SOLUTIONS Your name is:

Please circle your recitation:

Problems 1–8 are 12 points each; Problem 9 is 4 points. Thank you for taking 18.06!

- 1 Suppose A is an m by n matrix of rank r. You multiply it by any m by n invertible matrix E to get B = EA.
 - (a) Circle if true and cross out if false (three parts):

 $A \text{ and } B \text{ have the} \begin{cases} same \ nullspace \\ same \ column \ space \\ same \ bases \ for \ row \ space. \end{cases}$

(b) Suppose the right E gives the row-reduced echelon matrix

$$EA = R = \begin{bmatrix} 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (1) Find a basis for the nullspace of A.
- (2) True statement: The nullspace of a matrix is a vector space.What does it mean for a set of vectors to be a vector space?
- (c) What is the nullspace of a 5 by 4 matrix with linearly independent columns? What is the nullspace of a 4 by 5 matrix with linearly independent columns?

Solutions

- (a) True, false, and true.
- (b) A possible basis for N(A) is (6, 0, 5, -1) and (4, -1, 0, 0).
- (c) Nullspace = zero vector (0, 0, 0, 0); no 4 by 5 matrix has independent columns

2 This matrix A has column 1 + column 2 = column 3:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

- (a) Describe the column space C(A) in two ways:
 - (1) Give a basis for C(A).
 - (2) Find all vectors that are *perpendicular* to C(A).
- (b) The projection matrix P onto the column space does not come from the usual formula $A(A^{T}A)^{-1}A^{T}$. Why not—what goes wrong with this formula?
- (c) Find that matrix P for projection onto the column space of A.

Solutions

- (a) (1) (1,1,0) and (1,1,1)
 - (2) multiples of (1, -1, 0) are perpendicular to C(A)
- (b) Columns of A are not linearly independent, so $A^T A$ is not invertible.

(c) The matrix
$$B' = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 has the same column space as A .
Even better: take $B = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 \\ 0 & 1 \end{bmatrix}$, that has orthonormal columns.
 $\begin{bmatrix} 1/2 & 1/2 & 0 \end{bmatrix}$

The second one has a much simplified formula: $P = BB^T = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- 3 Suppose P is the 3 by 3 projection matrix (so $P = P^{T} = P^{2}$) onto the plane 2x + 2y z = 0. You do not have to compute this matrix P but you can if you want.
 - (a) What is the rank of P? What are its three eigenvalues? What is its column space?
 - (b) Is P diagonalizable—why or why not? Find a nonzero vector in its nullspace.
 - (c) If b is any unit vector in R³, find the number q. Explain your thinking in 1 sentence and 1 equation:

$$q = ||Pb||^2 + ||b - Pb||^2$$

- (a) Rank(P) = 2, since the column space is a plane (2x + 2y z = 0). The eigenvalues can only be 0 or 1—since it has rank 2, $\lambda = 0, 1$ and 1.
- (b) Being symmetric, P is diagonalizable. A non-zero vector in $N(P) = N(P^{T})$ is (2, 2, -1): it is orthogonal to the column space.
- (c) b = Pb + (b Pb), and since Pb and (b Pb) are orthogonal, we use Pythagorean Theorem! $1 = ||b||^2 = ||Pb||^2 + ||(b - Pb)||^2$. Or expand $b^{\mathrm{T}}P^{\mathrm{T}}Pb + \cdots$

4 (a) If $a \neq c$, find the eigenvalue matrix Λ and eigenvector matrix S in

$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = S\Lambda S^{-1}.$$

(b) Find the *four entries* in the matrix A^{1000} .

Solutions

(a)
$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} 1 & b \\ 0 & c-a \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} \begin{bmatrix} c-a & -b \\ 0 & 1 \end{bmatrix} \frac{1}{c-a}$$

 $= \begin{bmatrix} 1 & b/(c-a) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} \begin{bmatrix} 1 & -b/(c-a) \\ 0 & 1 \end{bmatrix}$
(b) $A^{1000} = S\Lambda^{1000}S^{-1} = \begin{bmatrix} a^{1000} & c^{1000}b \\ 0 & c^{1000}(c-a) \end{bmatrix} \begin{bmatrix} c-a & -b \\ 0 & 1 \end{bmatrix} \frac{1}{c-a}$
 $= \begin{bmatrix} a^{1000} & (c^{1000} - a^{1000})b/(c-a) \\ 0 & c^{1000} \end{bmatrix}$

- (a) Suppose $A^{T}Ax = 0$. This tells us that Ax is in the _____space of A^{T} . Always Ax is in the _____space of A. Why can you conclude that Ax = 0?
 - (b) Supposing again that A^TAx = 0 we immediately get x^TA^TAx = 0.
 From this, show directly that Ax = 0.
 Every matrix A^TA is symmetric and ______.
 - (c) The rectangular m by n matrix A always has the same nullspace as the square matrix $A^{T}A$ (this is proved above). Now deduce that A and $A^{T}A$ have the same rank.

 $\mathbf{5}$

- (a) Nullspace of A^{T} and column space of A. Then Ax = 0 because $C(A) \perp N(A^{T})$.
- (b) $x^{\mathrm{T}}A^{\mathrm{T}}Ax = (Ax)^{\mathrm{T}}(Ax) = ||Ax||^2 = 0$, hence Ax = 0. Then $A^{\mathrm{T}}A$ is positive semidefinite.
- (c) $\operatorname{Rank}(A^{\mathrm{T}}A) + \dim \mathbf{N}(A^{\mathrm{T}}A) = n = \operatorname{Rank}(A) + \dim \mathbf{N}(A)$. With equal nullspaces we get equal ranks.

- 6 Suppose A = ones(3,5) and $A^{T} = ones(5,3)$ are the 3 by 5 and 5 by 3 matrices of all 1's.
 - (a) Find the trace of AA^{T} and the trace of $A^{\mathrm{T}}A$.
 - (b) Find the eigenvalues of AA^{T} and the eigenvalues of $A^{\mathrm{T}}A$.
 - (c) What is the matrix Σ in the singular value decomposition $A = U\Sigma V^{\mathrm{T}}$?

- (a) $AA^{T} = 5 * ones(3,3)$ and $A^{T}A = 3 * ones(5,5)$, so both traces are 15.
- (b) Since both ranks are 1, $eig(AA^{T}) = \{15, 0, 0\}$, and $eig(AA^{T}) = \{15, 0, 0, 0, 0\}$.

(a) By elimination or otherwise, find the determinant of A:

$$A = \begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ v_1 & v_2 & v_3 & 0 \end{bmatrix}$$

- (b) If that zero in the lower right corner of A changes to 100, what is the change (if any) in the determinant of A? (You can consider its cofactors)
- (c) If (u₁, u₂, u₃) is the same as (v₁, v₂, v₃) so A is symmetric, decide if A is or is not positive definite—and why?
- (d) Show that this block matrix M is singular for any u and v in \mathbb{R}^n , by finding a vector in its nullspace:

$$M = \left[\begin{array}{cc} I & u \\ v^{\mathrm{T}} & v^{\mathrm{T}}u \end{array} \right]$$

Solutions

 $\mathbf{7}$

(a) The determinant is $-v^{\mathrm{T}}u$:

$$\det(A) = \det \begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ 0 & v_2 & v_3 & -u_1v_1 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & u_2 \\ 0 & 1 & u_3 \\ v_2 & v_3 & -u_1v_1 \end{bmatrix} = -v^{\mathrm{T}}u.$$

(b) The cofactor of the (4, 4) entry is 100, so det changes by 100:

$$\det(A') = \det \begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ 0 & v_2 & v_3 & 100 - u_1v_1 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & u_2 \\ 0 & 1 & u_3 \\ v_2 & v_3 & 100 - u_1v_1 \end{bmatrix} = 100 - v^{\mathrm{T}}u$$

(c) Since in this case $det(A) = -||u||^2 \le 0$, at least one of the eigenvalues is not positive. Hence A cannot be positive definite.

(d) The vector is
$$\begin{bmatrix} -u \\ 1 \end{bmatrix}$$
.

- 8 Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbf{R}^4 (not \mathbf{R}^3 !).
 - (a) What is the length of the vector $v = 2q_1 3q_2 + 2q_3$?
 - (b) What four vectors does Gram-Schmidt produce when it orthonormalizes the vectors q₁, q₂, q₃, u?
 - (c) If u in part (b) is the vector v in part (a), why does Gram-Schmidt break down?Find a nonzero vector in the nullspace of the 4 by 4 matrix

$$A = \left[\begin{array}{ccc} q_1 & q_2 & q_3 & v \end{array} \right] \quad \text{with columns } q_1, q_2, q_3, v \, .$$

- (a) By orthogonality (the Pythagorean Theorem) $||v||^2 = ||2q_1 3q_2 + 2q_3||^2 = 4 + 9 + 4 = 17$.
- (b) q_1, q_2, q_3 and

$$q_4 = \frac{u - (q_1^{\mathrm{T}}u)q_1 - (q_2^{\mathrm{T}}u)q_2 - (q_3^{\mathrm{T}}u)q_3}{\|u - (q_1^{\mathrm{T}}u)q_1 - (q_2^{\mathrm{T}}u)q_2 - (q_3^{\mathrm{T}}u)q_3\|}.$$

(c) Gram-Schmidt fails because v is a linear combination of the q_i 's: Not independent. A vector in N(A) is (2, -3, 2, -1). 9 (4 points) PROVE (give a clear reason): If A is a symmetric invertible matrix then A^{-1} is also symmetric.

Solutions

 $AA^{-1} = I$ leads to $(AA^{-1})^{T} = (A^{-1})^{T}A^{T} = I$. Hence always $(A^{-1})^{T} = (A^{T})^{-1}$. If $A = A^{T}$, then $(A^{-1})^{T} = (A^{T})^{-1} = A^{-1}$ and A^{-1} is symmetric.

Proof 2: The i, j cofactor of A equals the j, i cofactor. Then $A^{-1} = (\text{cofactor matrix})/\det A$ is symmetric.