Course 18.06, Fall 2002: Quiz 3, Solutions

- 1 (a) One eigenvalue of $A = \text{ones}(5)$ is $\lambda_1 = 5$, corresponding to the eigenvector $x_1 = (1, 1, 1, 1, 1)$. Since the rank of A is 1, all the other eigenvalues $\lambda_2, \ldots, \lambda_5$ are zero. Check: The trace of A is 5.
	- (b) The initial condition $u(0)$ can be written as a sum of the two eigenvectors $x_1 = (1, 1, 1, 1, 1)$ and $x_2 = (-1, 0, 0, 0, 1)$, corresponding to the eigenvalues $\lambda_1 = 5$ and $\lambda_2 = 0$:

$$
\boldsymbol{u}(0)=(0,1,1,1,2)=(1,1,1,1,1)+(-1,0,0,0,1)=\boldsymbol{x}_1+\boldsymbol{x}_2.
$$

The solution to $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ is then

$$
\boldsymbol{u}(t) = c_1 e^{\lambda_1 t} \boldsymbol{x}_1 + c_2 e^{\lambda_2 t} \boldsymbol{x}_2 = (1, 1, 1, 1, 1)e^{5t} + (-1, 0, 0, 0, 1).
$$

(c) The eigenvectors of $B = A - I$ are the same as for A, and the eigenvalues are smaller by 1:

$$
Bx = (A - I)x = Ax - x = \lambda x - x = (\lambda - 1)x,
$$

 $4, -1, -1, -1, -1$, the trace is $\sum_{i} \lambda_i = 0$, and the determinant is $\prod_i \lambda_i = 4$. where x, λ are an eigenvector and an eigenvalue of A. The eigenvalues of B are then

2 (a) B is similar to A when $B = M^{-1}AM$, with M invertible. The exponential of A is

$$
e^{A} = I + A + \frac{1}{2}A^{2} + \frac{1}{6}A^{3} + \cdots
$$

Every power B^k of B is similar to the same power A^k of A:

$$
B^k = M^{-1}AMM^{-1}AM \cdots M^{-1}AM = M^{-1}A^kM.
$$

Then

$$
e^{B} = I + B + \frac{1}{2}B^{2} + \dots = M^{-1}\left(I + A + \frac{1}{2}A^{2} + \dots\right)M = M^{-1}e^{A}M.
$$

It is also OK to show this using $e^A = Se^A S^{-1}$, although that assumes that the matrices are diagonalizable.

(b) The exponential of A is

$$
e^{A} = Se^{\Lambda}S^{-1} = S \begin{bmatrix} e^{0} & 0 & 0 \\ 0 & e^{2} & 0 \\ 0 & 0 & e^{4} \end{bmatrix} S^{-1}.
$$

But this is an eigenvalue decomposition of e^A , so the eigenvalues are 1, e^2 , e^4 . More generally, the eigenvalues of e^A are the exponentials of the eigenvalues of A, and

$$
\det(e^A) = e^{\lambda_1} e^{\lambda_2} \cdots e^{\lambda_n} = e^{\lambda_1 + \lambda_2 + \cdots + \lambda_n} = e^{\text{tr}(A)}.
$$

3 (a) For A to be symmetric, U has to be equal to V (notice V^T in the matrices):

$$
\begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix} = \begin{bmatrix}\n\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha\n\end{bmatrix}.
$$

definite symmetric matrix, since it is similar to $\begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$. Together with the restrictions on θ , α this requires that $\theta = \alpha$. A is then a positive

- (b) The eigenvalues of A^TA are the square of the singular values, that is, 81 and 16. The eigenvectors of $A^T A$ are the columns of V, that is, $(\cos \alpha, \sin \alpha)$ and $(-\sin \alpha, \cos \alpha)$. This can also be shown by multiplying $A^T A = V \Sigma^2 V^T$ and identifying this as the eigenvalue decomposition of A^TA .
- trace(A) = $\sum_i \lambda_i = 1.5$. 4 (a) A is singular, so one eigenvalue is 0. It is also a Markov matrix, so another eigenvalue is 1 (Motivation: Each column of A sums to 1, so each column of $A-I$ sums to 0. $A-I$ then has an eigenvalue 0, and A has an eigenvalue 1). The last eigenvalue is 0.5 since

The eigenvectors are found by solving the following systems:

$$
\lambda_1 = 1: \qquad (A - \lambda_1 I)x_1 = \begin{bmatrix} -.5 & .5 & .5 \\ .25 & -.5 & 0 \\ .25 & 0 & -.5 \end{bmatrix} x_1 = 0 \Longrightarrow x_1 = (2, 1, 1),
$$

\n
$$
\lambda_2 = 0.5: \qquad (A - \lambda_2 I)x_2 = \begin{bmatrix} 0 & .5 & .5 \\ .25 & 0 & 0 \\ .25 & 0 & 0 \end{bmatrix} x_2 = 0 \Longrightarrow x_2 = (0, 1, -1),
$$

\n
$$
\lambda_3 = 0: \qquad (A - \lambda_3 I)x_3 = \begin{bmatrix} .5 & .5 & .5 \\ .25 & .5 & 0 \\ .25 & 0 & .5 \end{bmatrix} x_3 = 0 \Longrightarrow x_3 = (2, -1, -1).
$$

(b) Write the initial value as a linear combination of the eigenvectors:

$$
u_0 = (6,0,6) = 3x_1 - 3x_2.
$$

The distribution after k steps is then

$$
\mathbf{u}_k = A^k \mathbf{u}_0 = 3\lambda_1^k \mathbf{x}_1 - 3\lambda_2^k \mathbf{x}_2 = 3\mathbf{x}_1 - 3 \cdot 0.5^k \mathbf{x}_2 \rightarrow 3\mathbf{x}_1 = (6, 3, 3) \text{ as } k \to \infty.
$$