Your name is:

Grading

3 4

1 (a) (15) Find an orthonormal basis for the subspace S of \mathbf{R}^4 spanned by these three vectors:

$$a_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad a_{2} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 3 \end{bmatrix} \qquad a_{3} = a_{1} + a_{2}$$

(b) (15) Find the closest vector p in that subspace S to the vector

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

- 2 (a) (15) Start with the same subspace S. Find a basis (not necessarily orthonormal) for its orthogonal complement S^{\perp} (the space of all vectors perpendicular to S).
 - (b) (10) Find the closest vector q in S^{\perp} to the same vector b.

3 (a) (10) Find the determinant of this matrix A_4 :

$$A_4 = \left[\begin{array}{cccc} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{array} \right]$$

(b) (10) How many terms are nonzero out of the 24 terms in the big formula

$$\det A = \Sigma(\pm) a_{1\alpha} a_{2\beta} a_{3\gamma} a_{4\omega}$$

and what are those nonzero terms?

Suppose the matrices A_n all follow the same pattern as A_4 , with 2's on the main diagonal and 1's on the second diagonals above and below. Thus

$$A_1 = \begin{bmatrix} 2 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $A_3 = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.

(c) (10) Use cofactors along row 1 of A_n to find the relation between det A_n , det A_{n-1} and det M_{n-2} .

That mysterious matrix M_{n-2} is not the same as A_{n-2} . Start with n=4, and use cofactor to find M_{n-2} when this submatrix is 2 by 2. Decribe M_{n-2} for larger n.

- 4 (a) (10) Give the formula for the projection matrix P onto the column space of a matrix A. Where does the formula assume that A has independent columns?
 - (b) (5) The two properties of all these projection matrices are $P^2 = P$ and $P^T = P$. Suppose v^T is the first row of P and v_1 is the first entry in that row. Prove that $v^T v = v_1$.