{u}_n$ form a basis of Im T. So assume that $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ are a basis of U.
 - i. Argue that $T\mathbf{u}_{k+1}, \dots, T\mathbf{u}_n$ are elements of Im T.
 - ii. Show that any element of Im T can be expressed as a linear combination of $T\mathbf{u}_{k+1}, \dots, T\mathbf{u}_n$.
 - iii. Show that $T\mathbf{u}_{k+1}, \dots, T\mathbf{u}_n$ are linearly independent.
 - (d) Deduce a formula relating the dimensions of U, Ker T and Im T.

Additional paper for your calculations at the back of this booklet.

5. (20pts.) Let V be the vector space of polynomials of degree at most 3 with real coefficients. Let T be the map defined by

$$T(f(x)) = \frac{d^2f}{dx^2} + 2\frac{df}{dx}$$

for all $f(x) \in V$.

- (a) Show that T is a linear transformation.
- (b) Find the matrices $_B(T)_B$ and $_C(T)_C$ representing T with respect to the the bases $B=\{1,x,x^2,x^3\}$ and $C=\{1,1+x,1+x+x^2,1+x+x^2+x^3\}$, respectively.
- (c) Find the matrix $C(I)_B$ representing the change of basis from B to C, and verify that $C(T)_C = C(I)_{BB}(T)_{BB}(I)_C$.

6. (15pts.) Let

$$A = \left(\begin{array}{rrr} -3 & 2 & 4\\ 2 & -6 & 2\\ 4 & 2 & -3 \end{array}\right).$$

- (a) Given that one eigenvalue of A is $\lambda_1 = 2$, find the remaining two eigenvalues of A and an eigenvector for each eigenvalue.
- (b) Find an orthogonal matrix P such that P^TAP is diagonal.
- (c) Find an expression for $\exp(A)$.

Additional paper for your calculations at the back of this booklet.

Your calculations for problem $___$.

Your calculations for problem _____.

Your calculations for problem _____.

Your calculations for problem _____.