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ABSTRACT

A numerical investigation of the predictability of ideal-
1zed hydrodynamic flow 1s carried out using a model of two-
dimensional incompressible flow., The governing equation is
the forced, dissipative vorticity equation. The numerical
integration 1s carried out over a square grid with periodic
boundaries, The Coriolis parameter 1s taken as constant over
the domain. The 1inltial state of pure zonal flow is perturbed
at random grid points and the evolution of the system is ob-
served, Particular attention 1s pald to the exlstence of re-
glmes and transitlons between various modes of the flow, |

The sjstem is determined to be almost-intransitive, with
two regimes of motion. The flow 1s characterized by persis-
tent patterns with rapid transitions in phase angle and less

frequent transitions between regimes,



No periodiclities are found in the fluid motion and it is
determined to be unpredictable at extended range by any method
if errors exist in the initial data,

The mechanics of pattern persistence and transitions
between modes are explored analytically. Analogies with the
large scale atmospheric flow are made,

The role of transitions, regimes, and stability in
predictability 1s discussed,

This work was supervised by Professor Edward N. Lorenz,
Department of leteorology, Massachusetts Institute of Tech-

nology, Cambridge, Massachusetts,



I, INTRODUCTION

Advances 1in the last two decades 1in our ability to meas-
ure the state of the atmosphere and predict 1ts evolution
have encouraged conslderation of extended range prediction.

Of particular interest is the ability to predict at long range
those atmospheric features assoclated with climatic change.

Much of the previous work in determining the practical
range of predictability has involved sensitivity studies of
numerical models, as described by Charney, et al. (1966).
These studies seek to determine the extent to which these
models are capable of predicting atmospheric motions at ex-
tended range, glven that our knowledge of the initial state
is uncertain. The 1limits of predictability are determined in
these investigations by the growth rate of small errors intro-
duced in the data,

An investigation by Lorenz (1969a;1973a) looks for an-
alogues in the observed atmospheric states. This study de-
termines the limits of predictability on the basis of error
growth and the time required for similar states to evolve to
the point that they no longer resemble one another.

Studies by Lorenz (1969b) and Leith (1971) using two-

dimensional incompressible flow as a substitute for the act-



ual atmospheric equations estimate predlictability limits by
examining the nonlinear transfer rates between different
scales of motion., These studles combine the estimated spec-
tral distribution of atmospheric energy with the dynamical
equations to produce a spectral distribution of errors as a
function of time,

With respect to long-range predictablility and forecast-
ing climatic change, there remains the fundamental question
of whether large variations in the state of the atmosphere
are mainly the result of varlations in the external forcing.
Lorenz (1976b) has hypothesized that long-period fluctuations
of the atmosphere-ocean-earth system may be the result of
nondeterministic factors, not changes in the external forcing.
The implication is that for a given forcing the observed cli-
mate need not be unique and that almost-intransitivity may
account for the long-period fluctuations.

It is the purpose of this paper to explore extended rancge
predictability with a model of two-dimensional incompressible
flow., Models of thls flow have found favor in many theoret-
ical examinations of atmospheric motions (cf. Fjortoft, 1953;
Arskawa, 1966; Lorenz, 1969b; Batchelor, 1969; Leith, 1971;
Lilly, 1972; Knudsen, 1973). This is due in large part to
the realization by Fjortoft (1953) that the atmosphere on the
larzest scales behaves roughly like a two-dimenslonal incom-
pressible fluld.

It should be noted that no attempt is made here to re-



produce observed atmospheric motions. It 1s our intent to
examine the kinematic behavior of the modelled flow, which

we believe 1s analogzous to the atmosphere. The model pos-
sesses two important characteristics of atmospheric motions
in relation to predictability: nonlinearity and randomness,
In some respects, the model can be considered a more complex
form of the nonlinear functions used by Lorenz (1964;1976b),
These functions were used to mathematically illustrate poss-
ible climatic regimes and the difficulty in estimating long-
term statistical properties of a system which has nonperiodic
variations, The equations used here bear a closer rzssemblance
to those describing real fluid motion than those used by
Lorenz., Particular attention will be given in this invest-
igation to the existence of regimes, transitlions, intransil-
tivity and almost-intransitivity that may occur in this sim-

ulated two-dimensional incompressible flow,



II, MODEL

The equation used to describe two-dimensional incompres-
sible flow in this investigation is the forced, dissipative

vorticity equation:

Qg= _J'(%!,,[)_ L7+ Fengy (1)

ot
where ? = p? 7
and '1 = relative vorticity

V = streamfunction
J(, ) = two-dimensional Jacoblan
= damping constant
ﬁQ%v) = forcing function
The terms contributing to the local change of vorticity,agég,
are:

"J(?ffzf), the vorticity advection tern,

-k{ , the vorticity damping term, and
f247) , the vorticity forcing term.

The numerical method for integrating the vorticity equa-
tion involves making finite difference approximations to the
partial differential equation. The Jacoblan 1is replaced by
the finite difference Arakawa Jacobian (Arakawa, 1966) which

conserves both the mean squared vortlcity and kinetlc energy.



The stream function used in evaluating the Jacoblan 1is obtain-
ed by solving Polsson's equation,‘7‘§/='g , using a numer-
ical procedure for inverting del-square devised by Lorenz
(1976). The numerical time integration is carried forward
using the N-Cycle scheme (Lorenz, 1971) with N=8. The finite
differencing grid is rectangular with 32 by 32 points. Per=-
iodic boundaries are used at all four slides.,

We now rewrite (1) in dimensionless variables using Z° ,
which will be related to the integration time step, and 4L ,
the grid-point separation.

é%{’:-—\]"(z’/){”(')_é,{qﬁﬁ(x,«,) (2)
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comparison between the model scale of motlon and the atmds-
pheric scale of motion.

In this model, the forcing function, F(x,y), was chosen
as a perlodic function of y (1atitude), independent of x
(longitude). Specifically, F(x,y) = Acos(3y), where A is the
specified amplitude of the forcing. In discrete form, the

3
forcing function 1is F;,J * A cos (73 ‘).
8



III., NUMERICAL EXPERIMENT

The model in finite difference form was programmed to
run on an I3M 370/95, with all floating point values computed
to 16 decimal places. The amplitude of the forcing was set
to 0,25, the integration time step was 0.57?%, and the Coriolis
parameter was taken as constant.,

Initially all grid-point values of the vorticity and
streamfunction were set to zero. OSince the forcing had a
zero mean, the vorticity had a zero mean throughout the in-
tegration as a result of the initial conditions.

During the integration, the intensity of the flow in-
creased initially due to the forcing. A steady state was
soon reached when the forcing and damping balanced. At this
time, the vorticity flileld was identical in form to the forcing
field and the stream fleld reflected the purely zonal flow
which had become established, The direction of the flow al-
ternated with the same period as the forcing.

Once the steady state had been achieved, perturbations
were introduced in the vorticity fleld. These verturbations
were made at six randomly chosen points. The verturbation
consisted of adding 0.1 at three of the points and subtract-

ing 0.1 at three of the points, keeping the mean vorticity



egqual to zero. The size of the perturbation was approximate-
ten percent of the rms vorticity of the model.

Immediately followling the perturbation, the amplitude
of the local disturbances grew untll the shape of the flow
pattern was drastically altered from its previous form. The
integration was carried out for over 20,000 time steps, cor-
responding to a model time of 10,000T . A typical strean

field is shown in Figure 1,
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IV. ATMOSPHERIC AND MODEL 3CALZS COMPARISON

To establish a time scale comparison between the atmos-
phere and the model we examine the ratio of the typical wave-
length to the typical velocity in both cases.

For the atmosphere, the typical wavelength is on the
order of 6000 km and the typlcal wind speed 1s approximately
20 msec~l, Thus the atmospheric time scale is approximately

ta ~ 6000 km ~ 3.5 days.
20 msec-l

Tor the model, the typical wavelength 1is on the order of
164 . The typical velocity is determined from the mean ki-
netic energy, which is calculated periodically during the in-
tezration. The mean kinetic energy per unlit mass 1is approx-
imately 0.13‘{431 . Then the root mean square veloclity 1is
approximately 0.5 L/%‘. Thus, the time scale of the model is

t o 164 ~ 327,
mT 054/

If we take T~0,1 days, we can conslider our results as
roughly comparable to atmospheric scales of motion. I!Makingz
this correspondence between atmospheric and model time scales
means our integration was carried out for about 1000 "days".
Henceforth our reference to elapsed time in the model will be

in days with the understanding that the correspondence between

11



the model time and real time is based on the above scale

comparison.

12



V. BESULTS

rollowing the perturbation, a flow pattern became estab-
lished consistent with a stream function whose largest term
is of the form: 3cos2xcos3y. Throughout the integration, the
gross features of the flow pattern could be described by a
stream function of the form:

?!(l. 7,4) = Blt) cos brs + d,,(\‘-‘)) Cos (-?7 m(f)) r €@ 0537 (3)
with n =1 or 2,
and where B{t) and E(¢) are time varying amplitudes, dn (é) is
the phase angle assoclated with zonal wavenumber n, and d[é)
is the meridional phase angle.

One of the noteworthy results of this investigation was
the relative immobllity of an established pattern for extend-
ed periods of time, even though the forcing varied only with
latitude and presented no preferred longitude. What 1little
mobility a pattern did exhiblt was mainly in the zonal dir-
ection. That is, in (3) the phase angle,§£(&>, showed much
more variation than 4({) » Which varied only slightly from
zero,

It was seen as convenlient to describe the pattern mobil-
ity in terms of the phase angle ﬂ{(?) alone, This was ac-

complished by a harmonic analysis of the meridional averaged
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stream function. B3y doing so, the y-dependence of (3) was
removed; however, the loss 1n describing the pattern mobility
was considered minimal due to its relatively small meridional
motion. Figures numbered 5 through 10 show the time series
of the phase and amplitude of zonal wavenumbers 1 and 2,
which were dominant, and wavenumber 3, which 1is presented

for comparison,

In Figures 5, 6, and 7, a phase angle which 1s constant
for a long period of time is indlcative of zonal immobility
of the pattern if the associated wavenumber has a dominant
amplitude. The length of time that a pattern was statlionary
seemed to vary aperiodically.

The phase of wavenumber 1 (Figure 5) exhibits a station-
ary behavior for approximately 100 days, between Day 420 and
520, An examination of the amplitudes of the three wavenum-
bers shown in Figures 8, 9, and 10 shows that during this
time wavenumber 1 had the dominant amplitude, Thus, the flow
pattern during this time was characterized by a stationary
zonal wavenumber 1, Figure 2 1llustrates the stream field
at a time when wavenumber 1 1s dominant.

Wavenumber 2 exhibited the greatest tendency to persist
wlithout motion and to characterize the flow pattern. The
amplitude of wavenumber 2 usually dominated wavenumbers 1
and 3, Figure 3 shows the stream flield for a pattern domin-

ated by wavenumber 2. The tendency for the phase of the dom-

14



inate wavenumber to be constant for a consliderable time and
then suddenly change and become nearly constant again is
shown in Figure 6, between Day 770 and 1050, The rapid shift
of the pattern colncides with a sudden drop in the amplitude
of the dominant wavenumber. Figure 4 shows the stream field
during a transition in phase of the dominant wavenumber for
wavenumber 2.

Wavenumber 3, as well as larger wavenumbers, exhibited
amplitudes which were generally less in magnitude than wave-
number 1 or 2. The time series of the phase of wavenunber 3
shows no tendency for prolonged lmmobility of this wave.

An examination of the mean kinetic energy of the zonal
component as a function of time (Figure 12) reveals a marked
increase associated with a transition from one stationary
pattern to the next. During a transition, as shown in Figure
b, the zonal variations in the pattern become ill-defined and
the flow nearly returns to its initial, unperturbed state of
purely zonal flow. Within a few time steps, a new stationary
pattern has been established, coinclding with a noticeable
decrease in the xinetic energy of the zonal component.

From the harmonlic analysis of the meridional averaged
stream function, we can conclude that the zonal wavenumber
possessinz the greatest amplitude has a tendency to remain
stationary while those of lesser amplitude undergo nonperiodic
variations in phase and amplitude., Wavenumber 2 most often

characterized the pattern and exhibited a strong tendency

15



for prolonged immobility throughout the integration. There
was only one occurrence where wavenumber 1 was dominant and
characterized the pattern.

Two types of transitlions were noted. One was the phase
transition in the dominant zonal wavenumber. The other was
a transition in dominant wavenumber from 2 to 1 and back to
wavenumber 2. Transitions in phase were rapid and the time
between occurrences appeared aperiodic. Transitions 1in dom-
inant wavenumber were less rapid and occurred only twlce dur-
ing the integration.

To further examine the system for possible periodicities,
it is convenlent to look at a quantity that characterizes the
entire system. The assumption 1s that 1f periodically the
system returns to the same states, it would be revealed by such
a quantity. The mean kinetic energy was taken to be an appro-
priate quantity for thils purpose. A time series of the mean
kinetic energy was computed. Figures 11, 12, and 13 show the
results of this calculation, displaying the mean total kinetic
energy, mean kinetic energy of the zonal component, and the
mean kinetic energy of the meridional component respectlvely.

A casual inspection of these time series reveals no ob-
vious periodicity. A spectral analysls of the mean kinetilc
energy of the zonal component based on 900 consecutive days
using a discrete Fourler transform, revealed a continuous
spectrum within the frequency resolution limits (0.5 day‘l).

A measure of linear predictability one step ahead (cf.

16



Lorenz, 1973b) is the ratio of the a posteriorl variance,
represented by the geometric mean of the spectral densilty
function, to the a priori variance, represented by the arith-
metic mean., For no error in prediction, this ratio is zero.
In this case, the arithmetic and geometric means of the spec-
tral density function of the time series of the mean kilnetilc
energy of the zonal component are 7.9 x 10~7 and 3.2 X 10'11,
respectively. The ratlio is of order 10'5, which indicates
only a small error in predicting the mean kinetic energy of
the zonal component one day ahead. However, 1f the series is
indeed nonperiodic, and not just apparently so from the sample,
the imperfect prediction one day ahead implies 1t would be

linearly unpredictable at extended range.
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VI. DISCUSSION

Kinematically, the flow represented by the model bore
some resemblance to the atmosphere. The zonal flow alternat-
ed direction in latitudinal bands similar to the easterlies
and westerlies in the atmosphere. Zonal waves developed in
the flow, producing circulation centers with cyclonic and
anticyclonic fluid motions (in the atmospheric sense). The
absence of variation in the Coriolis force prevented Rossby
waves from developing.

There are four observed features of the flow which are
relevant to its predictability: (1) The presence of persis-
tent stationary patterns, (2) patterns which can be separated
according to the dominant zonal wavenumber into regimes, (3)
rapid transitions which occur between regimes with vhase
transitions occurring within a regime, and (4) no observed
periodicity in the flow.

The mechanics of the observed persistent patterns can be
explained to some extent analytically, If the stream function
has the form

Y- CCO& (nx~d)€05(m7+x) ()
with n and m integers, the vorticity advection, represented

by the Jacobian,:r(3{;C), is identically zero. It can be

18



seen that (4) with m=3 is a special case of (3) with 2/15) =0,
When the stream field is described by (4), the local change
in vorticity given by (1) is a result of the forcing and damp-
ing alone, Thus, when £(¢), the amplitude of the zonal flow,
is near zero, there will be little tendency for alterations

in the shape of the pattern. The amplitude of the pattern,
represented by E(f) in (3) will decrease with time due to the
Aamping. The forcing will tend to increase the amplitude of
the zonal flow, E(¢) in (3). “hen 557) is no longer small in
comparison with<3(£>. (4) no longer applies and the nonlinear
advection term becomes nonzero.

The sequence of events in the transition from one mode
to another is the following. The features of the established
pattern deterlorate slowly whlle the intensity of the zonal
flow increases, The strenath of the zonal flow is limited by
its instability with respect to perturbations by the existing
small scale motions. A new pattern is then established with
different phase or dominant wavenumber,

A preference for establiShing patterns with zonal wave-
numbers 1 or 2 and not higher wavenumbers was observed. The
large number of zrid points would tend to partly ellminaﬁe
the truncation of hlzher wavenumbers as the source of this
phenomena. The preference seems to be lnherent in the flow
and not a result of restricted spaclilal resolution.

It would appear that the selection of the dominant wave-

nunber following a transition 1s a stochastic process. A ran-
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dom nonlinear interaction between motions of various scales
at the time of transition may determine the dominant wave-
number, Such a process may be not unlike the atmosphere,
This concept will be discussed further,

The large scale features of the flow pattern exhibited
two degrees of freedom zonally, the dominant wavenumber and
phase. lMeridionally, the forcing "locked-in" the pattern
glving zero degrees of freedom. Essentially, the problem of
predicting the flow pattern reduced to predicting the dominant
wavenumber and phase, Thls is similar to predicting the dom-
inant Rossby wavenumber and the location of the trouzhs and
ridges in the atmosphere.,

The persistent, stationary patterns may be analogous to
"blocking patterns" found in the atmospheric motions. Once
identified, they may be successfully used in a persistence
forecast., An important physical difference between the form
of the forcing in the model and in the atmosphere should be
noted. In the model, there is no lonzitudinal variation in
the forcing to favor a stationary pattern. Whereas, in the
atmosphere, considerable longltudinal variation exists due to
topography and thermal effects which may contribute to 1mﬁobi-
1ity of the pattern in a "blocking" situation.

As previously noted, the flow contained two regimes of
motion, even though the forcing was invariant throughout the
integration. The regimes are identified by the dominant zonal

wavenumber, The observed transitions between regimes are a

20



good example of an almost-lntransitive system as defined by
Lorenz (1968). In such a system, a single solution will ex-
hibit different statistics within different segments of a
long time span. Clearly, the statistlics of the model differ
when wavenumber 1 was dominant, Day 420 to 520, from a 100
day period when wavenumber 2 was dominant.

Almost-intransitivity in a hydrodynamic system has im-
portant implications in determing long term statistics, or
climate in the atmospheric case., In the model, with a sample
of nearly a thousand days, only for about one hundred consec-
utive days was the flow in the wavenumber 1 regime. If the
transition to this regime is considered stochastic, it is
fortunate that it was observed, even in this lengthy sample.
There may be regimes in the atmosphere which are likewise
relatively short in duration and infrequent in appearance,
Such regimes may easily be excluded in climatic statistics
through sampling inadequacies, such as insufficient record
length. So even without a forcing change, a significant
climatic change might be noted when the atmosphere enters a
regime that has not been previously observed and accounted
for in climatic statistics,

The lack of observed periodicity in the flow has definite
consequences relating to its predlctabllity. The theory of
predictability for nonperiodic flow has been presented by
Lorenz (1963a; 1963b). Nonperiodic flow is linearly nonde-

terministic if the logarithm of the spectrum 1s integrable.
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If we consider the kinetic energy of the zonal component as
a fundamental measurse of the state of the system, then on the
basis of Figure 14 we can conclude that the flow is intrins-
ically linearly nondeterministic. While predictable with
errors at short rangzs, linearly nondeterministic, nonperiodic
flow is unpredictable by linear means at extended range.
Furthermore, since the numerical solution found in this
integration is nonperiodic, it 1s unstable, A slightly dif-
ferent perturbation would yield a very different numerical
solution, From a different viewpoint, if this solution was
to be determined from measurements of some real fluid system,
an error in measuring the state would lead to a completely
different solution. Thus, accurate dynamical prediction at
extended range is dependent on error free measurements, which

are practically unobtalnable.
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VII. MODE TRANSITIONS AND PREDICTABILITY

The changes In reglme or in phase within a regime may be
collectively referred to as mode transitions. Within a par-
ticular mode the statistics of the system are relatively in-
variant, but differ significantly from one mode to another,

The modes observed in the flow may be considered quasi-
stable, The stability of the modes was indicated by their
persistence even though perturbed by random small scale mo-
tions which were present in the flow. Changes in the stabil-
1%y occurred with time as a result of the damping, forcing
and nonlinear interactions,

At some time a mode appeared to become very unstable and

th

(¢}

flow entered a transition period. It seems likely that
during transition, the nonlinear interactions between various
scales of motion determine thg regime and phase that evolve,
It seems possible, though not explicitly investigated, that
the small scales may be equally important as the large scales
during transition in determining the state that evolves, Fronm
this investlgation, there appears to be little evidence that
the large scale motions by themselves determine the outcome

of the transition,

The average lifetime of a particular phase of a regime
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was about 75 days. The lifetime of a particular regime was
about 100 days for wavenumber 1, Wavenumber 2 persisted about
4L0C days on the first occasion and at least 500 days on the
second, During a particular regime, a persistence forecast
could be quite accurate in prediction of the dominant wave-
number, though the accuracy of the phase prediction would
deteriorate more rapidly. Predictlion of the followlng mode
during a transition does not appear possible unless the state
of the system 1s specified without error.

Thus, there seems to be varying degrees of predictabill-
ity depending on the state of the flow., When a transition has
Just occurred, it is possible to predict the regime for a con=-
siderable time span, However, the exact length of time that
the regime will exist is not apparently predictable if mea-
surements are not exact, When the flow is entering a tran-
sition, there 1is essentially no predlctability of the ensuing
states if there are measurement errors,

This situation can be described in terms of a phase space
where the points in the space correspond to states of the flow
(cf. Lorenz, 1963a)., The space can be partitioned into re-
gions corresponding to the degree of stabllity of the flﬁw.

In our case, the exhiblted flow 1s presumed to be inherently
unstable due to its nonperiodicity. When the flow is in a

persistent regime, 1t would correspond to a regilon of quasi-
stability, l.e., low instability. A transition would corres-

pond to entering a region of high instability.
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The degree of instabllity is measured by the growth rate
of small perturbations made in the flow. In the quasi-stable
region, the statistics of nelghboring trajectories diverge
slowly. During transitions, the statistics of neighboring
trajectories diverge rapidly. This would also be an indica-
tion of the growth rate of measurement errors in a numerical
prediction of the flow. Trajectorles in phase space enter
either region nonperiodically.,

The indeterminacy of the state of the system due to
measurement errors translates into an uncertainty as to which
trajectory the system is following. This indeterminacy would
eventually result in a large departure in the predicted state
of the system from that observed. What is important to note
is that the rate at which the observed and predicted states
diverge 1s determined by the degree of instability, i.e., the
reglon occuplied in phase space.

In this situation, a thorough knowledge of the large
scale motions may be sufficlent to predict the flow at con-
siderable range with acceptable error during a quasi-stable
mode., The lack of information about or inabllity to faith-
fully revresent small scale motions renders the predictioﬁ
scheme useless in predicting the length of the mode'!s exist-
ance and the evolution of the flow after entering a transition.
Given that measurement errors will occur, the accuracy of a
prediction scheme, in this case, is a function of the state

of the system. When in certaln states, such as those follow-
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ing a transition, the system is highly predictable. In other
states, such as those associated with transitions, predictabil-
ity is nonexistant.

Such a realization does not bode well for prediction at
ranges which span one or more transitions. The integration
of the governing equation of thls model yielded two regimes,
the atmosphere, presumably, possesses many more, An accurate
prediction of the evolution of a system, such as modelled
here, requires the successful prediction of transition pro-~
cesses, It 1s possible that successful prediction of tran-
sition processes, in this model or in the atmosphere, requires
an accurate knowledge of small scale motions. In practical
_application, such as for the atmosphere, a model which faith-
fully represents the small scale motlons requires observations
on a small scale, numerous grid points, and excessively long
conmputation time. This may not be feasible.

Thus, if a transition process simlilar to the one describ-
ed here exists in the atmosphere, and i1f the atmosrhere pos-
sesses almost-intransitivity, it would seem that prediction
of the state or a statistlc of the atmosphere at extended
range would not be practically possible by direct integration
of the governing equations.

Should the atmosphere possess a trajectory in phase space
with varying instability, 1t would be valuable to catagorize
the atmospheric states according to their stability. This

would allow a determination at the time of observation of the
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degree of predictability that exists at that time. Forecasts

could be made to cover the indlcated predictabllity limit,
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VIII. CONCLUSION

In this investigation, we have used a model of two-dimen-
Sional incompressible flow, which kinematically resembles some
of the large scale features of the atmosphere, to examine ex-
tended range predictability. A sufficlently fine grid mesh
was chosen so as to minimize the effects of truncation in the
simulation,

After perturbing the initial zonal flow, we found with
fixed forcing that the flow exhibited almost-intransitive
behavior. There were two identiflable regimes within the
span of the integration. They were found to be highly per-
sistent, Within the regimes, the pattern movement was zonal
at lrregular intervals., Transitions occurred rapidly between
regimes and between zonal phase of the pattern.

The tendency for persistgnce in a model possessing
almost-intransitivity was suggested by Lorenz (1976). This
simple model provides a vivid example of such behavior. This
work provides further evidence that models which contain mo-~
tions resembling those of the atmosphere possess almost-
intransitivity. It does not, nor perhaps may any model which
deals with a continuous system as a set of discrete points,

establish the existance of almost-intranslitivity of the atmos~
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phere, However, 1t does suggest the possibility.

An examination of the time variations of the mean kin-
etic energy of the zonal component revealed no periodicities.
This was taken as an indlcation that the system itself was
nonperiodic, Examination of the motions of the patterns and
the period between transitions likewise evidenced no period-
jcities, From a power spectrum analysis of the time varia-
tions in the mean kinetic energy of the zonal component, to-
gether with the assumption of nonperiodicity, it is concluded
that the flow 1s unpredictable by linear means at extended
range., Since nonperiodic flow 1s not uniformly stable (cf.
Lorenz, 1963a), it is unpredictable at extended range by any
nethod if errors exist in the measurement of the initial
state,

In referring to "extended range", it must be understood
to span one or more transitions, Certaln features, such as
dominant zonal wavenumber were highly predictable for ranges
of 100 days and more due to persistence, However, no feature
of the flow was seen as practically predictable through a mode
transition,

It is suggested here that nonperiodic, almost-intransi-
tive fluld motion may possess varlable range predictability,
depending on the state of the system. The critical factor in
the range of predictability is the relative stability of the
phase spacs trajectory with respect to small perturbations,

which are in effect measurement errors., From this investiga-
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tion, the trajectory stability 1s seen as variable along the
trajectory.

Whether active on seasonal or climatic time scales, the
existence 1n the atmospheric motlons of a regime and transi-
tion mechanism similar to that sugzgested here would have a
profound effect on extended range predictability. At a tine
when the atmosphere is "choosing" between various possible
regimes, the measurements must be most precise, 1f not exact,
to determine the subsequent behavior. Between transitions,
the regime motions might well be predictavle with less accur=-
ate measurements owing to its decreased instabllity compared
to transition periods. However, the determination of the
lifetime of a reglime a priori might, like transition predic-
tions, rely on perfect or near perfect specification of the
atmospheric state,

Lorenz (1963b) found that two neighboring solutions of
nonperiodic flow must eventually diverge until no resemblance
between the two can be detected. What 1is suggested here is
that the difference between neighboring solutions may increase
almost discbntinuously in conjunction with the occurrence of
transitions and much more slowly in between. A predictlon
scheme which utilizes this information would endeavor to de-
termine the error growth rate for the observed state of the
system. Predictions could then be made at a range consistent

with the stabllity.
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This investigation indicates the difficulty of extended
range predictlion of the instantaneous state of an almost-
Intransitive system when knowledge of the 1nitial state is
imperfect, It 1is suggested that this 1is due partly to the
transition mechanism, Furthermore, prediction of mean values
of the system at extended range would seem no easler than
prediction of the regime 1tself, since the statistics of each
regime would be considerably different for an almost-intransi-

tive system.
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Figure 3. Stream field, Day 65, showing the regime with zonal wave-
number 2 dominant. Contours in dimensionless units.
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Figure 4. Stream field, Day 125, showing the strong zonal flow during
a phase transition. Contours in dimensionless units. .
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