18.06 Professor Strang Exam 2 Solutions April 8, 1998

1. (a) ||ai|| = 2 so ¢1 = a1/2. Then subtract from a, its projection onto a;:
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This also has length ||B|| = 2 so ¢; = B/2. The vector ag = a; + as does not
affect the dimension of S or its basis.
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2. (a) The orthogonal complement of S is the nullspace of A:
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The special solutions give a basis for S* (you may find another basis!):
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(b) Since b is split into perpendicular pieces p + ¢, we know immediately that
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3. (a)
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The product of the pivots is 9.

(b) There are four nonzero terms: 16, —4, —4 and 1.



(c) det A, =2det A, ; —det M,, 5. The matrix M,, , starts with ? 5

left corner and after that it continues like A,,_,. With n = 4 we only see that 2 by
2 corner from the cofactor rule used twice (which removes rows 1, 3 and columns

in its upper
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Note for the future: by continuing on M,,_, I finally arrived at

det A, =2det A,_1 —2det A,,_3 +det A,,_4.

4. (a) P =A(ATA)7'AT: the matrix AT A is invertible if and only if A has independent
columns.

(b) The properties give PPT = P. Compare the (1,1) entry on both sides of this
equation to find vTv = v;.



