18.06 Solutions to Midterm Exam 2, Spring, 2001

1. (40pts.) Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 3 & 1 & -1 \\ 9 & 5 & 1 \\ 9 & 8 & 7 \end{array}\right)$$

- (a) Find the rank of A.
 - After doing row operations on the matrix A, we obtain

$$A = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Since there are two non-zero pivots, A has rank 2.

- (b) Find a basis for the row space of A, and find a basis for the nullspace of A. What is the dimension of the nullspace of A?
 - A basis for the row space of A is given by the two pivot rows: the first two rows, since we did not have to exchange rows during row operations; $\{(1,0,-1),(3,1,-1)\}$.

The solutions of $A\mathbf{x} = \mathbf{0}$ are given by $\mathbf{x} = \alpha(1, -2, 1)^T$ where $\alpha \in \mathbb{R}$. Hence, a basis for the nullspace is $(1, -2, 1)^T$. Since the basis of the nullspace contains one vector, dim N(A) = 1.

- (c) What can you say about the relation between the rank and the dimension of the nullspace of A?
 - dim N(A)+rk(A) = number of columns of A. Here, 1+2=3.
- (d) Verify that all vectors in your basis of the nullspace are orthogonal to all vectors in your basis of the row space.

•

$$(1,0,-1).(1,-2,1)=0$$
, and $(3,1,-1).(1,-2,1)=0$.

2. (30pts.) Let $a, b \in \mathbb{R}$, and let

$$A = \left(\begin{array}{cccc} 1 & 2 & 3 & a \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & b \end{array}\right).$$

- (a) What are the dimensions of the four subspaces associated with the matrix A? This will of course depend on the values of a and b, and you should distinguish all different cases.
 - After doing row operations on the matrix A, we find

$$A = \left(egin{array}{cccc} 1 & 2 & 3 & a \ 0 & 2 & 4 & a \ 0 & 0 & 0 & a-2b \end{array}
ight).$$

If a = 2b, then there are two non-zero pivots, and so rk(A) = dim col(A) = dim row(A)= 2. Also, dim null(A) = 4 - 2 = 2 and dim left-null(A) = 3 - 2 = 1.

If $a \neq 2b$, then there are three non-zero pivots, and so $\operatorname{rk}(A) = \dim \operatorname{col}(A) = \dim \operatorname{row}(A)$ = 3. Also, dim $\operatorname{null}(A) = 4 - 3 = 1$ and dim left- $\operatorname{null}(A) = 3 - 3 = 0$.

- (b) For a = b = 1, give a basis for the column space of A. Is this also a basis for \mathbb{R}^3 ? Justify your answer.
 - A basis is given by the columns of A which lead to non-zero pivots,

$$\text{basis} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \right\}$$

Since \mathbb{R}^3 has dimension 3, and these are 3 linearly independent vectors in \mathbb{R}^3 , they are indeed are basis for \mathbb{R}^3 .

 $\mathbf{2}$

- 3. (30pts.) An experiment at the seven times t = -3, -2, -1, 0, 1, 2, 3 yields the consistent result b = 0, except at the last time (t = 3), when we get b = 28. We want the best straight line b = C + Dt to fit these seven data points by least squares.
 - (a) Write down the equation $A\mathbf{x} = \mathbf{b}$ with unknowns C and D that would be solved if a straight line exactly fit the data.

•

$$\begin{pmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 28 \end{pmatrix}$$

- (b) Use the method of least squares to find the best fit values for C and D.
 - $A^T A = \begin{pmatrix} 7 & 0 \\ 0 & 28 \end{pmatrix}$, and $A^T \mathbf{b} = \begin{pmatrix} 28 \\ 84 \end{pmatrix}$. Solving $(A^T A)\mathbf{x} = (A^T \mathbf{b})$, we find that $\mathbf{x}_{\text{sol}} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.
- (c) This problem is really that of projecting the vector $\mathbf{b} = (0, 0, 0, 0, 0, 0, 0, 28)^T$ onto a certain subspace. Give a basis for that subspace, and give the projection \mathbf{p} of \mathbf{b} onto that subspace.
 - A basis is given by the columns of A, $\{(1,1,1,1,1,1,1)^T, (-3,-2,-1,0,1,2,3)^T\}$. The projection is given by

$$\mathbf{p} = A\mathbf{x}_{\mathrm{sol}} = \begin{pmatrix} -5 \\ -2 \\ 1 \\ 3 \\ 7 \\ 10 \\ 13 \end{pmatrix}.$$