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GLOSSARY: A DICTIONARY FOR 
LINEAR ALGEBRA 

Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node 
i to node j; otherwise aij = 0. A = AT for an undirected graph. 

Affine transformation T (v ) = Av + v 0 = linear transformation plus shift. 

Associative Law (AB)C = A(BC). Parentheses can be removed to leave ABC. 

Augmented matrix [ A b ]. Ax = b is solvable when b is in the column space of A; then 
[ A b ] has the same rank as A. Elimination on [ A b ] keeps equations correct. 

Back substitution. Upper triangular systems are solved in reverse order xn to x1. 

Basis for V . Independent vectors v 1, . . . , v d whose linear combinations give every v in 
V . A vector space has many bases! 

Big formula for n by n determinants. Det(A) is a sum of n! terms, one term for each 
permutation P of the columns. That term is the product a1α · · · anω down the 
diagonal of the reordered matrix, times det(P ) = ±1. 

Block matrix. A matrix can be partitioned into matrix blocks, by cuts between rows 
and/or between columns. Block multiplication of AB is allowed if the block shapes 
permit (the columns of A and rows of B must be in matching blocks). 

Cayley-Hamilton Theorem. p(λ) = det(A − λI) has p(A) = zero matrix. 

Change of basis matrix M . The old basis vectors v j are combinations mij w i of the new 
basis vectors. The coordinates of c1v 1 + · · · + cnv n = d1w 1 + · · · + dnw n are related 
by d = M c. (For n = 2 set v 1 = m11w 1 + m21w 2, v 2 = m12w 1 + m22w 2.) 

Characteristic equation det(A − λI) = 0. The n roots are the eigenvalues of A. 
√ √ 

Cholesky factorization A = CCT = (L D)(L D)T for positive definite A. 

Circulant matrix C. Constant diagonals wrap around as in cyclic shift S. Every circulant 
is c0I + c1S + · · · + cn−1S

n−1 . Cx = convolution c ∗ x . Eigenvectors in F . 

Cofactor Cij . Remove row i and column j; multiply the determinant by (−1)i+j . 

Column picture of Ax = b. The vector b becomes a combination of the columns of A. 
The system is solvable only when b is in the column space C (A). 

Column space C (A) = space of all combinations of the columns of A. 

Commuting matrices AB = BA. If diagonalizable, they share n eigenvectors. 

Companion matrix. Put c1, . . . , cn in row n and put n − 1 1’s along diagonal 1. Then 
det(A − λI) = ±(c1 + c2λ + c3λ

2 + · · · ). 
Complete solution x = x p + x n to Ax = b. (Particular x p) + (x n in nullspace). 

Complex conjugate z = a − ib for any complex number z = a + ib. Then zz = |z|2 . 
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2 Glossary 

Condition number cond (A) = κ(A) = �A��A−1� = σmax/σmin. In Ax = b, the rela­
tive change �δx �/�x � is less than cond (A) times the relative change �δb�/�b�. 
Condition numbers measure the sensitivity of the output to change in the input. 

Conjugate Gradient Method. A sequence of steps (end of Chapter 9) to solve positive 
definite Ax = b by minimizing 1 

2 x TAx − x Tb over growing Krylov subspaces. 

Covariance matrix Σ. When random variables xi have mean = average value = 0, their 
covariances Σij are the averages of xixj . With means xi, the matrix Σ = mean of 
(x − x )(x − x )T is positive (semi)definite; it is diagonal if the xi are independent. 

Cramer’s Rule for Ax = b. Bj has b replacing column j of A, and xj = |Bj |/|A|. 
Cross product u ×v in R3 . Vector perpendicular to u and v , length �u ��v �| sin θ| = par­

allelogram area, computed as the “determinant” of [ i j k ; u1 u2 u3 ; v1 v2 v3 ]. 

Cyclic shift S. Permutation with s21 = 1, s32 = 1, . . ., finally s1n = 1. Its eigenvalues are 
nth roots e2πik/n of 1; eigenvectors are columns of the Fourier matrix F . 

Determinant |A| = det(A). Defined by det I = 1, sign reversal for row exchange, and 
linearity in each row. Then |A| = 0 when A is singular. Also |AB| = |A||B| and 
|A−1| = 1/|A| and |AT| = |A|. The big formula for det(A) has a sum of n! terms, 
the cofactor formula uses determinants of size n − 1, volume of box = | det(A)|. 

Diagonal matrix D. dij = 0 if i �= j. Block-diagonal: zero outside square blocks Dii. 

Diagonalizable matrix A. Must have n independent eigenvectors (in the columns of S; 
automatic with n different eigenvalues). Then S−1AS = Λ = eigenvalue matrix. 

Diagonalization Λ = S−1AS. Λ = eigenvalue matrix and S = eigenvector matrix. A must 
have n independent eigenvectors to make S invertible. All Ak = SΛk S−1 . 

Dimension of vector space dim(V ) = number of vectors in any basis for V . 

Distributive Law A(B + C) = AB + AC. Add then multiply, or multiply then add. 

Dot product x Ty = x1y1 + · · · + xnyn. Complex dot product is x Ty . Perpendicular 
vectors have zero dot product. (AB)ij = (row i of A)·(column j of B). 

Echelon matrix U . The first nonzero entry (the pivot) in each row comes after the pivot 
in the previous row. All zero rows come last. 

Eigenvalue λ and eigenvector x . Ax = λx with x �= 0 so det(A − λI) = 0. 

Eigshow. Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java). 

Elimination. A sequence of row operations that reduces A to an upper triangular U 
or to the reduced form R = rref(A). Then A = LU with multipliers �ij in L, or 
PA = LU with row exchanges in P , or EA = R with an invertible E. 

Elimination matrix = Elementary matrix Eij . The identity matrix with an extra −�ij in the 
i, j entry (i �= j). Then Eij A subtracts �ij times row j of A from row i. 

Ellipse (or ellipsoid) x TAx = 1. A must√be positive definite; the axes of the ellipse are 
eigenvectors of A, with lengths 1/ λ. (For �x � = 1 the vectors y = Ax lie on the 
ellipse �A−1y �2 = y T(AAT)−1y = 1 displayed by eigshow; axis lengths σi.) 

Exponential eAt = I + At + (At)2/2! + · · · has derivative AeAt; eAtu (0) solves u � = Au . 
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Glossary 3 

Factorization A = L U . If elimination takes A to U without row exchanges, then the 
lower triangular L with multipliers �ij (and �ii = 1) brings U back to A. 

Fast Fourier Transform (FFT). A factorization of the Fourier matrix Fn into � = log2 n 
matrices Si times a permutation. Each Si needs only n/2 multiplications, so Fnx 
and Fn 

−1c can be computed with n�/2 multiplications. Revolutionary. 

Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . satisfy Fn = Fn−1 + Fn−2 = (λn − λn 
√ 1 2 )/(λ1 − λ2). 

Growth rate λ1 = (1 + 5)/2 is the largest eigenvalue of the Fibonacci matrix 
1 1 
1 0 . 

Four fundamental subspaces of A = C (A), N (A), C (AT), N (AT). 
T

Fourier matrix F . Entries Fjk = e2πijk/n give orthogonal columns F F = nI. Then 
y = F c is the (inverse) Discrete Fourier Transform yj = ck e

2πijk/n. 

Free columns of A. Columns without pivots; combinations of earlier columns. 

Free variable xi. Column i has no pivot in elimination. We can give the n − r free 
variables any values, then Ax = b determines the r pivot variables (if solvable!). 

Full column rank r = n. Independent columns, N (A) = {0}, no free variables. 

Full row rank r = m. Independent rows, at least one solution to Ax = b, column space 
is all of Rm . Full rank means full column rank or full row rank. 

Fundamental Theorem. The nullspace N (A) and row space C (AT) are orthogonal comple­
ments (perpendicular subspaces of Rn with dimensions r and n − r) from Ax = 0. 
Applied to AT , the column space C (A) is the orthogonal complement of N (AT). 

Gauss-Jordan method. Invert A by row operations on [ A I ] to reach [ I A−1 ]. 

Gram-Schmidt orthogonalization A = QR. Independent columns in A, orthonormal columns 
in Q. Each column q j of Q is a combination of the first j columns of A (and con­
versely, so R is upper triangular). Convention: diag(R) > 0. 

Graph G. Set of n nodes connected pairwise by m edges. A complete graph has all 
n(n − 1)/2 edges between nodes. A tree has only n − 1 edges and no closed loops. 
A directed graph has a direction arrow specified on each edge. 

Hankel matrix H. Constant along each antidiagonal; hij depends on i + j. 
T

Hermitian matrix AH = A = A. Complex analog of a symmetric matrix: aji = aij . 

Hessenberg matrix H. Triangular matrix with one extra nonzero adjacent diagonal. � 1
Hilbert matrix hilb(n). Entries Hij = 1/(i + j − 1) = 

0 x
i−1xj−1dx. Positive definite but 

extremely small λmin and large condition number. 

Hypercube matrix P 2 
L. Row n + 1 counts corners, edges, faces, . . . of a cube in Rn . 

Identity matrix I (or In). Diagonal entries = 1, off-diagonal entries = 0. 

Incidence matrix of a directed graph. The m by n edge-node incidence matrix has a row for 
each edge (node i to node j), with entries −1 and 1 in columns i and j. 

Indefinite matrix. A symmetric matrix with eigenvalues of both signs (+ and −). 

Independent vectors v 1, . . . , v k . No combination c1v 1 + · · · + ck v k = zero vector unless all 
ci = 0. If the v ’s are the columns of A, the only solution to Ax = 0 is x = 0. 
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4 Glossary 

Inverse matrix A−1 . Square matrix with A−1A = I and AA−1 = I. No inverse if det A = 0 
and rank(A) < n and Ax = 0 for a nonzero vector x . The inverses of AB and AT 

are B−1A−1 and (A−1)T . Cofactor formula (A−1)ij = Cji/ det A. 

Iterative method. A sequence of steps intended to approach the desired solution. 

Jordan form J = M −1AM . If A has s independent eigenvectors, its “generalized” eigen­
vector matrix M gives J = diag(J1, . . . , Js). The block Jk is λk Ik + Nk where 
Nk has 1’s on diagonal 1. Each block has one eigenvalue λk and one eigenvector 
(1, 0, . . . , 0). 

Kirchhoff’s Laws. Current law : net current (in minus out) is zero at each node. Voltage 
law : Potential differences (voltage drops) add to zero around any closed loop. 

Kronecker product (tensor product) A B. Blocks aij B, eigenvalues λp(A)λq (B). 

Krylov subspace Kj (A, b). The subspace spanned by b, Ab, . . . , Aj−1b. Numerical meth­
ods approximate A−1b by x j with residual b − Ax j in this subspace. A good basis 
for Kj requires only multiplication by A at each step. 

Least squares solution x . The vector x that minimizes the error �e�2 solves ATAx = ATb. 
Then e = b − Ax is orthogonal to all columns of A. 

Left inverse A+ . If A has full column rank n, then A+ = (ATA)−1AT has A+A = In. 

Left nullspace N (AT). Nullspace of AT = “left nullspace” of A because y TA = 0T . 

Length �x �. Square root of x Tx (Pythagoras in n dimensions). 

Linear combination cv + dw or cj v j . Vector addition and scalar multiplication. 

Linear transformation T . Each vector v in the input space transforms to T (v ) in the 
output space, and linearity requires T (cv + dw ) = c T (v ) + d T (w ). Examples: 
Matrix multiplication Av , differentiation in function space. 

Linearly dependent v 1, . . . , v n. A combination other than all ci = 0 gives civ i = 0. 

Lucas numbers Ln = 2, 1, 3, 4, . . . satisfy Ln = Ln�−1 +�Ln−2 = λn 
2 , with eigenvalues√ 1 + λn 

1 1λ1, λ2 = (1± 5)/2 of the Fibonacci matrix 1 0 . Compare L0 = 2 with Fibonacci. 

Markov matrix M . All mij ≥ 0 and each column sum is 1. Largest eigenvalue λ = 1. If 
mij > 0, the columns of M k approach the steady state eigenvector M s = s > 0. 

Matrix multiplication AB. The i, j entry of AB is (row i of A)·(column j of B) = aik bkj . 
By columns: Column j of AB = A times column j of B. By rows: row i of A 
multiplies B. Columns times rows: AB = sum of (column k)(row k). All these 
equivalent definitions come from the rule that AB times x equals A times Bx . 

Minimal polynomial of A. The lowest degree polynomial with m(A) = zero matrix. The 
roots of m are eigenvalues, and m(λ) divides det(A − λI). 

Multiplication Ax = x1(column 1) + · · · + xn(column n) = combination of columns. 

Multiplicities AM and GM . The algebraic multiplicity AM of an eigenvalue λ is the 
number of times λ appears as a root of det(A−λI) = 0. The geometric multiplicity 
GM is the number of independent eigenvectors (= dimension of the eigenspace for 
λ). 
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Glossary 5 

Multiplier �ij . The pivot row j is multiplied by �ij and subtracted from row i to eliminate 
the i, j entry: �ij = (entry to eliminate)/(jth pivot). 

Network. A directed graph that has constants c1, . . . , cm associated with the edges. 

Nilpotent matrix N . Some power of N is the zero matrix, N k = 0. The only eigenvalue is 
λ = 0 (repeated n times). Examples: triangular matrices with zero diagonal. 

Norm �A� of a matrix. The “�2 norm” is the maximum ratio �Ax �/�x � = σmax. Then 
�Ax � ≤ �A��x � and �AB� ≤ �A��B� and �A + B� ≤ �A� + �B�. Frobenius norm 

F ij ; �
1 and �∞ norms are largest column and row sums of |aij |.�A�2 = a2 

Normal equation ATAx = ATb. Gives the least squares solution to Ax = b if A has full 
rank n. The equation says that (columns of A)·(b − Ax ) = 0. 

Normal matrix N . NN T = N TN , leads to orthonormal (complex) eigenvectors. 

Nullspace N (A) = Solutions to Ax = 0. Dimension n − r = (# columns) − rank. 

Nullspace matrix N . The columns of N are the n − r special solutions to As = 0. Or­
thogonal matrix Q. Square matrix with orthonormal columns, so QTQ = I implies 
QT = Q−1 . Preserves length and angles, �Qx � = �x � and (Qx )T(Qy ) = x Ty . 
All |λ| = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permu­
tation. 

Orthogonal subspaces. Every v in V is orthogonal to every w in W . 

Orthonormal vectors q 1, . . . , q n. Dot products are q i 
Tq j = 0 if i �= j and q i 

Tq i = 1. The 
matrix Q with these orthonormal columns has QTQ = I. If m = n then QT = Q−1 

and q 1, . . . , q n is an orthonormal basis for Rn: every v = (v Tq j )q j . 

Outer product uv T = column times row = rank one matrix. 

Partial pivoting. In elimination, the jth pivot is chosen as the largest available entry (in 
absolute value) in column j. Then all multipliers have |�ij | ≤ 1. Roundoff error is 
controlled (depending on the condition number of A). 

Particular solution x p. Any solution to Ax = b; often x p has free variables = 0. 

Pascal matrix PS = pascal(n). The symmetric matrix with binomial entries 
�

i+j−2
� 
. PS = 

i−1 
PLPU all contain Pascal’s triangle with det = 1 (see index for more properties). 

Permutation matrix P . There are n! orders of 1, . . . , n; the n! P ’s have the rows of I 
in those orders. PA puts the rows of A in the same order. P is a product of 
row exchanges Pij ; P is even or odd (det P = 1 or −1) based on the number of 
exchanges. 

Pivot columns of A. Columns that contain pivots after row reduction; not combinations 
of earlier columns. The pivot columns are a basis for the column space. 

Pivot d. The diagonal entry (first nonzero) when a row is used in elimination. 

Plane (or hyperplane) in Rn . Solutions to a Tx = 0 give the plane (dimension n − 1) 
perpendicular to a �= 0. 

Polar decomposition A = QH. Orthogonal Q, positive (semi)definite H. 

Positive definite matrix A. Symmetric matrix with positive eigenvalues and positive pivots. 
Definition: x TAx > 0 unless x = 0. 
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6 Glossary 

Projection p = a (a Tb/a Ta ) onto the line through a . P = aa T/a Ta has rank 1. 

Projection matrix P onto subspace S . Projection p = P b is the closest point to b in S , 
error e = b − P b is perpendicular to S . P 2 = P = P T , eigenvalues are 1 or 0, 
eigenvectors are in S or S ⊥ . If columns of A = basis for S then P = A(ATA)−1AT . 

Pseudoinverse A+ (Moore-Penrose inverse). The n by m matrix that “inverts” A from column 
space back to row space, with N (A+) = N (AT). A+A and AA+ are the projection 
matrices onto the row space and column space. Rank(A+) = rank(A). 

Random matrix rand(n) or randn(n). MATLAB creates a matrix with random entries, 
uniformly distributed on [ 0 1 ] for rand and standard normal distribution for randn. 

Rank one matrix A = uv T �= 0. Column and row spaces = lines cu and cv . 

Rank r(A) = number of pivots = dimension of column space = dimension of row space. 

Rayleigh quotient q(x ) = x TAx /x Tx for symmetric A: λmin ≤ q(x ) ≤ λmax. Those 
extremes are reached at the eigenvectors x for λmin(A) and λmax(A). 

Reduced row echelon form R = rref(A). Pivots = 1; zeros above and below pivots; r 
nonzero rows of R give a basis for the row space of A. 

Reflection matrix Q = I − 2uu T . The unit vector u is reflected to Qu = −u . All vectors 
x in the plane mirror u Tx = 0 are unchanged because Qx = x . The “Householder 
matrix” has QT = Q−1 = Q. 

Right inverse A+ . If A has full row rank m, then A+ = AT(AAT)−1 has AA+ = Im. 

cos θ − sin θ
Rotation matrix R = 

sin θ cos θ 
rotates the plane by θ and R−1 = RT rotates back 

by −θ. Orthogonal matrix, eigenvalues eiθ and e−iθ , eigenvectors (1, ±i). 

Row picture of Ax = b. Each equation gives a plane in Rn; planes intersect at x . 

Row space C (AT) = all combinations of rows of A. Column vectors by convention. 

Saddle point of f (x1, . . . , xn). A point where the first derivatives of f are zero and the 
second derivative matrix (∂2f/∂xi∂xj = Hessian matrix) is indefinite. 

A BSchur complement S = D − CA−1B. Appears in block elimination on C D . 

Schwarz inequality |v ·w | ≤ �v � �w �.Then |v TAw |2 ≤ (v TAv )(w TAw ) if A = CTC. 

Semidefinite matrix A. (Positive) semidefinite means symmetric with x TAx ≥ 0 for all 
vectors x . Then all eigenvalues λ ≥ 0; no negative pivots. 

Similar matrices A and B. Every B = M −1AM has the same eigenvalues as A. 
∗Simplex method for linear programming. The minimum cost vector x is found by moving 

from corner to lower cost corner along the edges of the feasible set (where the 
constraints Ax = b and x ≥ 0 are satisfied). Minimum cost at a corner! 

Singular matrix A. A square matrix that has no inverse: det(A) = 0. 

Singular Value Decomposition (SVD) A = U ΣV T = (orthogonal U ) times (diagonal Σ) times 
(orthogonal V T). First r columns of U and V are orthonormal bases of C (A) and 
C (AT) with Av i = σiu i and singular value σi > 0. Last columns of U and V are 
orthonormal bases of the nullspaces of AT and A. 
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Skew-symmetric matrix K. The transpose is −K, since Kij = −Kji. Eigenvalues are pure 
imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix. 

Solvable system Ax = b. The right side b is in the column space of A. 

Spanning set v 1, . . . , v m for V . Every vector in V is a combination of v 1, . . . , v m. 

Special solutions to As = 0. One free variable is si = 1, other free variables = 0. 

Spectral theorem A = QΛQT . Real symmetric A has real λi and orthonormal q i with 
Aq i = λiq i. In mechanics the q i give the principal axes. 

Spectrum of A = the set of eigenvalues {λ1, . . . , λn}. Spectral radius = |λmax|. 
Standard basis for Rn . Columns of n by n identity matrix (written i , j , k in R3). 

Stiffness matrix K. If x gives the movements of the nodes in a discrete structure, Kx 
gives the internal forces. Often K = ATCA where C contains spring constants 
from Hooke’s Law and Ax = stretching (strains) from the movements x . 

Subspace S of V . Any vector space inside V , including V and Z = {zero vector}. 
Sum V +W of subspaces. Space of all (v in V ) + (w in W ). Direct sum: dim(V +W ) = 

dim V + dim W when V and W share only the zero vector. 

Symmetric factorizations A = LDLT and A = QΛQT . The number of positive pivots in D 
and positive eigenvalues in Λ is the same. 

Symmetric matrix A. The transpose is AT = A, and aij = aji. A−1 is also symmetric. 
All matrices of the form RTR and LDLT and QΛQT are symmetric. Symmetric 
matrices have real eigenvalues in Λ and orthonormal eigenvectors in Q. 

Toeplitz matrix T . Constant-diagonal matrix, so tij depends only on j − i. Toeplitz 
matrices represent linear time-invariant filters in signal processing. 

Trace of A = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA. 

Transpose matrix AT . Entries AT = Aji. AT is n by m, ATA is square, symmetric,ij 

positive semidefinite. The transposes of AB and A−1 are BTAT and (AT)−1 . 

Triangle inequality �u + v � ≤ �u � + �v�. For matrix norms �A + B� ≤ �A� + �B�. 
Tridiagonal matrix T : tij = 0 if |i − j| > 1. T −1 has rank 1 above and below diagonal. 

Unitary matrix U H = U 
T 

= U −1 . Orthonormal columns (complex analog of Q). 

Vandermonde matrix V . V c = b gives the polynomial p(x) = c0 + · · · + cn−1x
n−1 with 

p(xi) = bi at n points. Vij = (xi)
j−1 and det V = product of (xk − xi) for k > i. 

Vector v in Rn . Sequence of n real numbers v = (v1, . . . , vn) = point in Rn . 

Vector addition. v + w = (v1 + w1, . . . , vn + wn) = diagonal of parallelogram. 

Vector space V . Set of vectors such that all combinations cv + dw remain in V . Eight 
required rules are given in Section 3.1 for cv + dw . 

Volume of box. The rows (or columns) of A generate a box with volume | det(A)|. 
Wavelets wjk (t) or vectors w jk . Stretch and shift the time axis to create wjk (t) = w00(2

j t− 
k). Vectors from w 00 = (1, 1, −1, −1) would be (1, −1, 0, 0) and (0, 0, 1, −1). 


