18.06 Final Exam (Conflict Exam), Spring, 2001

Name	Optional Code	
Recitation Instructor	Email Address	
Recitation Time		
This final exam is closed book and closed	notes. No calculators, laptops, cell phones or other	
electronic devices may be used during the e	xam.	
There are 6 problems.		
Additional paper for your calculations is pro	ovided at the back of this booklet.	
Good luck.		

Problem	Maximum Points	Your Points
1.	15	
2.	15	
3.	15	
4.	20	
5.	20	
6.	15	
Total	100	

1. (15pts.) For which values of a and b does the system of equations

have **no** solutions? Find all solutions in the case that a = 7 and b = 1.

2. (15pts.) Let A_n be the $n \times n$ matrix

$$A_n = \begin{pmatrix} 1 & 2 & 0 & \cdots & 0 & 0 \\ 2 & 1 & 2 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 2 & 1 \end{pmatrix}.$$

Prove that for $n \geq 3$, $\det(A_n) = \det(A_{n-1}) - 4\det(A_{n-2})$, and evaluate $\det(A_5)$.

- 3. (15pts.) The following are some quick questions. Give only brief reasoning for your answers, no detailed proofs.
 - (a) Let A, B, C and D be four 3×3 matrices. Let E be the 6×6 matrix

$$E = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right).$$

Is it necessarily true that $det(E) = det(A) \cdot det C - det B \cdot det D$?

- (b) Let A be a 3×4 matrix, and B be a 4×3 matrix. Can you say anything about the determinant of their product, BA? How about AB?
- (c) Do similar matrices have the same
 - i. eigenvalues;
 - ii. eigenvectors;
 - iii. rank;
 - iv. column space;
 - v. determinant?
- (d) Does an $n \times n$ matrix with n distinct eigenvalues have an orthogonal set of eigenvectors?
- (e) Is the product of two symmetric matrices symmetric?

4. (20pts.) Let V be the vector space of polynomials of degree at most 3 with real coefficients. Let T be the map defined by

$$T(f(x)) = f(x) - (1+x)\frac{df}{dx}$$

for all $f(x) \in V$.

- (a) Show that T is a linear transformation.
- (b) Find the matrices $_B(T)_B$ and $_C(T)_C$ representing T with respect to the bases $B=\{1,x,x^2,x^3\}$ and $C=\{1+x,x+x^2,x^2+x^3,x^3\}$.
- (c) Find the matrix $C(I)_B$ representing the change of basis from B to C, and verify that $C(T)_C = C(I)_{BB}(T)_{BB}(I)_C$.
- (d) Find bases for the kernel and image of T.

- 5. (20pts.) Let U and V be vector spaces.
 - (a) Define the kernel and image of a linear transformation $T: U \to V$.
 - (b) Show that the kernel of T is a subspace of U.
 - (c) Let T be a linear transformation from U to V and let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ form a basis of Ker T. The following steps help you to show that if $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ form a basis of U, then $T\mathbf{u}_{k+1}, \ldots, T\mathbf{u}_n$ form a basis of Im T. So assume that $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ are a basis of U.
 - i. Argue that $T\mathbf{u}_{k+1}, \dots, T\mathbf{u}_n$ are elements of Im T.
 - ii. Show that any element of Im T can be expressed as a linear combination of $T\mathbf{u}_{k+1}, \ldots, T\mathbf{u}_n$.
 - iii. Show that $T\mathbf{u}_{k+1}, \dots, T\mathbf{u}_n$ are linearly independent.
 - (d) Deduce a formula relating the dimensions of U, Ker T and Im T.

6. (15pts.) Find the singular value decomposition of the 3×2 matrix

$$A = \left(\begin{array}{rr} 1 & 2 \\ -2 & -4 \\ 1 & 2 \end{array}\right).$$