

1 (40 pts.) This question deals with the following symmetric matrix A:

$$
A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}
$$

One eigenvalue is $\lambda = 1$ with the line of eigenvectors $x = (c, c, 0)$.

- (a) That line is the nullspace of what matrix constructed from A?
- (b) Find (in any way) the other two eigenvalues of A and two corresponding eigenvectors.
- (c) The diagonalization $A = S\Lambda S^{-1}$ has a specially nice form because $A = A^T$. Write all entries in the three matrices in the nice symmetric diagonalization of A.
- (d) Give a reason why e^A is or is not a symmetric positive definite matrix.

Solution:

- (a) The eigenvectors for $\lambda = 1$ make up the nullspace of $A I$.
- (b) First method: A has trace 2 and determinant -2 . So the two eigenvalues after $\lambda_1 = 1$ will add to 1 and multiply to -2 . Those are $\lambda_2 = 2$ and $\lambda_3 = -1$.

Second method: Compute $\det(A-\lambda I) = -\lambda^3 + 2\lambda^2 + \lambda - 2$ and find the roots 1, 2, -1: (divide by $\lambda - 1$ to get λ^2 $-\lambda - 2$ 0 for the roots λ_2 and λ_3). =

Eigenvectors:
$$
\lambda_2 = 2
$$
 has $x_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\lambda_3 = -1$ has $x_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$.

(c) Every symmetric matrix has the nice form $A = Q\Lambda Q^{T}$ with orthogonal matrix Q. The columns of Q are orthonormal eigenvectors. (They could be multiplied by -1 .)

$$
Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 0 \end{bmatrix}.
$$

(d) e^A is symmetric and all its eigenvalues e^{λ} are positive—so e^A is positive definite.

2 (30 pts.) (a) Find the *eigenvalues* and *eigenvectors* (depending on c) of

$$
A = \left[\begin{array}{cc} .3 & c \\ .7 & 1 - c \end{array} \right].
$$

For which value of c is the matrix A not diagonalizable (so $A = S\Lambda S^{-1}$ is impossible)?

- (b) What is the *largest range of values of c* (real number) so that A^n approaches a limiting matrix A^{∞} as $n \to \infty$?
- (c) What is that limit of $Aⁿ$ (still depending on c)? You could work from $A = S\Lambda S^{-1}$ to find A^n .

Solution:

(a) Both columns add to 1. As we know for Markov matrices, $\lambda = 1$ is an eigenvalue. From trace(A) = .3 + (1 – c) the other eigenvalue is $\lambda = .3 - c$. Check: det $A = \lambda_1 \lambda_2 =$ $(1)(.3 - c)$ is correct.

The eigenvector for $\lambda = 1$ is in the nullspaces of

$$
A - I = \begin{bmatrix} -.7 & c \\ .7 & -c \end{bmatrix} \qquad \text{so } x_1 = \begin{bmatrix} c \\ .7 \end{bmatrix}
$$

$$
A - (.3 - c)I = \begin{bmatrix} c & c \\ .7 & .7 \end{bmatrix} \qquad \text{so } x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
$$

A is not diagonalizable when its eigenvalues are equal: $1 = .3 - c$ or $c = -.7$. (The two eigenvectors above become dependent at $c = -.7$)

(b)
$$
A^n = S\Lambda^n S^{-1} = S \begin{bmatrix} 1 & 0 \\ 0 & (.3 - c)^n \end{bmatrix} S^{-1}
$$

This approaches a limit if $|.3 - c| < 1$. You could write that out as $-.7 < c < 1.3$ (Small note: at $c = -.7$ the eigenvalues are 1 and 1, at $c = 1.3$ the eigenvalues are 1 and -1 .)

(c) The eigenvectors are in S. As $n \to \infty$ the smaller eigenvalue λ_2^n goes to zero, leaving

$$
A^{\infty} = S \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} S^{-1} = \begin{bmatrix} c & 1 \\ .7 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .7 & -c \end{bmatrix} / (c+.7)
$$

$$
= \begin{bmatrix} c \\ .7 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} / (c+.7) = \begin{bmatrix} c & c \\ .7 & .7 \end{bmatrix} / (c+.7)
$$

3 (30 pts.) Suppose A (3 by 4) has the Singular Value Decomposition (with real orthogonal matrices U and V)

$$
A = U\Sigma V^{T} = \left[\begin{array}{ccc} u_{1} & u_{2} & u_{3} \end{array} \right] \left[\begin{array}{ccc} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & v_{2} & v_{3} & v_{4} \end{array} \right]^{T}.
$$

- (a) Find the *rank* of A and a *basis* for its column space $C(A)$.
- (b) What are the eigenvalues and eigenvectors of A^TA ? (You could first multiply A^T times A.)
- (c) What is Av_1 ? You could start with $V^T v_1$ and then multiply by Σ and U to get $U\Sigma V^{\mathrm{T}}v_1$.

Solution:

- (a) Rank = 2 = rank $(A^TA) = #$ of nonzero singular values. The vectors u_1 and u_2 (very sorry about the typo) are a basis for the column space of A.
- (b) $A^{T}A = (V\Sigma^{T}U^{T})(U\Sigma V^{T}) = V\Sigma^{T}\Sigma V^{T}$. The eigenvalues of $A^{T}A$ are 4, 1, 0, 0 in the diagonal matrix $\Sigma^T \Sigma$. The eigenvectors are v_1, v_2, v_3, v_4 in the matrix V.

(c)
$$
V^{\mathrm{T}}v_1 = \begin{bmatrix} v_1^{\mathrm{T}} \\ v_2^{\mathrm{T}} \\ v_3^{\mathrm{T}} \\ v_4^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} 1 \\ v_1 \\ v_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$
 by orthogonality of the v 's.
\nMultiply by Σ to get $\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Then multiply by U to get the final answer $2u_1$.

Thus $Av_1 = 2u_1$, which was a main point of the SVD.