18.06 Midterm Exam 3, Spring, 2001

Name	Optional Code	
Recitation Instructor	Email Address	
Recitation Time		

This midterm is closed book and closed notes. No calculators, laptops, cell phones or other electronic devices may be used during the exam.

There are 3 problems. Good luck.

1. (40pts.) Consider the matrix

$$A = \left(\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{array} \right).$$

- (a) Given that one eigenvalue of A is $\lambda = 6$, find the remaining eigenvalues.
- (b) Find three linearly independent eigenvectors of A.
- (c) Find an orthogonal matrix Q and a diagonal matrix $\Lambda,$ so that $A=Q\Lambda Q^T.$

2. (20pts.) Consider the system of first order linear ODEs

$$\frac{dx}{dt} = -7x + 2y \quad \frac{dy}{dt} = -6x.$$

Find two independent real-valued solutions $\left(\begin{array}{c}x^{(1)}\\y^{(1)}\end{array}\right)$ and $\left(\begin{array}{c}x^{(2)}\\y^{(2)}\end{array}\right)$ of this system and hence

find the solution
$$\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 which satisfies the initial condition $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

3. (40pts.) Let A_n be the $n \times n$ tridiagonal matrix

$$A_n = \left(egin{array}{ccccccc} 1 & -a & 0 & 0 & \cdots & 0 \ -a & 1 & -a & 0 & \cdots & 0 \ 0 & -a & 1 & -a & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & 0 & \cdots & -a & 1 & -a \ 0 & 0 & \cdots & 0 & -a & 1 \end{array}
ight).$$

(a) Show for $n \geq 3$ that

$$\det(A_n) = \det(A_{n-1}) - a^2 \cdot \det(A_{n-2}). \tag{1}$$

(b) Show that eq.(1) can equivalently be written as $\mathbf{x}_n = B \mathbf{x}_{n-1}$, where

$$\mathbf{x}_n = \begin{pmatrix} \det(A_n) \\ \det(A_{n-1}) \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -a^2 \\ 1 & 0 \end{pmatrix}$.

(c) For $a^2 = \frac{3}{16}$, find an expression for $\det(A_n)$ for any n. (*Hint:* One method starts by writing B in the form $B = S\Lambda S^{-1}$, where Λ is a diagonal matrix.)