1. (a)  $||a_1|| = 2$  so  $q_1 = a_1/2$ . Then subtract from  $a_2$  its projection onto  $a_1$ :

$$B = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 3 \end{bmatrix} - \frac{8}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}.$$

This also has length ||B|| = 2 so  $q_2 = B/2$ . The vector  $a_3 = a_1 + a_2$  does not affect the dimension of S or its basis.

$$\text{(b)} \ \ p = QQ^Tb = \frac{1}{4} \left[ \begin{array}{ccc} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{array} \right] \left[ \begin{array}{ccc} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{array} \right] \left[ \begin{array}{ccc} 1 \\ 0 \\ 0 \\ 0 \end{array} \right] = \left[ \begin{array}{ccc} \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{array} \right] \,.$$

2. (a) The orthogonal complement of S is the nullspace of A:

$$A = \left[ \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 3 & 1 & 1 & 3 \end{array} \right] \to U = \left[ \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 \end{array} \right] \; .$$

The special solutions give a basis for  $S^{\perp}$  (you may find another basis!):

$$\begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

(b) Since b is split into perpendicular pieces p + q, we know immediately that

$$q = b - p = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ -\frac{1}{2} \end{bmatrix}.$$

3. (a)

$$A_4 = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \rightarrow U = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & \frac{3}{2} \end{bmatrix}$$

The product of the pivots is 9.

(b) There are four nonzero terms: 16, -4, -4 and 1.

(c)  $\det A_n = 2 \det A_{n-1} - \det M_{n-2}$ . The matrix  $M_{n-2}$  starts with  $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$  in its upper left corner and after that it continues like  $A_{n-2}$ . With n=4 we only see that 2 by 2 corner from the cofactor rule used twice (which removes rows 1, 3 and columns 1, 3).

$$\begin{bmatrix} \frac{2}{2} & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ \frac{1}{2} & 0 & \frac{2}{2} & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

Note for the future: by continuing on  $M_{n-2}$  I finally arrived at

$$\det A_n = 2 \det A_{n-1} - 2 \det A_{n-3} + \det A_{n-4}.$$

- 4. (a)  $P = A(A^TA)^{-1}A^T$ : the matrix  $A^TA$  is invertible if and only if A has independent columns.
  - (b) The properties give  $PP^T = P$ . Compare the (1,1) entry on both sides of this equation to find  $v^Tv = v_1$ .