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Abstract

Data from well logging experiments are abundant in the oil exploration industry.
This data is normally used to estimate borehole formation parameters. This thesis
presents a theory and ensuing algorithm that will enable the exploration seismologist
to image anomalies very near to the borehole (up to thirty wavelengths away from
the borehole) using this data.

In this thesis we develop from first principles an analytical solution of the scat-
tering wave equation in a 3D acoustic medium. The emerging inversion formula is
analogous to a Generalised Radon Transform of the velocity structure of the medium
over surfaces of constant travel time. If we assume that the scatterers are a com-
posite of localised isolated perturbations of a constant velocity background medium,
our inversion formula can be simplified to be analogous to a Radon transform of the
velocity structure of the medium of interest. An inverse Radon transform is readily
available and we apply this to obtain a simple expression for the scattering potential
(a measure of the velocity perturbations) of the medium. We address the special
data acquisition configuration of the Full Waveform Acoustic Logging (FWAL) tool
and convert the inverse scattering equations into a form directly applicable to data
collected by this seismic tool.

An algorithm based on our theory is applied to six synthetic 2D models. We ignore
the effects of the borehole and any fluids they contain. For real data a re-scaling of the
magnitude of the scattered data will have to be applied for our inversion technique to
give satisfactory results. We address 2D models in this thesis, since data is cheaper
to generate from these than their 3D counterparts. We argue that the very acoustic
nature of our acquisition tool prohibits us from discerning the direction around the
borehole from which the scattering occurs, and therefore any real 3D medium will
appear to the FWAL tool as an infinite number of 2D slices along an axis of symmetry.

Five of the six models analysed provide favourable results, which demonstrate



the feasibility of our algorithm in reconstructing point scatterers in very complex
formations, dipping layers and beds, pinched-out layers often prevalent in fault zones,
fractured regions and metamorphosised rocks. Our algorithm did not satisfactorily
image inclusions and regions with velocity gradients.

In future work, we will apply the algorithm to real data from well logging ex-
periments. We also hope to extend the theory presented in this thesis to an elastic
medium.

Thesis Advisor: M. Nafi Toksdz
Title: Professor of Geophysics
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Chapter 1

Introduction

1.1 Motivation for the Thesis Topic

Seismic imaging around a borehole is becoming an important application of the Full

Waveform Acoustic Logging experiments (Hornby, 1989). The topic of this thesis was

first suggested during an internship at ARCO Oil and Gas Company in the summer

of 1990. ARCO was in the process of collecting data from a well site in Kuparuk,

Alaska, where siderite deposits were suspected near the borehole. There was inter-

est in imaging the possible distribution of the mineral. Researchers at ARCO had

become interested in the work of Hornby (1989), in which he imaged near-borehole

anomalies with an imaging technique that made use of an analytical inversion scheme

previously used by Beylkin (Beylkin, 1985; Miller et al., 1987). It was ARCO's desire

to have an imaging algorithm that could be used for data collected from their Full

Waveform Acoustic Logging (FWAL) tool. The very analytical means of inverting for

the medium parameters, motivated me because I strongly believe in a very theoret-

ical approach to problem solving in order to minimise computer number crunching.

The applications of the Radon transform were studied intensely and the problem was

pursued in conjunction with the work of Beylkin. I hope that this thesis, in which

the analytical inversion is derived for a very simple medium, provides the basic foun-



dation for using the Radon transform to solve inverse scattering problems. With this

understanding the transform can be used to develop inversion schemes in mediums

of greater complexity.

1.2 Objectives of the Thesis

We investigate the scattering problem in a simple constant velocity 3D acoustic

medium in which attenuation, multiple scattering, and mode conversions have been

ignored. We use a simulation of the borehole well logging tool and ignore the effects

of the borehole and any fluids it may contain. Since by the nature of our experiment

we cannot discern azimuthal directions around the borehole, we assume that we have

azimuthal symmetry. For this medium we developed, almost from first principles, the

building blocks for understanding the forward and inverse scattering problem. We

also obtain a closed-form expression for the velocity structure of the medium which

was easily coded into a computer algorithm.

The closed-form expression for the velocity structure is due mainly to the fact

that the Green's function in the medium, governed by the wave equation, is a delta

function which reduces the forward problem to be a surface integral over surfaces

of constant travel time. The analogy is then made between the forward scattering

problem and the Generalised Radon transform of Gel'fand (Gel'fand et al., 1969).

With a few approximations based on the assumption of localised isolated scatterers,

the forward problem is reduced to a Radon transform. The inverse Radon transform,

which gives us the velocity structure of the medium, can be readily obtained. This

expression for the velocity structure is then manipulated into a form which makes it

more suitable for the source-receiver configuration of the borehole tool.

The Born single scattering approximation is used to linearise the forward problem.

With this linearisation, we use the principle of superposition in assuming that our

data is a composite of many experiments from different media, each comprised of an



isolated scatterer. This isolated scatterer approximation allows the surface of constant

travel times to be linearised locally. It is used to convert the resulting expressions

of the forward problem similar to the Generalised Radon transform, into a Classical

Radon transform.

Our objectives are to develop a better understanding of the use of the Radon

transform pair and its application in the forward/inverse scattering problems of seis-

mology, so as to form a foundation for pursuing more complex media.

1.3 Outline of the Thesis

This thesis is organised so that it can be easily understood by the reader who has

little knowledge of the scattering problem in seismology. Chapter 1 provides a broad

overview of the construction of the thesis. Chapter 2 gives detailed theoretical de-

velopment of the scattering problem in a 3D constant velocity acoustic medium in

a seismological context. First, the forward problem is examined and then solved by

means of the first order Born approximation, which assumes that either the velocities

of the scatterers are very close to the constant background medium or that the size of

the scatterers are very small compared to the dominant wavelength of the experiment.

The data used in this thesis is from a synthetically simulated sonic well logging tool

which typically uses sources that have a central frequency of around 6-10 kHz. This

allows us to examine very small scale heterogeneities. Assuming the perturbations are

indeed small in magnitude, and only single scattering occurs, we can approximate the

scatterers by a composite of localised inhomogeneities, which allows us to locally lin-

earise our surfaces of constant travel times, the so-called isochronic surfaces. We then

relate the forward scattering problem to the forward Radon transform of the veloc-

ity structure over planes that are characterised by the linearisation of the isochronic

surfaces. The inversion for the medium velocity is then derived in analogy to the

inverse Radon transform. A Jacobian derived explicitly in Appendix D for the case



of a constant offset in-line source-receiver configuration, is used to transform the ex-

pression of the velocity function of the medium in terms of the experimental variables

s and r, source and receiver position, respectively. We explain how this inversion

expression was coded into an imaging algorithm, which is used to do inversions on

synthetic data from six models.

Chapter 3 describes the models used to generate synthetic data to which we apply

our algorithm. The methods for generating the synthetic data are described briefly,

and the results of the imaging algorithm discussed.

Chapter 4 contains conclusions that may be drawn from the results on the syn-

thetic data.

Appendix A briefly discusses the Born Approximation frequently used in scatter-

ing problems found in this thesis and elsewhere. The motivation, assumptions and

limitations of the Born Approximation are discussed as an overview.

Appendix B develops the Green's function for a 3D constant velocity medium

governed by the acoustic wave equation, commonly known as the Helmholtz equation.

The derivation follows from Fourier techniques and Cauchy residue theory for complex

functions. As the Green's function is used in this thesis and many other papers

of seismology without an actual derivation, we found it necessary to include this

appendix so that this thesis can be a "building block" in the analysis of scattering

theory in seismology.

In Appendix C, the Radon transform in 3D is developed and its connection to the

Fourier transform is established. The inverse transform is derived in a logical way

from the extensive knowledge of Fourier transforms. This appendix briefly outlines

the difference between the Generalised Radon transform of Gel'fand and the Clas-

sical Radon transform of Radon. However, the emphasis is on the Classical Radon

transform as a closed form expression of its inverse is readily obtained.

Appendix D develops the Jacobian that allows us to transform a surface integral

over a unit sphere found in the Classical Radon transform to an integration over



sources for the case of the well logging borehole tool. This Jacobian can be equally

applied to in-line constant-offset surface seismic experiments. We then derive the

Jacobian for the case of a zero-offset in-line experiment.



Chapter 2

Theory and Computer

Implementation

2.1 Introduction

Much of the work in exploration seismology is directed toward the inversion of the data

recorded to obtain the size, shape, location and other parameters of the structures in

the medium that the energy traverses as it travels from source to receiver (Aki, 1973;

Miller et al., 1987; Beydoun and Mendes, 1989; Hornby, 1989). This thesis continues

the work of Beylkin (Beylkin, 1984; Beylkin, 1985; Miller et al., 1987) in the use of

an analytically derived inversion scheme based on the Generalised Radon transform.

We address the special case of data collected from a constant-offset, in-line source-

receiver configuration as commonly used in Full Waveform Acoustic Logging (FWAL).

The theory and ensuing algorithm is primarily for the scattered data from localised

inhomogeneities in the medium, which can be considered as velocity perturbations

of the constant background. These scattered data arrives after the direct arrivals

on our seismograms. As some of the reconstructed models show, the algorithm can

also be used on data caused by reflections from dipping beds and interfaces in the

medium. In this chapter we derive the equations that govern both the forward and



inverse scattering problem in a very simple acoustic, homogeneous, non-attenuating

constant background velocity medium. We hope these explicit solutions to both the

forward and inverse problem, provide the necessary theoretical formulations so that

scattering problems for a more complex medium can be done as a logical extension

of this thesis.

As stated earlier, we will test primarily the ensuing algorithm on data synthetically

created for the FWAL tool; we ignore the effects of the borehole and any fluid it may

contain in our theoretical derivations. In real data the presence of the borehole and

fluid will cause the generation of the Stoneley (Tube) wave and pseudo-Rayleigh

wave discussed by other authors (Cheng and Toks5z, 1981; Meredith, 1990). These

guided waves governed by characteristic dispersion relations must be removed from

any real data before the ensuing algorithm is used to process that data. In this

thesis the algorithm derived from the theory is used on synthetic data. However,

if we process real data, we would have to assume that the medium only propagates

the longitudinal P wave, which we shall treat as the acoustic wave; S waves will

be treated as noise. The existence of a cylindrical borehole will result in amplitude

modifications in the Primary (P) wave, but a scaling factor can be applied to the

amplitude of the scattered P wave as measured by the receivers on the borehole tool

to account for this modification (Schoenberg, 1986; Meredith, 1990).

In the forward scattering problem, we first assume that the particle velocity of

the medium that is excited by the propagation of energy in it is very small. This is

done so that terms that are of the order of square of this velocity are negligible and

will be ignored. This allows us to linearise the equations of motion in terms of the

so-called material derivatives of the particle velocity. We then apply the first order

Born approximation discussed in Appendix A to linearise this forward problem. The

Born approximation is valid if: (1) either the size of the scatterer is small compared

to the dominant wavelength of the propagating energy admitting the case of a large

velocity contrast; or (2) the velocity of the scatterer is a small perturbation from



the background velocity of the medium, allowing the size of the scatterer to be arbi-

trarily large. An inversion method is derived in in section 2.3. We assume that the

medium consists of a composite of localised isolated scatterers that are velocity per-

turbations of the constant background medium. This assumption allows us to image

large anomalies, which are small velocity perturbations of the background medium,

by viewing these anomalies as composites of much smaller scatterers.

2.2 The Forward Problem

2.2.1 Wave Equation in an Acoustic Medium

We begin by deriving the necessary wave equations from the equations of motion in

an acoustic medium. Let us assume the medium is a fluid which obeys the following

hydrodynamical equations, in which we shall ignore the effects of gravity (Chernov,

1960; Spiegel, 1968; Mase, 1970):

S+ V - (py ) = 0, (2.1)

where p is the density of the fluid and v is the particle velocity. Equation 2.1 is the

continuity equation which states that mass is conserved in the fluid.

dvp - p + dP (2.2)dt dx
Equation 2.2 is the equation of motion and it simply asserts that linear momentum

is conserved. In this equation, we represent the component of the body forces in the

x; direction by fi ,and, the stress (or pressure) tensor by Pi,. We further assume that

the fluid is inviscid and that there are no body forces acting on this fluid. For the

case of an inviscid fluid, the pressure tensor takes on the special form of Pig = -P ogg.
Replacing this into equation 2.2 we obtain:

dv
p--~ =-E P.(2.3)



Assuming that the process of wave propagation in the fluid is an adiabatic process,

we attain:
dP d p--- = c2 - (2.4)
dt- dt'

where c is the velocity of the medium. Equations 2.2 - 2.4 use the so-called material

derivative i, sometimes called the convective derivative. It is obtained from thedt'

Lagrangian description of the fluid, the description obtained by an observer who is

traveling with the specific particle under study. It is easy to show that we can relate

the Lagrangian and Eucledian (-!) time derivate by:

dO8dt -- + v; (2.5)dt =t

sometimes v - V is called the convection term. Making use of equation 2.5 in equa-

tion 2.2, we attain:

A-V + M V -VP.

If we assume that the particle velocity | | v is of order e, where c is a small

number, so that v - V v - v2  0(E2), and will be negligible, we can approximate

the equation of motion by:

p-= = -V P. (2.6)

Equation 2.6 is sometimes called the linearised equation of motion. If we make use

of equation 2.5 in equation 2.4,

OP 2
0 p

of+v VP=c [LP + - p]. (2.7)

In the previous equation, v -V P = -p y - a after making use of equation 2.6. This

term - v 2 0(2), which is negligible and will be ignored. We therefore obtain:

oi 2 aP
+ _ (2.8)t = t -V1

If we differentiate equation 2.1 with respect to time and use equation 2.6 and equa-

tion 2.1, we attain:

2 ' 'V P =0.



The second term on the left-hand side of the previous equation is negligible as V7

(py) v ~ v2 -(c2). We obtain:

- V2P = 0. (2.9)

If we rewrite equation 2.8, and differentiate with respect to time:

82p I [ 2p gy gP ,i- 2 - - -2c2V - V-at2 -C2 a t ~~ - - at'
Using equations 2.6 and 2.1 to show that the third term on the right-hand side of the

previous equation ~v . V2pX v2  0(6 2) and will be ignored. We obtain:

82p 1 a2p 2 p
F12 1_2 1a2 +c -Vp1. (2.10)

If we use equation 2.9 in the previous equation and use the fact that p = Vp :
P

1 02 P
V2p _ c - 2- + V P - V 1np =0. (2.11)

C2 alt2

In seismology we normally represent P as u, the particle motion. We introduce the

bulk modulus, c, of the material which relates the pressure P to the cubical dilatation,

i = pc2 . We relate the change of the bulk modulus to the change in material density

and velocity by:

dr = 2cp dc + c2 d p.

Assuming that rc is a constant, we arrive at dp = -2dc . Making use of these in

equation 2.11:

V2 u - V U - V C = 0. (2.12)
C2 glt2 c-

Equation 2.12 is the linearised equation of motion in an inhomogeneous inviscid fluid.

For a homogeneous medium, p and c are constants, which implies M c = V Inp = 0.

We then obtain the linearise equation of motion for a homogeneous inviscid fluid.

V2 u - -= 0. (2.13)
C2 at 2



If we define the Fourier transform pairs:

fi (w) = L eit u(t) dt,

u(t) = 2.- etw* u(w) dw,

and take the Fourier transform of equation 2.13, we obtain the Helmholtz equation:

V 2 u + -u = 0. (2.14)

2.2.2 The Forward Scattering Problem in a 3D Constant

Velocity Background Acoustic Medium

Let us now turn our attention towards the solution of the forward scattering problem

in a 3D acoustic medium. We assume, consistent with the Born approximation which

we will invoke later in our derivation, that we have a medium that is overwhelmingly

a constant velocity medium. In this constant velocity medium, there exists inho-

mogeneities that have velocities differing from the background medium. We assume

that these inhomogeneities are such that when the medium is taken as a whole, the

average velocity of the medium does not differ significantly from that of the con-

stant background medium. If these anomalies are either very small in size but have

a significantly large velocity contrast with that of the background medium, or, that

these anomalies are in some scale large but have very small velocity contrast with the

constant background encompassing medium, the average velocity of the medium will

not vary significantly from the constant velocity background medium. Keeping either

of these assumptions in mind, we therefore assume that we can use the homogeneous

acoustic equation of the previous section, since the variations of velocity with position

are very small quantities in some averaging sense. We begin by using equation 2.14

and explicitly include the dependency on position. Let us also place a point source

(delta function) in the medium to initiate the propagation of the acoustic waves.

V 2 u(2, s ) + L2  u(Xs) = b(X - S ), (2.15)
c2(X



where 6(x - s) represents a point source placed at source position s. We define a

scattering potential, f(x), which is zero in the background medium, by:

2
f~x )a 0 -1,

c2(x2)

where co represents the constant velocity of the background medium. Further defining

k2r we can rewrite equation 2.15 as:

V2U(X,I) + k2U(x ,a) + k 2f(xj)u(X, s) = 6(X - s_). (2.16)

We assume that the particle displacement, u, can be rewritten as a combination of

two wavefields:

1. An incident field, n'", initiated by the point source 6(x - s).

2. A scattered field, usc, which we shall show is the result of a single interaction

between the incident field and the scattering potential, f, if we invoke the first

order Born approximation.

This follows from the assumption that the perturbations to the constant background

medium velocity are indeed small, so that the scattering potential f(x) does not

vary significantly from zero and will be considered as a first order perturbation to

the medium parameters. We will assume therefore, that the resulting wavefield in

the perturbed medium is primarily composed of the incident field, u ", and any other

wavefields present can be represented by a linear perturbation from the dominant

solution of the unperturbed medium. Hence, u = un + CUeC, where the incident field

satisfies: V 2uin + k2uin = 6(x - s_). We will henceforth omit c. Using these in

equation 2.16 we obtain:

V 2 usc(Xs) + k2 usc(x,a) = -k 2 f(X)u(x, s). (2.17)

Since we assumed by the perturbation scheme that f(x) and us are both small

first order terms, their product will produce a second order term that is negligible



to first order. In general, we can solve equation 2.17 by iteration assuming that we

can rewrite the scatterered field as: uS" = c + uc + - + u" and iteratively solve

for each order of the scattered field, as shown in Appendix A. However, here we

shall only invoke the use of the first order Born approximation to solve the forward

scattering equation 2.17, which linearises the relation between the scattered field and

the velocity perturbations in the medium. We therefore obtain the linearised forward

scattering equation:

V2 usc( x,s) + k2 uc(x,I) ~ -k 2f() (X, ). (2.18)

We see that the scattered wavefield is caused by the interaction between the scattering

potential, f(x), which is only non-zero for locations where inhomogeneities occur, and

the incident field, ut'. Since the incident field u satisfies the wave equation with a

delta forcing function, as discussed in Appendix B, it is just the Green's function for

the Helmholtz equation. Hence:

eikl -- sI

47r Ix - Is

We solve the forward scattering field by using the Green's function defined by:

V 2 G(x,r) + k2G(x,I) = 6(x -r).

If, as described in Appendix B, we take the scalar product of equation 2.18 and the

Green's function; we find the solution for the first order scattered field, after invoking

the principle of reciprocity, since the Green's function is symmetrical with respect to

its two variables of position, as:

u(r,,O)= -2 d3Xf(X) .ikl(2.19)

Using the Fourier transform pair previously defined the scattered field in the (x , t)

domain can be represented as:

uSC(r,.s, t) = uSC(r, s , w) eit dw,27r -o
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which gives, after re-using the definition for k2 , and defining e = -s + -r - t:

u2(1) J) d~x do w2 eiwe. (2.20)
27r(167r2)c v(x_) Ix -s I Ix - r I

Noting that:

* 2 f e d o = -f dod L 2 ewue,

* f d - = 6(O), and

ed = -dt ,

we obtain the solution of the first order scattered wavefield in a 3D acoustic medium

with velocity perturbations which do not violate the Born approximation as:

u"c(r , sIt) = 1r2  JV2 I dax 6"( + Ix - I - t), (2.21)
167rc v(x_) |i - s |I -- I Co CO

where we denote the second derivative of the delta function with respect to time as

Equation 2.21 can be interpreted in the following manner: The scattered field,

as measured at receiver r from an interaction between the incident field initiated by

a point source at s and a velocity perturbation located at x is given as a second

derivative with respect to time of an integration of the scattering potential over

surfaces characterised by t = -d+ -. The integration kernel also containsCO CO0

terms that are the reciprocal of the distances from source to scattering point and

receiver to scattering point. Comparing this with equation C.1 in Appendix C, we

observe that the scattered field is in fact the twice-differentiated (with respect to

time) generalised Radon transform of the scattering potential, f.
It is the delta function nature of the Green's function for this particular medium,

which transforms an integration over all space to be a surface integral. For these

surfaces, t = -d + 14-1 represents a family of ellipsoids where r and s are the

foci, and the variable of time, t, specifies a particular ellipsoid in the family of ellip-

soidal surfaces. It is also of interest to note that ( 1 ,)( _), the geometric

spreading factors, play the role of the weighting function in the transform.

24



Because of the analogy of equation 2.21 to the generalised Radon transform we

have the theoretical basis because of our knowledge of the Radon transform pair

to find an analytical closed-form solution to invert the scattered data to obtain the

scattering potential, f(_x), which forms as a velocity map or image of the medium.

2.3 The Inverse Problem

2.3.1 The Inversion Equation for a General Source-Receiver

Configuration

Since we have linearised the forward problem, we can use the theory of superposi-

tion to envision the data as a composite of many experiments from several mediums

all comprised of a single, isolated scatterer. We therefore seek the inverse of equa-

tion 2.21 by assuming that the anomalies are localised isolated scatterers so that the

weighting functions can be approximated by constants of the variable of integration.

These assumptions will also allow us to linearise the ellipsoidal surfaces and locally

replace them by planes. The approximations to the weighting function and surfaces

of integration, allow us to change the generalised Radon transform of the previous

section to be analogous to the classical Radon transform. The known classical Radon

inverse transform, derived in Appendix C, will be used to invert the scattered field

for the scattering potential f(x).
Let us first restate the classical Radon transform pair as shown in Appendix C:

f( , p)= daxS(p- x)f(x)

f(xO)=- d 2 a (,p2 - XO) = I d2 Id 3X"[ -~L (Xo - ) f (X).87r2 I ap2 - 87r2

We define:
1



and

Co Co

so that we may rewrite equation 2.21 as:

u"(r,x, ) = 22 dax A(r, x,s_) f(2) 6"(t -r(j, x, a)), (2.22)
16r4 cv(x )

since the delta function is an even function of its argument.

We note from the Radon transform pairs and equation 2.22 that we can invert

for f(x) if we do so for each scattering point, xo, separately. Since the forward

problem solution of equation 2.22 is a linear equation, we consider the data set as a

superposition of many experiments in media, each made up of an isolated scatterer,

and we shall seek to invert for each single scatterer medium separately. We now

assume that the localised isolated scatterer is indeed small in size, so that we can

represent x as x = xo + y, where x o represents the center of the isolated scatterer

and y is a position vector that represents points within the small scatterer. We note

that since xo is constant, d3 x = d3y. We can therefore express equation 2.22 as:

u" (rs, t) 6 y y A(r,xo + y,a) f(xo +y)6"(t -r(r,xo +y,a)).

(2.23)

Because we assumed a localised scatterer, f(xo + y) # 0, only for very small | y 1, we

therefore assume that A(r,xo + y , a) is constant about xo, and that we can expand

the travel time surface r about x o. Performing a Taylor's expansion of r:

r(r,Xo + ,.)= r(r,xo, a)+ [ZxT(r,2,a)]x=xo -y - --

Defining ro = r (r, ,0, s ), we obtain:

U" (r s, t) :::::: A(r, xo a) d y f (Xo + y)"(- (,ro + SEr r( , _x, a) |XK y )167r~c
(2.24)

Let us now find Vxr(r,x, s).

x_ -sl + lx-rl

x [V(X1 - 1 )2 + (x 2 - s 2 )2 + (X3 - 83 )2 + (x1 - r1 )2 + (x 2 - r 2)2 + (x 3 - r3)2



After carrying out the necessary differentiation, we arrive at:

1x r-(r, _X, S_ ) =

S(X1-31)+ (xi-'')] + -[(x2-32) + (X2-r2)] + [(X3~33) + (X3--r]co C-11 + 8-11 1 a-21 C-11 kX-21 Ls-il-

Taking the dot product of the previous equation with itself, rearranging and collecting

terms, we obtain:

|Kx r(r, x,g ) 12= (2.25)

72 _2E sIx rl[(xi - s1)(x1 - ri) + (X 2 - s2 )(x 2 - r 2 ) + (X 3 - S3 )(X 3 - r 3 )] + 2]

If we define the angle between the ray from the receiver to scatterer and the ray from

source to scatterer as -y defined in Figures D-1 - D-3 on pages 118 - 120, we find:

(_ -s) - (x -. K) =Ix - I Ix - r I cos y.

Using cos -y = 2 cos2 a - 1 where a =- / 2 , we obtain:

2 cos a (2.26)
Co

From its definition, surfaces of constant traveltime characterised by r,

- x -a s | x -1r1
'r(r, x, s) CO + Cco co

represent ellipsoidal surfaces. If we define a unit vector (r, 2o,. ) to be perpendicular

to these surfaces of constant traveltime, and therefore parallel to V x -r(ro, ),

2 cos a

C-

Using this result in equation 2.24, and evaluating it at t = ro, we attain:

1 2 cos a
uSC(r, s ,ro) = 2 2dy I I I X d3 f(Xo +y)6"(- - y). (2.27)167r co |_ _ ||_ -11 - - CO --

If we now restore x = _x + y and make use of

61(-ax) -6"(x)
" a 13'



we can rewrite equation 2.27 as:

-Usc(j:, g , t = -0) 16 | xo - s |x o - r_ 1 cosa3 a _3 1 ,,)61(
c0 8ir 2  -

(2.28)

Comparing this with the inverse Radon transform defined earlier in this section,

f(xo) = - 1 f d 2  fdaX6"(.( - o)) f(2), we find the solution of the inverse

scattering problem:

/ 2)=Jdu (r ,t ro) 16 Ixo - IIxo -. r I cos 3 afx . (2.29)

Where we have previously defined ro as:

TO-=4 -1 + .0-1
CO CO

The surface integral in equation 2.29 is an integration over a unit sphere specified by

S |= 1.
We shall now find a more convenient form for the surface element d2 . From its

definition ( is a unit vector perpendicular to the surfaces of constant travel time.

Hence:
= zxr

Using the previous results for .r and MXr|, and noting that since,

cos 2a =- ~ - = 2 cos2 a -1
I X - s_ || - r I

= 2(-s)- (x -. r 2

2 cos a = +21.

We obtain an expression for (:

1 x-s x -ri
_ = _--_ - + - (2.30)

2+ 2*~ ~2 -s. x s_| 7 1 X -r|1

With this explicit expression of ( in terms of our experimental variables s and r we

should be able to express the surface integration of equation 2.29 in terms of variables

more convenient for the experimental source-receiver configuration.



2.3.2 The Inversion Equation for an In-line Constant-Offset

Source-Receiver Configuration

We now express the surface element, d2(, of equation 2.29 into a more appropriate

form for the particular experimental configuration of an in-line constant-offset source-

receiver. This configuration is used in surface seismic and FWAL data acquisition in

which there are N receivers, fixed a constant distance from the source, per shot fired.

The acquisition tool is then moved a small distance along a straight line and the source

fired again. This process is continued for M shots. Because the sources specified

by s and the receiver positions specified by i stay along one line throughout the

experiment, we can define an axis along this line so that source and receiver positions

can be specified by one variable and not three as generally needed to specify a vector

in 3D. We address the case of the FWAL tool and define the x3 axis to be the

axis the tool lies along throughout the experiment. We define x3 to be a vertically

increasing variable as we move into the earth's interior. For the case of a surface

seismic experiment we can simply rotate the x3 axis so that it lies along the earth's

surface. For this particular geometry, because s and r lie along one axis and are

separated by a constant-offset or spacing determined by the manufacturers of the

tool, the vectors ds and dr must necessarily be linearly dependent. And if we try to

alter our surface element to be an integration over source and receiver positions via

the transformation:

- xs Or

we would find that the Jacobian of the transformation, | x |, would be identi-

cally zero. Since only s is a variable of our configuration it will be useful to have the

new integral to be an integration over source positions. Since there are N receivers

per source location it is convenient to index r r", u", c and ( by a subscript, n,

which signifies the receiver number for a given source position. We will then apply a

simple averaging scheme over receivers to find the scattering potential, f(xo). Since



is a unit vector and the integration is one over a unit sphere, it is convenient to

express ( and d2 d as:

n= (sin O, cos On, sin 0, sin 0, cos 4),

and

d2 n= sin O, dO, d$ , .

The angles,On and 4n, are the usual angles ascribed in a spherical coordinate system.

We can the rewrite equation 2.29 as:

16 N 20CS
f(Ko) = N d2 n c(r t, = ) I - s - r coss a,, (2.31)

where:

o Ixo - a xo -1:I
rn+

Co Co

In Appendix D, we derive the surface element d2 n in terms of ds and do. The result

is:
-1_ [A Br]

d2 ,I + '" ds d4n, (2.32)
(2 cos -y7,/2)3 ixo - I xo - rn 1|

where:

An = [cos /,.O cos a, sin -In - cos #, cos ,. - cos2 3, cos Y - cos 2 a,[2 cos -,/2]2

Bn = [cos #, COS arn sin -7, - cos 0, COS #rn - cos 2 O,. cos 7n- cos2 a,.[2 cos 72/2]2

and we have replaced an by its definition as rn7/2 . However, as was discussed in

Appendix D, the angle, 0, is defined in such a way that the integration over source

positions, s, would be f- ds, which is not the standard. We therefore take the

negative of this surface element. Placing this result in equation 2.31, we obtain:

_2 N 2,r o

f(xo) = E 1 d4, r ds [Asn | Xo -In I +B.n I -xo - s |U" (I., -, i).

(2.33)

The nature of the experiment dictates that we cannot discern between scatterers

that are azimuthally located around the borehole. Hence, we will assume that we



have azimuthal symmetry and the integrand of equation 2.33 is independent of # '.
Therefore, the integration over 4 just gives a factor of 21r. In the case of surface

seismic, the integration over 4 would be of the form fo d0, which would give a factor

of r. The results that we will derive from henceforth need to be divided by a factor

of two if we wish to apply the results to a surface seismic experiment.

Because of the nature of the source-receiver configuration it will also be advanta-

geous to use cylindrical coordinates, as the equations will only be dependent on two

variables, p and X3 . If we use p = (xi + x2, we can express the results in cylindrical

coordinates. For compactness we define:

Dn = An I x - r I +Bn 4o - s , (2.34)

Where we repeat for easy reference the definitions of An and Bn:

A, [cos 3,., cos as sin - - cos cos rn - cos2 P, cos - cos2  [2 cos

Bn = [cos #, cos an sin 7,n - C s ,COS fcos - 2 O COS7n- cos 2 arn[2 cos -//2]2

In cylindrical coordinates we have:

|1X0 - rn J|= [p2 + (x' - rn )2p I

|2, _a 1 = [p2 + (XO - S)2]1

o [ps + (x0 - s)2I [ ps + (x0 - r)0 3 2

cos/co 0- r
COS x3  1 ,

{pg + (xg - rn)

COS #,= 3
[p02 + (XI -S)211

p
COS a,. =n

[p2 + (xg - r)2]1

pcOSa 8 = 2 ,
[pN + (X3 -. 9)2]5



and

p2 + (xO - s) (zO - r,)

[p2 + (xI - s)2]p + (x0 - )2]

where we have written x 3 as 3 .

cos-ys/2 = ,O

2

sin 7f = Vl - cos2 -n.

We therefore arrive at the inverse scattering equation valid for a 3D constant back-

ground acoustic medium with azimuthal symmetry with velocity perturbations that

are locally isolated as:

f(xo)= N ds NDnU" (r n, s , rn) (2.35)
_U -00 n=1

2.3.3 The Inversion Equation for a 2D Medium

In order to process synthetic data from a 2D medium as we will do in Chapter 3, we

need to adapt equation 2.35. Comparing two scattering potentials, fi and f2, defined

as:

fi(p, 4, x 3 ) = f1(p,x3),

f2(p, 4, x3) = f2(p, X3) 6(0).

Thus, we see that fi is a 3D scattering potential with azimuthal symmetry, which is

the type of scattering potential assumed previously, and f2 can be considered a 3D

scattering potential that is concentrated at a particular point defined by 4 = 0. We

can therefore consider the synthetic 2D medium as having a 3D scattering potential

that just happens to be concentrated at do = 0. If we desire these two scattering

potentials to have the same effect on the forward and inverse scattering problems, we

require fi(p, 4, x 3 ) = f2(p, 4, X3 ) in some averaging sense. We can find a more useful

relation between these two scattering potentials by:

27r
do pf f(P, X3) = 27rp fi (p, X3),



d4 pf 2 (p,X 3 )(O) = p f 2 (p, X3 ),

and obtain:
1

fi(p, 4, X3) = f2(P, X3)21r

Using this in equation 2.35, we obtain the inversion expression for the synthetic data

case:
- 87r 2 oo N

f(po, X) = - ds E D u,'(.r, s, r0). (2.36)
Nco f-oo n__1

Equations 2.35 - 2.36 will be used to formulate a computer inversion algorithm which

we have implemented and will discuss in the next section.

2.4 Computer Implementation of the Imaging Equa-

tions

We have developed an algorithm based on equations 2.35 - 2.36 that processes data

collected from FWAL experiments or synthetic simulations of these experiments, and

reconstructs the inhomogeneities in the medium in which the data was collected.

The algorithm assumes that the data was pre-processed to remove all direct arrivals,

Stoneley and pseudo-Rayleigh surface waves, all S wave arrivals and as much noise

as possible from the data. The algorithm also assumes that we have deconvolved

the source signature from the data. We implemented such an algorithm written in

fortran 77 on a Vax 8800 machine and a DEC 3100 workstation.

The computer code assumes a vertical borehole to the left of the imaging region.

Once we specify the topmost, leftmost point of the region of interest, the code sets

up the desired imaging region. The imaging region is illustrated in Figure 2-1. The

algorithm breaks up the desired imaging region into a maximum of 300 x 300 cells

and assumes that a point scatterer is located at the center of each cell. We wrote the

algorithm so that the user has a choice of point scatterers of sizes 0.1 or 0.05 units,

where units can be either in feet or meters once we are consistent. One therefore



has a choice of maximum imaging regions of 30.0 x 30.0 or 15.0 x 15.0 square units

depending on the choice of size for point scatterers. The algorithm then sets up

source and receiver positions for the entire data set that is to be processed from the

source-receiver spacing and successive source spacings of the experiment. With the

user-specified background velocity, the algorithm then calculates via straight rays

from source to scatterer to receiver, the travel times for each scattering point in the

imaging region for each source-receiver pair, and reads from the data the appropriate

amplitude for the given source, receiver and travel time. The necessary geometric

scaling factors as defined by A,,, Bn and Dn of the previous section are then applied

to the amplitudes read in from the data set. For each source position the summation

over receivers are done, and the integration over source positions is accomplished by

means of the Simpson rule. Since we use the Simpson rule we must process an odd

number of sources, but the algorithm is set up so that it can process a part of, or the

whole of, the data set as desired.

Since the solution of the inverse scattering problem as derived in equations 2.35 -

2.36 is given in a closed form, the imaging algorithm is very simple in nature as

was described in the previous paragraph. Typically on the Vax 8800, for a data set

consisting of 51 sources with 5 receivers per source, the algorithm takes about 5 hours

of cpu time. This lengthy cpu time for such simple calculations is due to the fact

that the imaging has to be done for each scattering point for each source-receiver

pair. For the maximum imaging region that can be processed by the computer code,

this implies an inversion for 90, 000 scattering points. The algorithm does not require

the results from the previous source position for each source processed except for the

integration over source positions once we have processed the final source. Therefore

an attempt will be made to parallelise the processing over source positions so that the

imaging can be done on a parallel processing machine such as the nCUBE machine

at the Earth Resources Laboratory at M.I.T which has 192 nodes. This should vastly

reduce the cpu time needed for the imaging algorithm by a factor approximately equal



to the number of sources processed.

Scatterers located extremely close to the borehole cannot be imaged by this algo-

rithm, since if x o a s or xo ~ r, the necessary scaling factor, Dn, will have terms

dangerously large and cause numerical problems for the computer. We also note that

because the limits of the necessary integration over source positions are from negative

to positive infinity, and we will never have an experiment which traverses all of the X3

axis, we will not be able to exactly replicate the imaging equations when processing

a data set. It is reasonable to assume, therefore, that scatterers located at (pO, x0),

such that po is very small (i.e., points very close to the borehole), and x is midway

between the first and last source processed, will be best imaged by the algorithm.

Since, for these points, the first source may seem to be located at -M and the last

source located at M where M is a large number. This is illustrated in Figure 2-2.
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borehole tool -
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point scatterer

Figure 2-1: A small section of the matrix of cells which make up
the imaging region as processed by this algorithm is shown along
with the assumed borehole position.
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Figure 2-2: A scatterer located very close to the borehole and mid-
way between the first and last source processed will view the source
as having moved from -M to +M, with M being a very large num-
ber, during the course of the experiment.



Chapter 3

Imaging Anomalies From

Synthetic Data

3.1 Introduction

We derived in detail a method for imaging anomalies in an otherwise homogeneous

medium in Chapter 2. In section 2.3.3 we developed an inversion formula pertinent to

data from a 2D medium. The equation thus developed (equation 2.36) is applicable

to synthetic data generated on the computer by 2D generating algorithms.

This chapter discusses the results obtained when the algorithm based on equa-

tions 2.35 - 2.36 is used to image scatterers from synthetic data for six models. All of

the examples in this thesis are from a 2D medium only because codes for generating

seismograms from a 2D medium are more readily available and cheaper (in terms of

cpu time) than 3D seismograms. By the very acoustic nature of the receivers on the

well logging tool, we cannot discern between differing directions around the borehole.

Therefore, any real data acquired by such a tool can be considered as coming from

a 3D medium made up of infinite, identical vertical 2D slices through a line of sym-

metry (namely the borehole). Except for errors in magnitude of the data (some of

which we tried to account for in section 2.3.3), the examples should be testimony to



inversions for 3D data, since we have assumed throughout weak scatterers allowing a

single scattering theory to be valid.

We have not taken into account the borehole itself or any fluids contained therein.

Meredith (1990) showed that the presence of a borehole and its fluid does not alter the

radiation pattern of the Primary (P) wave; there is just a rescaling of the amplitude

in the seismograms. The equations in Chapter 2 can be refined to take into account

the necessary scaling factors, enabling the algorithm to be applicable to real data

from a borehole logging tool.

The six examples chosen to be examined in this thesis represent a few of the

anomalies that can be found around a borehole that may be of interest to the explo-

ration seismologist.

* Model 1 is a simulation of point scatterers assembled in a somewhat complex

manner.

* Model 2 continues with the idea of point scatterers and assumes that there

are two types of localised scatterers of different velocities (10% and 20% of

the background velocity). The aim is to test the algorithm for sensitivity to

different magnitudes of localised perturbations. Both models 1 & 2 were com-

posed of anomalies that were, in terms of size and velocity perturbations, ideal

point scatterers. The algorithm used to generate seismograms from these two

mediums was based on Ray-Born scattering, hence multiple scatterings were

not present in the data being inverted by the algorithm. It is therefore not

surprising that the best results came from these two models.

e Model 3 is composed of a very thin (0.8 of a wavelength) layer, dipping 450

with velocity very close (3%) to that of the background medium, as well as

two square regions of differing velocities. These two square regions have sides

parallel and perpendicular to the borehole, and it will be of interest to note how

the algorithm images these two regions, as they may represent fracture zones



near to the borehole.

" Model 4 is a slight variation of Model 3 with the dipping bed now running

through one of the square regions. Model 5 is a representation of a pinched-out

layer which is located near the borehole and intersects the dipping layer inclined

at 710 to the borehole axis.

" Model 6 is the most complex example. It consists of point scatterers, point

scatterers included in larger scatterers, a layer with a velocity gradient (keep

in mind the theory assumes a constant velocity background medium), and a

rectangular heterogeneity included in the layer with the velocity gradient. As

can be expected there are regions in this example where the results are poor.

The synthetic seismograms for Models 3-6 were generated by a 2D finite-difference

acoustic code. Because the finite-difference method is an exact method for solving the

wave equation, it gives the complete solution and would therefore include all waves,

even those that are a result of multiple scattering. Thus, the effects of multiple

scattering will be expected to be seen in these models.

In all the models analysed in this thesis, a Ricker wavelet was used as the source

wavelet. We chose not to deconvolve the data to remove the effects of the source

wavelet so as to leave the impulse response of a point source. We feel that in the real

world the data is never deconvolved absolutely to remove the source signature from

the seismograms. By leaving in the Ricker wavelet in the data before using it in the

imaging algorithm, we have added a form of artificial complexity to try to simulate

difficulties that arise with real data.

3.2 Generating the Seismograms

The synthetic data discussed in this chapter were created by a Ray-Born scattering

code for Models 1 and 2 and by finite-difference codes for others (Model 3-6). The



Ray-Born scattering algorithm was developed by Wafik Beydoun and briefly discussed

in Beydoun and Mendes (Beydoun and Mendes, 1989). This code allows for an elastic

medium but is flexible enough to record, at the receiver locations, only Primary (P)

waves if so desired, as in the examples. The elastic wave equation is solved asymp-

totically (with the assumption that the wavelength is much smaller than the scale

length of the medium) by means of a series solution as is common in all ray methods.

This asymptotic solution is used to calculate the Green's tensor for the background

model. The calculations of necessary travel times for this tensor is aided by the

paraxial ray method, whereby travel times calculated for some points are utilised in

a Taylor's expansion to calculate the travel times for some of its neighbouring points.

Once the Green tensor has been calculated for the reference background model, the

first order Born's approximation is invoked by assuming that the perturbations are

secondary sources which radiate energy from their interaction with the incident field.

It is this radiated (scatterered) energy that is recorded at the user specified receiver

locations. This algorithm has the advantage of being computationally fast. Assuming

that the perturbations are weak so as to satisfy the first order Born's approximation,

we usually have satisfactory results in the forward modelling of the seismograms.

The 2D explicit scheme acoustic finite-difference code used to develop the synthet-

ics for Models 3-6 was developed by Edmond Charrette and a more complex elastic

version of this code is briefly discussed in his thesis (Charrette, 1991). The acoustic

equation of equation 2.12 is solved by discretising the derivatives with respect to space

and time by assuming that all functions and positions are not continuous but rather

are defined only at points on a grid. By replacing the derivatives in space and time

by a differencing scheme, the solution of equation 2.12 is converted from a problem

of calculus to one of algebra, which is readily obtained (although it is very cpu inten-

sive) by computers. There are certain restrictions on the spacing of the grid points

relative to the smallest unit of time (6t) used in the calculation so that the solution

remains stable. The solutions to the wave equation is obviously much more accurate



if we allow ot to become as small as possible within the realms of stability. It is also

necessary in finite-difference schemes to include some sort of damping function near

the boundaries of the region (i.e. absorbing boundaries) for which we are computing

the seismograms, so that energy incident on these boundaries do not reflect back into

the region. The damping functions were not perfectly effective and allowed energies

that were not at normal incidence to the boundaries of the region to be reflected back

into the realm of study. This is manifested as some boundary effects in some of our

imaged models.

Thorough discussions of the Ray-Born and finite-difference schemes are beyond

the scope of this thesis. We are more interested here in inverting the data obtained.

We shall therefore pay no more emphasis on the schemes of generating data except

when they directly affect the results.

3.3 The Source-Receiver configuration

In Full Waveform Acoustic Logging (FWAL), the source and receivers are both sit-

uated on an instrument called the borehole logging tool. There are quite a few

configurations for these tools as used by different companies; the tool usually has one

or two sources, and between five to twelve receivers. All the data generated for this

thesis are from a one-source, five receiver tool. The algorithm is geared to handled

up to twelve receivers on the logging tool but we have not equipped it to handle two

sources at each tool location. It would therefore be necessary for one to separate the

results from these two sources into two separate experiments and use the imaging al-

gorithm twice, and in some way take the average of the two final images thus formed

to be able to image scatterers from data from two source tool configurations.

The data generated for the examples analysed by this thesis are from two source-

receiver configurations. The first configuration, as shown in Figure 3-1 which has the

source above all five receivers, was used to collect the data for Models 1 & 2. The



second configuration as shown in Figure 3-2 with the source below all five receivers

was used to record the data for the remaining four models. In all of the experiments,

the tool is placed at its first position, fired, and then lowered and fired repetitively.

In everyday exploration it is often common for the first shot to occur when the tool

is at its lowest point in the borehole. Obviously, this does not change the results as

we assume that the medium parameters are not a function of time.

3.4 The Input Models

3.4.1 Model 1

Model 1 is composed of a background medium of seismic velocity 12, 000ft./s. (3, 657m/s.).

To this constant velocity 24ft. x 9ft. (7.3m. x 2.7m.) region is added a few anoma-

lies with perturbations of 10% of the velocity of the background medium. The tool

of Figure 3-1 is placed in a borehole that is 10ft. from the leftmost points of the

scattering region. The source has a central frequency of 10kHz. and has a signature

of a Ricker wavelet. The source is fired at its first position and 10.23ms. of data

sampled at 10ps. collected at each of the five receivers. This high sampling frequency

(100kHz.) is used to ensure that aliasing of the data does not occur. The tool is then

moved 1ft. in the borehole and fired again. This is repeated for a total of fifty one

shots; the tool therefore moved a distance of 50ft. (15.24m.) downhole throughout

the course of this experiment. For this particular source frequency/velocity configu-

ration, the characteristic wavelength is 1.2ft. (0.36m.), and there is a general rule of

thumb (personal communication with Wafik Beydoun) that if the size of the spacing

between successive sources is not smaller than 0.2 of the characteristic wavelength,

the receivers will view what appears in Figure 3-3 as continuous scatterers as point

scatterers. We will therefore expect the imaging algorithm to image the structures

as composites of point scatterers. Figure 3-3 illustrates Model 1. The 30ft. x 30ft.

(9.14m. x 9.14m.) dotted region in the diagram is the region that we inverted for



with the imaging algorithm. Because the source is at the top of the well logging

tool used for this model, it is apparent that for the last few sources, all the receivers

will not receive scatterered data from the perturbations in the time window in which

we have decided to collect data. This example is used as a simple-case scenario to

demonstrate the use of the algorithm; since this model is composed of point scatterers

whose velocity perturbations are well within the validity limits of the first order Born

approximation on which the theory and the ensuing algorithm is based. Because we

acquire the data by the use of a Ray-Born forward modelling algorithm, we should

therefore expect good results from this model. The somewhat complex arrangement

of these point scatterers is used to determine if the algorithm would be successful in

discerning between scatterers located in a complex and closely spaced arrangement

where juxtaposing anomalies may give very similar travel times.

3.4.2 Model 2

Model 2 bears many similarities with Model 1, in that their seismograms are generated

by the same Ray-Born algorithm. The source-receiver configuration throughout the

experiment is identical to Model 1, and the constant background medium is the same.

This model, however, also includes perturbations that are 20% of the background

velocity. The purpose of these two different parameter contrast of perturbations is to

show that the algorithm is successful at distinguishing between scatterers of similar

sizes but differing velocities.

3.4.3 Model 3

The data for Model 3 is generated by a 2D acoustic finite-difference code briefly

discussed in section 3.2. The purpose of using a finite-difference code is to allow us

to obtain weak multiple scatterings in the synthetics which would be present in real

data, and enable us to observe how the imaging algorithm copes with these multiples

that it is not geared to image.



The well logging tool configuration used to collect data for this and all ensuing

examples is illustrated in Figure 3-2. In this conformation, the source is below all

receivers. For this example the source has a central frequency of 6kHz. and a Ricker

wavelet signature. For each source position of which there are seventy one, each

receiver records 16ms. of data sampled at a rate of 8ps.. This very high sampling

rate is suited to the accuracy of the seismograms obtained by a finite-difference code.

The tool is moved 0.2m. between successive source positions. The object region is a

20.48m. x 20.48m. square, composed of 512 x 512 grids spaced 0.04m. apart. There

is a 3100m./s. constant background medium, containing three different anomalies.

There is a 3000m./s., 0.4m. thick 45* dipping layer, a 3300m./s., 4m. x 4m. square

region, and a 2700m./s., 8m. x 8m. square region. Note the proximity between the

dipping layer and the left upper point of the larger square region. This closeness

allows us to examine the effects of edge diffractions in the imaging algorithm. Note

also that, unlike Models 1 & 2 where the dominant seismic wavelength was 1.2 of

the source spacing, in all examples modelled by the finite-difference code the seismic

wavelength is 2.5 times the source spacing. Therefore, the data will exhibit better

spatial resolution than those from the previous two models. We will therefore expect

to see the vertical sides of the square regions as a continuous line and not a composite

of point scatterers as seen in the previous examples. These vertical lines are analogous

to fracture zones and are included to illustrate the usefulness of the imaging algorithm

in fractured regions. It should be noted here that regions of high fracture zones usually

show signs of anisotropic behavior not considered here in either the forward or inverse

modelling. Since the larger of the two square region is very close to the edge of the

object region, we would expect energy to be reflected back into this region if the

forward modelling code does not accurately damp boundary reflections, as is the case

in the algorithm we have used.



3.4.4 Model 4

The location and general specifics of the object region and the well logging tool remain

the same for this model as for Model 3, except, the constant velocity background

medium is now a 3000m./s. region. What has fundamentally changed are the location,

size and magnitude of the scatterers themselves. Like the previous model we have

included scatterers that are not point scatterers in size, but rather large regions

relative to the dominant seismic wavelength. There are both perturbations that are

larger and smaller in velocity than the constant velocity background medium. We

increased the thickness of the dipping layer to 0.8m. and its velocity to 2700m./s.,

and allowed it to pass through a 8m. x 8m. 3100m./s. square region. In this model

all of the anomalies have been carefully placed away from the edge of the object

region so that limitations of the boundary conditions in the forward modelling are

not manifested in the image of that region. There is also a 4m. x 4m. square region of

3300m./s. velocity. The scatterers are now closer to each other than in the previous

model, so we should expect multiple scattering to be more prevalent. It shall be

interesting to observe the imaging of the top left corner of the larger square region

which has been metamorphosised to have the same velocity as the dipping bed which

passes through it.

3.4.5 Model 5

In this model the constant velocity background region and the source-receiver con-

figuration remain the same. This model is made up of two layers, one a constant

background layer that we used in the previous model and the second a 3100m./s.

layer. The interface between the two models is at 71* to the borehole. Since the

velocity contrast between the two layers is so small (3%), and the angle of dip so

great, it will be interesting to observe the sensitivity of the algorithm to such a dif-

ficult dipping bed to image. This model also includes a pinched-out layer of velocity

2700m./s. which originates in the lower layer but protrudes into the upper layer. The



sharpness of the peak of this pinched out layer should create some interesting edge

effects for the imaging algorithm to model. It is this pinched-out layer which is the

main feature of this model that we wish to image. It will demonstrate the usefulness

of the algorithm for locating faults near and around a borehole.

3.4.6 Model 6

The sixth and final model is the most complex and theoretically difficult to model. It

contains anomalies which violate the assumptions in Chapter 2 of which the theory

of this thesis is based.

In the 3000m./s. background media there are several point scatterers 0.4m. in

size with 3300m./s. velocity. There are also a few scatterers, larger in size, whose

velocities are much closer to the point scatterers than to the background medium.

We also include one of the small point scatterers in a larger scatterer. There is a

2700m./s., 710 dipping layer that does not transgress all of the object area. At the

interface of this layer and the background medium, we have included a point scatterer

similar to those previously discussed. There is a layer that has a velocity gradient

which increases in depth with this model. This layer is 71* at its interface to the

background layer and 450 to the 2700m./s. layer at their interface. We also place

an inclusion of a 2700m./s., 2m. x 4m. rectangular region in this layer. We should

expect that the algorithm would not successfully image this velocity increasing layer

or any inclusions in it, as this region severely contradicts the assumption that the

region is a constant velocity zone with localised perturbations. The algorithm images

discontinuities in the scattering potential caused by abrupt changes in the velocity

and not a continuous gradual change in the velocity structure.



3.5 Results from the Models

3.5.1 Model 1

The imaging region represented by the dotted region in Figure 3-3 was entered into

the algorithm along with other relevant parameters of the experiment: the number

of receivers, the spacing between the receivers, the spacing between the sources, the

sampling rate and number of samples in the data, and a background velocity. We

chose a background velocity of 12,000ft./s. (3,657m./s.) for this model. The data

was initially processed for the first twenty one sources and the results are shown in

Figure 3-9. We would expect the value of the scattering potential of the perturbations

to have a value of -0.1735 and we observe that none of the apparent scatterers

have the correct scattering potential. Although we notice the image contains several

anomalies which are images of scattering points, there is not satisfactory resolution

between these points. Several of these images are apparently points on ellipses as

they should be, since we are collapsing surfaces of constant travel time (ellipses)

into points. Twenty one shot points obviously do not have enough information to

satisfactorily image Model 1. The scatterers that are located at the lowest region of

the object region, especially those that are located furthest from the borehole, are

the most poorly imaged structures. This should be apparent, as the first twenty one

sources do not go deep enough into the borehole so as to accurately receive sufficient

scattered data from these lower scattering points.

Figure 3-10 show the results of the algorithm when used to process all fifty one

sources. The imaging region composed of a composite of point scatterers are ac-

curately imaged, and the scattering potentials are much closer to their theoretical

results. Since the scattering potentials are obtained by an infinite integration over

source positions, it would be logical to expect a number smaller in absolute magnitude

than the theoretical value since we don't have an infinite amount of sources. As we

increase the number of sources processed we would expect the calculated scattering



potentials to approach their true value. Most of what can be considered as noise in

the image using twenty one sources were removed by the time we processed all the

sources. Computational artifacts are still present in the lower part of this figure as

the geometry of the experiment does not allow much information to be gathered from

scattering points in the lowest region of the object area. We note that not only the

shapes of the objects are accurately imaged, but also their locations are accurately

reconstructed. We further note, as was hypothesised in section 2.4, scatterers located

at about the center of the line of sources and closest to the borehole would be the

perturbations that would be best imaged. Scatterers located at about 12ft. (3.65m.)

in the x direction and 23ft. (7.01m.) in the z direction exemplify this hypothesis.

The imaged scatterers do not appear as circles as we would expect point scatterers

to be imaged, but rather they are smeared. This smearing is due to the nature of

the acquisition configuration of the data. The borehole only exists to the left of these

sampling points and hence we do not receive scattered data from all of the iso-chronic

surfaces of these point scatterers. If we had an acquisition configuration in which we

obtain data from the left and right, as well as the top and the bottom of the object

region, or if we had a much larger number of sources from which we collected data

so as to better simulate source positions from negative to positive infinity, we would

expect this smearing effect to be minimised. Similar observations were made by other

authors using a similar inversion scheme (Miller et al., 1987). We are generally pleased

with the results obtained from this model because it demonstrates that the algorithm

is effective in imaging point scatterers in a complex formation. The locations and

size of the scatterers are satisfactorily imaged. We were a little disappointed by the

values of the scattering potentials of these perturbations.

3.5.2 Model 2

Once again the imaging region, as represented by the dotted region in Figure 3-3

was entered into the imaging algorithm along with other necessary parameters men-



tioned in the discussion of the previous example. We once again choose 12, 000ft./s.

(3,657m./s.) as the velocity of the reference medium. The results of the inversion of

twenty one source points are shown in Figure 3-11. As with the previous example we

note that with twenty one sources the results of the inversions are less than optimal.

We would theoretically expect scattering potentials of -0.1735 and -0.3055 for the

10% and 20% scatterers, respectively. None of the scatterers imaged have scattering

potentials that are satisfactorily close to what they should be. The 'S' is the most

poorly imaged object, as one cannot discern the shape and locations of the scatterers

that are used to compose it. This is expected because the first twenty one shots do not

go deep enough into the borehole to attain scattering information from this object.

The best imaged structure is the 'R', which is the object nearest the borehole. 'P',

the object located furthest from the borehole, is beginning to appear in the figure.

Note that there is a lack of spatial resolution between individual point scatterers, and

they are smeared together as if from a continuous scatterer. In this 'P' object, one

can observe that all point scatterers are not imaged with the same amount of success.

Upon examination of Figure 3-4, this discriminate imaging of point scatterers is di-

rectly correlated to the perturbation of the scatterer. The 20% scatterers are those

that are imaged more successfully in this 'P' structure. It is noteworthy to observe

that because the imaging algorithm sees the 'P' as one object rather than a compos-

ite of point scatterers, the vertical sides of this object is seen, while the horizontal

sides are almost completely absent. This is in contrast to the scatterers that make

up the horizontal sections of the 'R' object, which are observed since we image these

scatterers as composites of the larger structure. As in the previous model, the images

that appear after the processing of the first twenty one shots appeared smeared in the

vertical direction. This is due to the lack of coverage of rays traveling from source to

scatterer to receiver.

The image that appears after we process all fifty one shots is shown in Figure 3-

12. The 'S' object is now imaged in the correct location. We note that the algorithm



discriminates between differing values of perturbations as the top portion of the 'S'

is not imaged as clearly as the lower portion. The point scatterers after each let-

ter, are also imaged differently depending on the type of scatterer they are. And

in each letter ('R','S' and 'P') the point scatterers that compose them are imaged

differently depending on the value of their perturbation. The objects furthest away

from the borehole are reconstructed with more accurate scattering potential values

than objects located closer to the borehole. One explanation of this observation is the

configuration of the well logging tool used in this and the previous model to acquire

data, more specifically the fact that the source is on top of all the receivers, which

makes information more available in the seismograms from objects furthest from the

borehole. A second explanation is the the large spacing between shots may not pro-

vide as great a ray density for near objects as it does for objects located furthest from

the borehole. A third explanation is that we are using an imaging algorithm based on

3D Green's function to reconstruct anomalies from data generated by a 2D forward

modelling algorithm.

We added 20% white noise (the component of each frequency has the same mag-

nitude) to the data of Model 2 and inverted for the first forty three sources. The

results of these are shown in Figure 3-13. We could not discern any great differences

in the images of Figures 3-12 and 3-13. In regions away from the objects of interest,

particularly those furthest from the borehole near the top of the figure, the noise pat-

terns are a little different than those from the two previous figures. Locations where

the scattering potential should be zero ( those regions have no velocity perturbations)

appear more frequently incorrect in Figure 3-13 than in Figure 3-12. This may be a

consequence of comparing two figure which are processed from a different number of

sources, and not the results of white noise.



3.5.3 Model 3

In all figures of images processed from the 2D finite-difference algorithm it is impor-

tant to state that the scattering potential shown on the right of each figure is 0.01 of

the true scattering potential. For illustrative purposes, it was necessary to re-scale

the scattering potentials before they are displayed.

The imaging region, as illustrated by the dotted region in Figure 3-5 was entered

into the inversion algorithm. We chose a background velocity of 3000m./s. while the

true velocity of the constant region was 3100m./s. The image obtained by inverting

the data generated from Model 4 for the first twenty one sources is shown in Figure 3-

14. The smaller square region is shown at the top of the image in the correct size

and location as compared to Figure 3-5. As was stated earlier, all of the examples

whose data was generated by the finite-difference scheme had a source spacing 0.4 of

the characteristic seismic wavelength of the medium as compared to data generated

from Ray-Born scattering in which the source spacing was 0.83 of that characteristic

wavelength. This is immediately manifested in Figure 3-14 in which each object

appears as a continuous object, and not a a composite of point scatterers as objects

appeared in images pertaining to Models 1 & 2. The vertical sides of this smaller

square region are correctly modelled while the horizontal sides are noticeably absent.

Reflections from these horizontal sides should not be recorded by receivers on the

well logging tool. Therefore once we do not have point scatterers as we did in the

first two models we should not expect horizontal, continuous scatterers to be imaged.

We note the beginning of the formation of both the dipping thin layer and the larger

square region in the image. At the bottom right corner of the image, we observe the

boundary effects from waves that are incident on the borders of the object region

and are not sufficiently damped in the forward modelling and are backpropagated.

In the region where the three objects of interest are nearest to each other we notice

the emergence of multiple images since the theory does not take into account the

multiple scattering present in a complete solution to the wave equation, such as those



given by a finite-difference scheme. These multiple images are weak as expected

since the velocity perturbations are small. The expected scattering potentials of the

three objects of interest are: 0.3182, 0.0677 and -0.1175 from the slowest to the

fastest medium. We note that with 21 sources we do not have enough information to

satisfactorily calculate these scattering potentials from the imaging algorithm.

With the fi:st fifty one sources processed we obtain an image illustrated in Fig-

ure 3-15. The smaller square region is imaged satisfactorily with a scattering potential

very near the expected value. The vertical side nearest the borehole appears to be

composed of two juxtaposing vertical lines that have scattering potentials of the same

absolute value but of different signs. This should be expected because we have not

removed the Ricker wavelength signature from the data and we can expect these dou-

ble lines to collapse to one line once the data is deconvolved properly in a pre-imaging

stage. The vertical side of this square region furthest from the borehole appears to

be composed of more than two vertical sides. This is a result of the combination

of multiple scattering and the source signature. We successfully managed to image

the scattering potential, dip and thickness of the dipping layer. Because we lowered

the tool deeper into the borehole beyond fifty one sources, we can expect more data

to be recorded from the larger of the two square regions. Hence we expect a more

complete image of this structure in the output. For this object, for which energy

must transgress the dipping layer to and from the source, we expect multiples to be

more prevalent than in either of the two other objects. Note also that the reflections

in the lower right-hand corner of the figure have been significantly reduced. Since the

source is now propagating energy more of normal incidence than previously, we can

expect the crude damping functions of the forward algorithm to be more effective.

Figure 3-16 shows the image after all seventy one sources were processed. The

larger of the square objects is now satisfactorily imaged. Its scattering potential,

location and si e are properly imaged. In the upper right-hand corner of the figure

shows the emergence of reflections. Since the source has transgressed through posi-



tions at the bottom of the borehole from where the waves are not normally incident

when they arrive at the upper right-hand boundary of the object region, we expect

the limitations of the damping functions of the finite-difference scheme to reappear.

3.5.4 Model 4

We assumed a background velocity of 3000m./s. when processing data from Model

4. The results are illustrated in Figure 3-17. The theoretical scattering potentials

are: 0.2345, -0.0634 and -0.1735 for the slowest to the fastest velocity structure

respectively. The position and size of the vertical side closest to the borehole of the

smaller square are accurately imaged. However, the reconstruction of the correct

scattering potential is poor. There is also a poor reconstruction of the vertical side of

this square furthest from the borehole. The presence of multiple scattering between

this region and the dipping layer made this vertical side appear curved. In this region,

edge diffractions also occur for which the algorithm based on the theory of Chapter 2

does not take into account. The multiple scattering and edge diffractions cause the

region between this vertical side of the smaller square and the dipping layer to be

poorly imaged. The location, thickness and dip of the dipping layer is satisfactorily

imaged; even the scattering potential for this layer is not far off from the theoretical

value. The larger of the two square regions is not imaged in the processing of the first

twenty one sources.

In Figure 3- L8, we illustrate the images formed from Model 4 after fifty one sources

have been processed. The rightmost vertical side of the smaller square is even more

curved than in Figure 3-17. This is expected since more data from the region closest

to all three scatterers, where most of the effects of multiple scattering and edge

diffractions occur, is recorded than previously. The left vertical side of this square,

while reconstructed accurately in location and size, still has its scattering potential

imaged incorrectly. The reconstruction of the dipping layer is quite satisfactory. Note

the emergence of the image of the larger square and place special attention to the



upper left-hand corner where the algorithm has imaged with a scattering potential

similar to the dipping layer. Further down along that same side, the image indicates

a smaller scattering potential, as expected. At the rightmost boundary of the figure

we note a hint of the rightmost vertical side of the larger square.

When we process all seventy one sources the leftmost vertical side of the larger

square is correctly imaged. There is a slight curve in the dipping layer near its

intersection with the larger square. This is not present in the original model. This

erroneous curvature, together with the error in the imaging of the smaller square

(noted previously), are a result of multiple scattering in the data that the algorithm

does not account for. The results are still unsatisfactory in the reconstruction of the

scattering potential for the leftmost side of the smaller square. As was present in

the images reconstructed from the previous model, there are reflections in the upper

and lower right corners of the image. However, unlike those of the previous example,

these reflections are not a result of a limitations of the damping functions in the

finite-difference code. Like the reflections seen in the region surrounded by the three

scatterers, these artifacts are a result of edge diffractions of the square regions for

which the algorithm does not take into account.

3.5.5 Model 5

Figure 3-20 shows the reconstruction of Model 5 using the first fifty one sources.

The pinched off layer is accurately reconstructed in shape and location. We expect

a scattering potential of 0.2345, and even this is satisfactorily reconstructed. As in

the previous model, observe the presence of diffracted edge effects which manifest

themselves as curved lines in the images. Curved lines appear in the lower right hand

corner of the image due to limitations in the damping functions of the modelling al-

gorithm as was observed in Model 3. The dipping layer is not very well reconstructed.

One would have to know of its existence before imaging was done to observe it in the

reconstructed image.



Choosing an imaging region not illustrated in Figure 3-6 which is 15m. x 15m. and

its upper left point located 0.5m. from the surface and from the borehole as shown

in Figure 3-21, we observe a faint image of this dipping bed as it intersects the left

edge of the image at approximately 13.25m. deep. Note that the boundary effects of

the forward modelling are no longer present as we have moved well away from these

borders.

Processing all seventy one sources as we did in Figure 3-22, increases the depth

to which the pinched-out layer is reconstructed.

3.5.6 Model 6

For the imaging of this model, we assumed a background velocity of 3000m./s. Fig-

ure 3-23 illustrates the reconstruction of the objects of Model 6 shown in Figure 3-8

using the algorithm to process data from the first fifty one sources. The expected

values of the scattering potentials are: 0.2345, -0.1210 and -0.1735 from the slowest

to the fastest scatterers respectively. For the first two images obtained from the in-

version of data from this model, we chose an imaging region illustrated in Figure 3-8

by the dotted region which is located at coordinates (2, 2) in its leftmost uppermost

point. The positions and locations of the smaller scale scatterers of the model are

satisfactorily imaged. In regions where there are several scatterers that are within

close proximity of each other, there is strong evidence of multiple scattering in the

data, as these scatterers are imaged with multiple sides by the imaging algorithm.

The inclusion of a 3300m./s. point scatterer in a 3200m./s. is satisfactorily imaged

in regards to its location and size. However the algorithm does not assign the correct

scattering potential to the included scatterer (inclusion). It appears from the figure

that the inclusion has similar scattering potential to the object it is included in. The

point scatterer on the interface of the 3000m./s. and the 2700m./s. layers appears

distorted in the reconstructed image of the figure. The 'L' shaped object located to

the right of the object area appears as multiples in the image. Fortunately the scat-



tering potential as evidenced in Figure 3-23 is reconstructed with satisfactory results.

The interface between the 2700m./s. layer and the layer with the velocity contrast

is reconstructed correctly in respect to its location and dip angle. Its scattering po-

tential is not correctly imaged as expected. The 2700m./s. rectangular region in the

layer which has a velocity gradient appears distorted in the image. This is expected

because the algorithm does not take into account any layer which increases or de-

creases continuously with depth. The interface between the background medium and

the 2700m./s. layer is faintly visible in the image. Compared to the previous model

it is slightly more apparent, although in both cases they have the same dip angle.

This improvement in imaging can be attested to the higher velocity contrast in this

model than in the previous example.

With the processing of all seventy one shots as is illustrated in Figure 3-24, there is

only slight improvement in the reconstruction of scatterers. We can now discern that

the inclusion located approximately 8m. in the x direction and 8m. in the z direction

is of a different velocity than that of the medium it is included in. However, the

correct scattering potential of this included scatterer is not reconstructed correctly.

For Figures 3-25 and 3-26, an imaging region was chosen that is represented in

Figure 3-8 by a dotted region with coordinates of (4,4) at its top left corner. These

figures are included to show the unsatisfactory reconstruction of both vertical sides of

the rectangle region which is included in the region with the velocity gradient. These

two vertical lines are tremendously distorted in the reconstructed image. We also

observe the boundary reflections that are located all along the right side of the image

region. These are once again due to the limitations of the damping functions of the

forward modelling algorithm. Finally we note the appearance in the reconstruction

of the furthest vertical side of the 'L' object in the model.

We include Figure 3-27 to show more of the reconstruction of the 710 dipping layer

which was very difficult to observe in the reconstruction of Model 5.
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Figure 3-10: Image of Model 1 using all 51 sources.
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Figure 3-12: Image of Model 2 using all 51 sources.
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Figure 3-13: Image of Model 2 using the first 43 sources. Twenty
percent of white noise has been added to the data before the imag-
ing was performed.
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Figure 3-14: Image of Model 3 using the first 21 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-15: Image of Model 3 using the first 51 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-16: Image of Model 3 using all 71 sources. The scattering
potential has been rescaled to 0.01 of its true value.
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Figure 3-17: Image of Model 4 using the first 21 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-18: Image of Model 4 using the first 51 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-19: Image of Model 4 using all 71 sources. The scattering
potential has been rescaled to 0.01 of its true value.
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Figure 3-20: Image of Model 5 using the first 51 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-21: Image of Model 5 using the first 51 sources. In this
image we have chosen an imaging region much closer to the borehole
than in the two other images from this Model. The scattering
potential has been rescaled to 0.01 of its true value.
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Figure 3-22: Image of Model 5 using the first 71 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-23: Image of Model 6 using the first 51 sources. The
scattering potential has been rescaled to 0.01 of its true value.
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Figure 3-24: Image of Model 6 using all 71 sources. The scattering
potential has been rescaled to 0.01 of its true value.
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Figure 3-25: Image of Model 6 using the first 51 sources. We have
chosen an imaging region much further from the borehole than the
previous two figures. The scattering potential has been rescaled to
0.01 of its true value.
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Figure 3-27: Image of Model 6 using all 71 sources. We have chosen
an imaging region much closer to the borehole than that in the first
two figures from this model. The scattering potential has been
rescaled to 0.01 of its true value.
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Chapter 4

Conclusions

4.1 Use of the Imaging Algorithm Presented in

this Thesis

In this thesis, we have presented an inversion algorithm based on the principle of an

acoustic medium which contains localised scatterers in an otherwise constant velocity

region. We have assumed that the velocity perturbations are such that a first order

Born approximation is valid. We have been successful, by this approximation, in

finding an analytic solution to the scattering potential which serves as a measure of

the velocity contrast of the perturbations to the background medium. We further

addressed the special data acquisition tool used in Full Waveform Acoustic Logging

(FWAL) and coded an algorithm based on the theory, which inverts data collected by

this tool to image anomalies near a borehole. The code can also be used for surface

seismic experiments as this is similar to a borehole logging experiment turned on its

side.

We presented six synthetic models from which we created data by two different

mechanisms, one a Ray-Born single scattering and the other a finite difference mod-

elling algorithm. We have argued that the acoustic nature of the FWAL does not

allow us to discern between varying directions around the borehole. Therefore, any



real 3D medium that data has been acquired from can be viewed as a composite of

an infinite number of 2D slices through the axis of symmetry (the borehole). The

2D models form satisfactory examples of the imaging algorithm inverting data from

a 3D medium. Although we do not include the effects of the borehole and any fluid

contained therein, we argue that the in presence does not alter the radiation pat-

tern of the primary (P) wave and will only changed the amplitude of the P wave.

We therefore would only need to rescale the results to account for the presence of a

borehole.

These six examples show satisfactory results in imaging point scatterers in very

complex arrangements. They also show that we can accurately discern between dif-

fering velocity perturbations in the same medium. We demonstrated the algorithm's

use in imaging dipping layers and beds and vertical lines that are often prevalent in

fracture zones. One model exhibited the algorithms performance in detecting meta-

morphosised rock. We were also successful in imaging a pinched-out layer prevalent

in fault zones. Without the effects of attenuation we were able to image scatterers as

far as thirty wavelengths (about 15m. for models chosen )from the borehole. In real

data the presence of noise and converted waves would degrade the results somewhat

as compared to the synthetic data. However, based on our experience from a large

number of simulations, we are optimistic of algorithm's range in detecting structural

boundaries.

4.2 Limitations of the Imaging Algorithm Pre-

sented in this Thesis

Although we are quite satisfied with the algorithm in its uses in reconstructing scat-

terers, we are aware of some limitations that were observed in the six models. If we

make a horizontal line by a composite of point scatterers, it can be imaged success-

fully. However, if this line is continuous, it will not appear in the images. This is not a



limitation of the imaging algorithm but of the acquisition configuration for collecting

data; reflections from a horizontal bed never appear along a vertical line of recording.

In addition, layers with great dip to the vertical are hard to image successfully with

the algorithm. This is due to to the fact that most of the reflected energy from these

greatly dipping layers or beds never arrive at the receivers in the FWAL tool con-

figuration. Multiple scattering and edge diffraction effects will manifest themselves

in the images in that the reconstructions would not be as sharp and well defined

as we would like. Point scatterers that are not sufficiently spatially sampled, as in

Models 1 & 2, appear smeared in their final images. This is due mainly to the limited

aperture of coverage around the point scatterer from such a small distance moved

by the source in the examples examined in this thesis. One would need to have an

infinite number of sources moving from negative to positive infinity along the x3 axis,

or, spatially sample a point scatterer from all directions for accurate reconstruction.

The theory of this thesis tries to collapse surfaces of equal travel times (ellipses) to

scattering points. If we do not have information from all such ellipses ( we only move

the source a small distance throughout our experiment so that we can not accurately

simulate an infinite integration over source positions, or,we only collect data from a

limited number of sources in one direction and not four directions (left, right, top

and bottom) as we need to for a 2D object), we can only expect to resolve some of

the ellipses that pass through the scattering point. We therefore can not reconstruct

the parts of our point scatterers from which we have no ellipses in our data collec-

tion. Therefore the point scatterers appear smeared along the ellipses obtainable from

our collected data. The final model demonstrates that the algorithm is incapable of

imaging regions with velocity gradients. This should be expected because the theory

assumes a constant velocity background medium with scatterers which are a discon-

tinuous change in velocity. The imaging algorithm also had problems reconstructing

the correct scattering potentials for scatterers which are inclusions in other anomalies,

although it reconstructed the location and size of these inclusions satisfactorily.



4.3 Future Work

The work of this thesis needs to be expanded to more realistical earth structures.

* First, it is necessary to take into account the presence of a borehole and any

fluids it may contain.

9 Second, it is necessary to test the algorithm on real field data collected by a

FWAL tool.

9 Third, it would be important to extend the theory to an elastic medium in

which there exists more waveforms on which to perform imaging.

9 Finally, since we have obtained satisfactory results from synthetically created

fracture zones, and such zones may be anisotropic, it would be useful to include

the effects of weak anisotropy to the analytical inversion theory on which this

thesis is based.
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Appendix A

The Born Approximation

A.1 Introduction

The Born Approximation, which plays a very important rule in single scattering

theory in optics, quantum mechanics and seismology (Cowley, 1986; Liboff, 1980;

Beylkin and Burridge, 1990) to name but a few fields, owes its name to the work

of Max Born, the physicist who earlier in this century used it to solve scattering

problems in the field of optics. The basic idea behind the Born Approximation is to

try to linearise a non-linear problem by methods of small perturbations.

If we have a vector d in data space, a vector m in model space and an operator

G which in general may be non-linear, we can define a relation:

d = G(m). (A.1)

Let us assume that for a given model (mo), we know the resulting data (do), i.e.,

do = G(mo). If we now were to slightly perturb our data space by a small change

6m and assume that the data space is perturbed by bd, we can write the following:

M mo+6m, (A.2)

d E do+b4. (A.3)



Substituting equation A.2 into equation A.1, and taking a Taylor's expansion about

m o we have:
d 

j 
G n) +dGG(mo) + dm m + O(Sm) 2 , (A.4)

which to first order implies d - d o+G'(Mo)-Sm, using equation A.3 we obtain d ~

G' - Sm. This implies that although in general, the operator that maps the model

space onto the data space may be non-linear, the perturbations to the data space are

linear to the perturbations in the model space provided that the perturbations are

indeed small enough to allow our methods of approximation (in this example, the

Taylor series) to be valid.

A.2 The scattering case in seismology

In the case of seismic work the non-linear problem is as follows. We have a medium

that is characterised by a number of parameters. In this medium we have sources and

are able to place receivers to record the energy produced by the source and propagated

through the medium. In the case of earthquake seismology we have no control over

the placement and type of source used while in exploration seismology we have much

more control over source and receiver positions. If we denote the wave propagation

operator that is a function of the medium parameters L, the data that we record u

and our source function by s, we can write their relation as:

,C(x, 0)_1(x, 0) = s_ (_xi, 0). (A.5)

In the above equation, t is the time variable and the vector x is the position vector

of any point in Eucledian space. If for a reference medium characterised by Lo, we

know the recorded data uO for a given source function s,

fo(X, t)u o(x, t) = _S (X, t),

we can perturb the medium by a small amount and try to find the resulting change

in the recorded data by linearisation using the Born approximation. The need to



linearise the problem is due to the complex nature of non-linear problems in general;

particularly when we try to use inversion methods to obtain the medium parameters

from recorded data, it becomes much simpler if we can use linear methods.

If we assume that the perturbations of the medium parameters are small and

correspondingly the recorded data is perturbed from the known case, we can expand

the operator L as

'C = ECO + fiJ + C2 L2 + -- + n "E ,

and

u = uo0 + f 1 + 2U2+ --- "Un

where E is a small number, and n goes to infinity. Using these two relations in

equation A.5, we have by matching terms of like powers in e,

Lolo = _, (A.6)

Liuo +Loi = 0, (A.7)

E21o + Ei1i + Lu2= 0, (A.8)

Engo + En-iU1 + -+,Eo = 0. (A.9)

Equation A.6 is called the 0 "h order Born approximation and is just the known result.

Equation A.7 is the first order Born approximation .... The first order Born ap-

proximation is the one most commonly used in seismic work and is referred to in the

literature simply as the Born approximation (Aki and Richards, 1980; Hudson and

Heritage, 1981; Wu, 1989; Beydoun and Mendes, 1989) as it is usually a very good

approximation for weak scattering. The vector uo is the incident field and all other

u n,no are considered to be scattered fields. Interpretating the various terms of the

perturbation scheme can be easily done, we see that equation A.6 simply states that

if we use a source function s , we can expect an incident field from the medium. The

first order equation Loiii = -Liao, conveys to us that the first order scattering term

is due to interactions between the incident field and the perturbations on the operator



L due to small changes in the medium parameters. When we terminate the scheme

here, as we normally do, we have assumed that the first order field is so much smaller

than the incident field and that the medium perturbations are indeed small such that

second order terms seen in equation A.8 can be neglected. But among these ignored

terms is the interaction between the first order scattered field and the perturbations

on the medium as this is the case of multiple scattering. So by ignoring these terms

we have assumed that only single scattering can occur in the medium. Hence the

Born approximation of equation A.7 is sometimes called the single scattering Born

approximation. For the case of multiple scattering, we can use iterative methods on

equations A.7 - A.9, however if the first order scattering is an inadequate approxi-

mation the convergence of the series is usually poor and the second order terms give

limited improvement in this case (Hudson and Heritage, 1981; Cowley, 1986).

A.3 Validity of the Born Approximation

As stated in the previous section, the first order Born approximation is generally

called the Born approximation and we will follow this tradition henceforth.

In the previous section we discussed the formulation of the Born Approximation

as it applies to the elastic or acoustic medium in seismology. We assumed that the

perturbation scheme is such that the (n + l)th term of the series is indeed much

smaller than the term one order lower, i.e. || n 1| < 1, however we need to inves-

tigate for what regions of parameter space these conditions are satisfied and whether

there are any other constraints that have to be met for the Born approximation to

give satisfactory results. For detailed discussions on this, the reader is directed to

Chernov (1960), Hudson & Heritage (1981) and Wu (1989). In particular Wu (1989)

showed that the Born approximation is valid if 2 kR < 1, where po is the unper-
P0

turbed medium parameter, bp is the perturbation of that medium parameter, k is the

dominant wavenumber of the incident field, and R is the size that characterises the



scatterer. This inequality can be satisfied in two main ways:

1. The scatterer is localised in the sense that the size of the scatterer is small

compared to the dominant wavelength of the seismic experiment. In this case

the perturbations to the medium parameters need not necessarily be small.

In the literature this condition kR < 1, is usually referred to as Rayleigh

scattering.

2. The size of the scatterer is not small but the perturbations of medium param-

eters are.

A.4 Limitations of the Born Approximation

Like any approximation method, the Born approximation has its limitations. It is

obviously lacking in its ability to correctly account for strong scatterers where multiple

scattering is prevalent. Using higher orders of the perturbation scheme may help but

this is usually a very complicated process and sometimes the correction of the higher

terms may not be worth the effort and time it takes to calculate them.

In the perturbation scheme we managed to decouple the interaction between the

incident field and the first order scattered field. Because the operator L may be non-

linear in general, the complete equation would probably have interactions between

these two fields. If there is coherent (in-phase) interaction, especially in the forward

direction as this is where the incident energy is directed for weak scatterers, the phase

of the incident wave would be affected and hence the first order Born approximation

would not correctly account for these changes in the phase of the incident field.

One further great limitation of the Born approximation is that since it assumes

that both the incident and scattered wavefield propagate in the background velocity,

any perturbation to this background medium will inherently generate travel time

and/or phase errors in the recorded wavefield.



Appendix B

The Green's Function in a 3D

Acoustic Medium

B.1 Introduction

In solving differential and integral equations, the Green's function is of paramount

importance. Its applications can be found in all branches of physical science and its

importance can not be overemphasized.

The Green's function is quite simply the reaction of a system to a delta forcing

function (unit impulse function). Put another way, for any system, if we were to apply

to it a delta forcing function the system's response would be the Green's function of

that system. It is the special properties of the delta function used in its definition

which makes the Green's function so important, the property of which I refer to is

sometimes called the sampling nature of that delta function.

Once we have calculated the Green's function for the system which sometimes

can be a very complicated problem solving for any forcing function applied to that

system becomes almost trivial. The basic idea of the Green's function is best shown

with an example. For simplicity we assume that we are working with scalar functions

in a ID Eucledian space. Let us say that we have a certain differential self-adjoint



operator L(x), that operates on a function u(x) such that: L(x)u(x) = f(x), where

f (x) is a known forcing function. Let us take the scalar product of the previous

equation with a function G(x, y), we now have: (G(x, y), L(x)u(x)) = (G(x, y), f(x)),
which becomes (L(x)G(x, y), u(x)) = (G(x, y), f(x)) because L is self adjoint. Since

we have placed G(x, y) into the equation we can define it to be whatever we choose.

We choose G(x, y) to be such that it satisfies: L(x)G(x, y) = 6(z - y). Using this

in the previous equation we get: u(y) = (G(x, y), f(x)), and provided we can solve

the equation that defines the Green's function, we can solve for u(y) quite easily. We

can also think of the Green's function as a propagating function, that is, it transmits

the signal from the source at x in the example, through the system and gives the

system response at y. And yet another interpretation of the Green's function is that

it represents the inverse operator L-'. If we choose a different forcing function in the

initial equation, we can solve for u(x) by simple finding the scalar product between,

the Green's function that we do not need to re-calculate, and the new forcing function.

B.2 The Green's Function for the 3D Helmholtz

Equation

First we need to define R, the Helmholtz operator.

X V + kne. (B. 1)

Using the definition for the Green's function in a system governed by the Helmholtz

operator, we have:

XG(x,xo) = 6(x,xo),

V2G(x,2o) + k2G(x,xo) = 6(x,jo). (B.2)

We need also the Fourier transform pair for a 3D medium which are defined as:

k = 00 f(X) e- d3 



(2)= (f) _ 1() e'- dok. (B.3)

We note that taking the Fourier transform of 2f Lx) leads to ikf(k ). This implies that

taking the Fourier transform of the Laplacian operator amounts to a multiplication by

- 1k 12, where 1k | = k? + k2 + k3. Taking the Fourier transform of equation B.2

and defining km =|k I, we arrive at:

eik-so
G(k, xo) = - .x- (B.4)(km - ka)(km + ka)

And applying the inverse Fourier transform we have an integral representation of the

3D Green's function of the Helmholtz equation given by:

1 00 e-s-I -fx 10

S 8r3 _oo (km - k,)(km + k,) d3 k. (B.5)

To do this integration we use a spherical coordinate system where we choose the

z axis to lie along the vector [x - xo], we therefore define the vector to be =

x - xo and rename km,, k,. The volume element in spherical coordinates is d3 k

dk, dk dk k,2 sin 0. Noting that the integration over 4 gives 2r and writing as

equation B.5 becomes:

G(x,xo) - 2 2 dk, sin e'krt *** dko. (B.6)42 o k,- k2  Jo

If we note that f' sin Oeikr4 cos dko = n sin(k,.) so that the resulting integrand is

now an even function of k,, Euler's identity (eiO = cos 0 + i sin 9), then gives:

1 00 kr eikr4 dkr
G(x, x ) = - [r k''r d'' ] (B.7)42( -Loo (k, - ka)(k, + ka) J

In the complex k,. plane, the integrand of equation B.7 has two poles. From complex

residue theory we know that these two poles can contribute to the value of the inte-

gral depending on our choice of integration path. Since the Green's function for the

Helmholtz operator is just the wave solution to a point source, we choose the integra-

tion path so that it only contains waves moving away from the source. In seismology

we define the inverse Fourier transform over time as: u(t) = - ff, e" ut(w) dt, we



therefore need to include the pole at +k, in the integration path. Choosing a contour

F in the upper half plane which only includes the needed pole on the positive real

axis as depicted in Figure B-1 on page 103, from residue theory

ke eik-t dk,.it

r (k - k,)(k,+ k)- (B8)

We can show that the integration over the semi-circle portion of the contour F goes to

zero as we extend our radius of integration to infinity. Therefore taking the imaginary

part of equation B.8 multiplying by 4, and replacing ( from its definition we arrive

at the Green's function for a 3D Helmholtz operator to be:

G(x,_o,w) = - , -~ (B.9)
47r |X -_x |

where = . It is of interest to note that the Green's function is symmetrical with

respect to its two variables of position. Therefore the same Green's function that is

used to propagate signals from x o to x, can be used to propagate signals from x to

xo. This property is called reciprocity.

The Helmholtz operator 'R, is the operator that governs the scalar or acoustic

wave equation in a medium with velocity c. Thus for any source function placed in a

homogeneous acoustic medium, since we have assumed that c is a constant of space,

we can easily solve for the displacement field by a scalar product between the Green's

function just derived and the source function.

B.3 The Green's Function for a 3D Acoustic Medium

in the Time-Space Domain

In the previous section we found in equation B.9, an expression for the Green's func-

tion in a 3D constant velocity medium. This expression for the Green's function was

expressed in the w - x domain, and it might be convenient in some instances to have

an expression for the Green's function in the t - x domain. If we define a scalar ,
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such that ( =:| x - 2 o 1, we have:

1 roo.
G( , t) = r2 - -0 eC'-* (B. 10)

We can represent the delta function by:

6(x) = - eik" dk.
27r -oo

Using this in equation B.10, and replacing ( by its' definition we obtain:

1 |x -o|t
G(_x ,x o, t) = - 1 ( - ). (B.11)

47r x - xoI C
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Figure B-1: The contour -1 is used to calculate, from residue theory,
the Green's function for a 3D acoustic medium.
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Appendix C

The Radon Transform

C.1 Introduction

In exploration seismology we often use the data that is collected to invert for the

parameters of the medium that the energy has propagated through. We usually

do not have the means of directly measuring these parameters, but use the data

recorded on the surfaces that bounds the medium of interest to calculate the values

of the parameter at points within that medium. Sometimes the physics of the problem

dictates that the recorded data involve projections of the medium parameters onto

certain surfaces; usually, isochronic (constant travel time) surfaces. What we therefore

measure is not the parameters themselves but projections of them onto these surfaces.

Similar problems arise in the field of medical tomography where images of the body's

organs are to be reconstructed from measurements made on the body's surface. The

parameters of the organs, by the physics of the problem, manifest themselves in the

data as integrations over planes in the body. Equivalent examples appear in the

field of X-ray diffraction (Deans, 1983; Durrani and Bisset, 1984; Cowley, 1986). For

these examples and many others where the Schr6dinger equation of scattering theory

governs the system, the Radon transform which is defined as an integration over

hyper-surfaces, is of increasing importance (Chapman, 1981; Beylkin, 1984; Yagle,
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1986).

The Radon transform was first studied by J. Radon in the early part of this

century, and is a special case of what is now known as the generalised Radon transform

pioneered by I. M Gel'fand in the 1960's (Gel'fand et al., 1969). Radon showed that

provided the function is continuous and has compact support (the function is zero

everywhere outside a finitely bounded region), we can map a surface integral of that

function onto points in the transform space; and further we can uniquely invert for

that function provided that we have integrated over all possible hyper-planes or hyper-

surfaces.

C.2 The Generalised Radon Transform

The generalised Radon transform can be expressed as the following (Beylkin, 1984;

Beylkin, 1985):

(R(a)u)(s, ) = Ju(x)a(x, g)6(s - (x,g)) d"x, (C.1)

where w is a unit vector, a is a density or weighting function, u is the function that

we are transforming, s is a scalar, 4 is a function which is homogeneous with respect

to w, and the 6 function is present to transform our volume integral in 3?n space to

a surface integral over the hyper-surface defined by s = 4(x, w). The generalised

Radon transform therefore maps a function characterised by position vector x unto

a space that is defined in terms of a scalar s, and a unit vector w. In general it is

extremely difficult to find a general expression for the inverse transformation to that

of equation C.1 but it can be done (Beylkin, 1984; Beylkin, 1985). In the special case

of our weighting function having the constant value of one, and the function 4 is such

that,

O(X, W) = X -L,

so that s = now defines a hyper-plane, with w being normal to that hyper-plane

and s being the perpendicular distance from the origin to that plane, the generalised
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Radon transform becomes the classical Radon transform. By linearising some aspects

of the seismic scattering problem studied in this thesis we can approximate the for-

ward problem from what may be interpreted as a generalised Radon transform of the

parameters of the medium into the form of a classical Radon transform.

C.3 The Radon Transform in 3D

We restrict the space to be a 3D Eucledian space. The Radon transform for a 3D

medium is defined as (Ludwig, 1966; Deans, 1983; Miller et al., 1987):

i(p,) = J f(x)6(p- - x) d3
x, (C.2)

where f is the Radon transform of the function f, ( is a unit vector that determines

orientation of the plane defined by p = 1x1 + 6X 2 + 3 where p is the perpendicular

distance from the origin to the plane just defined. We note that f(p, () = f(-p, -i).

It is also worth noting that the 6 function reduces this integration to be one over

planes and not volume space. The planes that the integration are carried out on are

determined by p and . If we hold ( constant, the Radon transform is a 1D function

of p, and varying p implies integrating our function f(X) over parallel planes that

are perpendicular to the unit vector and are at a perpendicular distance p from

the origin. Holding p constant and varying (, denotes integrating the function over

all planes, equidistant from the source, in different azimuthal and polar directions.

Defining the Fourier transform pair as f(k) = f ff f(x) e-ik d3x and f(x) =

2)3fff f (k ) e dak, we note that we can express the Fourier transform in a more

convenient form:

f(Ak) = f f(x) e-t 8(t - k -x) d3 . (C.3)

If we define a scalar s as k = s and defining t in the previous equation to be t = ps

so that dt = sdp, we find that our equation for the Fourier transform becomes:

f(s) =Js eiP dpJI f(x) 6(ps - s -x) d x. (C.4)
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Upon using the identity S(ax) = we obtain f(s ) = f eP-isf(p, ) dp. This

equation simply shows us that the Fourier transform of a function f, is the ID Fourier

transform along the radial direction p of the Radon transform of that function. Since

we have established a relation between the Fourier transform and the Radon transform

we can easily find the inverse Radon transform (Ludwig, 1966; Deans, 1983). In the

previous analysis all limits of integration are from negative infinity to positive infinity.

C.4 The Inverse Radon Transform in 3D

Using the connection established in the previous section between the Fourier trans-

form and the Radon transform we can take advantage of the fact that we know the

inverse Fourier transform in deriving an inverse Radon transform in 3D. Placing

equation C.4 into our definition of the inverse Fourier transform and further observ-

ing from k = s that the volume element dak can be expressed as s 2ds d2 ( where

the surface element signifies an integration over the unit sphere specified by I J= 1.

We therefore have a representation of an inverse Radon transform given by:

= 3  d2  L (p, ) dp s2 eis(t -1-P ds. (C.5)f(0 (27r)3 1|= - -_ -

Since we are integrating over the unit sphere any odd terms in of the integrand

vanish, therefore it is only necessary to examine the even part of of the integrand.

Using the identity that a function f(x) can be written as a combination of its even

and odd parts, where the even part is given by }(f(x) + f(-x)) we observe that:

2 dp f(p,) j s2 ei3(!-P) ds = (C.6)

dpf(p,{) j s 1.- ds + dpf(p,-) j s2e-s(-.-d

In the latter term on the right hand side, replacing p by -p and s by -s as these

are just dummy variables of integration, making use of f(p,) = f(-p, - ) and

using a representation of the 6 function, b(x) = Tf eikx dk which gives:2Jr0"(x) =
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(-k 2 ) ff. eik" dk. We can therefore write the previous expression as:

-7r f00dp f (p, ) "(-x - p),

which becomes after integration by parts twice, -ir-,.- 2 |,=.. Replacing all of

this into equation C.5, we arrive at the Inverse Radon transform:

1 8 2f (_x)0 - d2 a2 p ip=t. C7
87r | {\=1 - p - -C7

It is usually very useful to represent the unit vector 6 as

= (sin 9 cos 4, sin 9 sin 4, cos 9) so that it represents a unit vector on a sphere where

the surface element is just the solid angle given by dk = sin 0 dO d4.

Many additional properties of the Radon transform can be found in Deans(1983),

and Durrani & Bisset(1984).

C.5 A Useful Result of the Inverse Radon Trans-

form for Imaging Applications

Let us assume that the function of space f(xi), represents a parameter as a func-

tion of position and in the imaging experiment we are interested in the value of

this parameter at a point xo. Using equation C.7, at the point of interest f(2o) =

- ff 2 f,,,(p,) |,= .2o, where the subscripts on f represent partial differentia-

tion with respect to the subscripts.

When written in this form the inverse Radon transform is sometimes called the fil-

tered backprojection operator (Miller et al., 1987; Hornby, 1989). The function f(x)

is integrated over all planes in space (f(p, )), "filtered"(denoted by the derivatives

with respect to p), and planes parameterised by p and that pass through xo, the

point of interest, are selected (the choice of p = _ -sO). There is then a "backpro-

jection" onto a unit sphere ( the need to evaluate the integrand only on the surface

specified by I _ J= 1), and an averaging is done over the surface of that sphere for
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planes of all orientations passing through the point of interest (the integration over

the solid angle).

If we use the definition for the classical Radon transform of equation C.2, we find

that we can express the value of the parameter at the point of interest by an equation

that involves a volume integral of the parameter over space:

fXo) = - 2 d2 dx f(x)b"( - (xo - 2)). (C.8)
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Appendix D

The Jacobian for an In-Line

Constant-Offset Source-Receiver

Configuration

D.1 Introduction

In Appendix C we showed that we can represent a function f, at a particular point

of interest x 0 with the use of the Radon transform as:

f(o) = -1 f d2JJ da 3 f(X) 8"( - (2o - )),
87 2 JJIt1

where the surface integral over ( represents an integration over a unit sphere centered

at xo, the point of interest. For the case of scattering due to a potential f in a

homogeneous acoustic medium, we have shown in Chapter 2 that we can invert for

the scattering potential f at the point of interest with the use of the inversion formula

f(xo) = fd2 U.,C(r, , t = ro) 16 iXo xio -i 3 iy/2
-~CO

where 7o = IX-SI + Lx-rI is the travel time for rays to travel from source s to
Co CO

scattering point xo to receiver r in a medium with constant velocity co, y is the
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angle at xo between the ray from the source and the ray from the receiver and u" is

the scattered data recorded. The surface integral is an integration over a unit sphere

centered at the point of interest x o. In this inversion formula, the surfaces of constant

travel time r are ellipsoids where s and r are the foci, is the representative of the

hyper-planes which the unit vector ( are perpendicular to in the Classical Radon

transform. Therefore we should be able to represent as a function of s, r and xo

and with the use of a Jacobian, transform the surface integral into an integration over

the experimental variables s and r.

D.2 The Normal Unit Vector in Cartesian Coor-

dinates

( is by definition a unit vector normal to the surfaces of constant travel time r, that

is:

We have shown in Chapter 2, that

1x -1 sx - r
xr(r,,) - + ~ - .

Therefore we can represent as:

( 1x s -+ (D.1)

D.3 The case of In-Line Constant-Offset Source-

Receiver Configurations

In the previous section we showed an expression for the unit vector ( as a function of

the experimental variables s and r and it is our desire to transform the surface element

d2( into a more suitable form in terms of dA and dr. We address the particular
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case where the source and receiver move a constant distance along a straight line

throughout our experiment, we have termed this as an in-line configuration. In this

experiment the distance between the source and receiver, the offset, is held constant.

This is the case of what is called the constant-offset configuration in seismology, and

it is commonly used in surface and borehole seismic experiments where typically the

sources and receivers are cast into an array or tool which keeps the relative distances

between sources and receivers fixed. We address the particular case of the borehole

acoustic tool used in Full Waveform Acoustic Logging (FWAL), but the results can

easily be applied to surface seismic work.

In equation D.1 we found an expression for in a cartesian system, however since

is a unit vector and we are integrating over a unit sphere it would be wise to express

our components of ( in terms of spherical coordinates which would facilitate an easier

surface integration. With this in mind we note that ( = (sin 0 cos 4, sin 9 sin 4, cos 9)

and dk = sin 9 dO d4. We immediately note that our surface element is the solid

angle subtended by the cone formed from the center of the unit sphere and the surface

element. Let us place our source and receiver along the X3 axis which increases into

the earth's surface. We assume that the source s is at the bottom of the tool and

the receiver at the top, therefore I aI 1>1 r . Although it would be ideal to change

the surface element sin 0 dO do to one in the form J dr ds where J is the necessary

Jacobian for this transformation, we note that since s and r lie along the same axis

and are at a constant-offset from each other they are necessarily linearly dependent

and the Jacobian I . x |I must vanish. Hence we won't be able to change the

integration over 4 and 0 to be one of s and r, but instead we change the integration

to be one of s and 4. It is convenient to express s and r in terms of a vector m

and a constant vector h which specifies a source-receiver pair. We define m to be

a vector in the X3 direction from the origin to the midpoint between the source and

receiver, and h as a vector in the X3 direction from the midpoint between source and
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receiver to the source. Therefore:

r = rn-h,

S= M +h.

(D.2)

(D.3)

Remembering that the vectors s, r, m and h all lie along the x3 axis, we can rewrite

equation D.1 as:

2 [z2+X2+(X 3 -m-h)(z 3 -m+h)

[1?+z+( 3-m-h)2
4 [X2 +x+(Xa-m+h)2]f

[xii+x2+(x3-m-h )k[X+X+(X3-m-h)2]
+ X1i+z2+(X3-m+h) k

[X21+X22+(Xa-m+h)2]i

For compactness let us define:

2[X + X + (X 3- m - h)(X 3 - m- h)]

+ X2 + (X3 - m - h)2]2 [X2 + X2 + (z 3 - m +

C E

Therefore,

,I ]h)2

x 1 i+ x 2 j+ (x 3 - m - h)k
2 + X21 ,

(X +2x + (X3 - m - h)2),i

xi + X22+ (x 3 - m + h)k

(xi + + (X3 -m+h)2)'

1
- [_B + _C ].

Comparing these with one of the previous representations for , namely

( = (sin 0 cos 4, sin 0 sin 4, cos 0),

and comparing terms for each direction, we arrive at:

sin 0 cos 4

sin 0 sin 4 -

1x 1 2+

7A(x X 2 + ( 3 - m - h)2)2

1

7A=
+-

x1

(x + + (X3 - m + h)2)

X2
h)2) (x+x+ (x 3 - m+
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(D.4)

(D.5)

(D.6)

(D.7)

(x2 + X2 + (3 - m- h)2)1

A=3 2+ 2
[z 1X



and

1 [ (X3 -m - h) (3 -m+ h) 1
cos 0 -2 (X(. (D.8)

1(x +x + (X3 - m - h)2)1- x i+(3 ))

For our purposes the most useful of these equations is equation D.8 as this allows us

to transform from dO to dm. Noting that:

d2{ = sinO dO do = sinO0- dm d#,am

and
80 1 Ocos0

am sinO am

We find that we can represent the surface element as:

&cos 0
d2 am dm do. (D.9)- 49m

Our task at present is to use equation D.8 to find the Jacobian c Again for the

sake of compactness we define D:

( 3 - m - h) (x 3 -m + h) (D.10)
D ~ X =X1 + 1X2D.0

(X + (X3 - m - h) 2 )i (i+x$+(X3 -m+h)2)1

Which therefore implies that:

cosO = A-(m,x)D(m,2L), (D.11)

acos 0 1 3 BA 1D

am - A--D + A-2-. (D.12)

Before we calculate the necessary derivatives in equation D.12, it is necessary to

recognise some very useful trigonometric identities of the source, receiver and image

point configuration.

Using the geometries illustrated in Figures D-1-D-3, we define a, as the angle

between a ray from the receiver r to the scattering point xo and the horizontal

(x 1 , x2 ) plane, #, as the angle between a vector from receiver r to the source s and

the vector from receiver r to the scattering point x o; -y is the angle subtended at the

113



scattering point xo, between rays from the source s and receiver r, 03, is the angle

between the vector from receiver r to so

scattering point x o. The angle between t

xo and the horizontal (x 1 , x 2) plane we d

we arrive at the following trigonometric id

COS r - X3 - r
cos/#,. 3==

[x1 + + (x3 - r)2]

COS S -S 3  =

[xI + (X3 - s)2]2

cos ar = =

[x + + (X3 - r)2]

cos as = =

[XI + x +(x3 s)2]

and

urce s and the vector from source s and

he vector from source s to scattering point

efine as a,. With these definitions in mind

entities:

X3 - m + h

[x + (x 3 - m + h)2]

m+h- x 3

1~~ , +X
[X1 +2 + (X3 - m + h)2 22x + X2]1

[xI + + (x 3 m- m + h)2

(x 2 2

(D.13)

(D.14)

(D.15)

(D.16)

cos -= z+xj+(x3 -a)X3-r)D.7COS X2 +(X3- 8)(X3 r)(D.17)
[X21+X2 + (X3-r) 2 t[2 +_T+(2 -)2]T

= x?+xJ+( 3 -m-h)(X 3 -m+h)

[zi+zj+(x 3 -m+h)2]
4 (j+xI+(X3-m-h)2]j

Where for brevity we have denoted the scattering point xo as x. Whether the

scatterer x is above, in-between or below the source-receiver pair (s_,r) as in Fig-

ures D-1- D-3, the following trigonometric identities are valid in all cases:

sin f,. = cos a,,

sin#, = cos a.,

sin 7 = cos #,cos a, + cos # cos a,,

cos -y = cos a, cos a, - cos #, cos #,.

114



We now proceed to find the necessary derivatives to apply to equation D.12. Using

equation D.4, we find that:

aA -2x 3 +2m-2h-2x3 +2m+2h
- (D. 18)am [I2 + X2 + (X3- m - h) 21 [X2 2

2[x + X2 + ( 3 - m - h)(x 3 -m + h)]
[z i+(X3 - m - h)2] 1,[X2 + X2+(3- )

z3- m - h x 3 - m + h

[x+x+( 3 -m-h)2] [x + x +(x 3 - m + h)2]

And using equation D.10, we find:

aD+ - 2 )2]] (D.19)
+~2 -3 [ h)2]]

1 22+(X3 -m+h)2]f [X2+X2+(X3 -m+h)]

Since s = _m + h, we observe that dm = ds, since h is a constant. Substituting

equations D.18 and D.19 into equation D.12, and making use of the trigonometric

identities of equations D.13- D.17 and further noting that (2 cos 7/2) 2 = 2 cos 71 + 2,

we arrive at, after a little manipulation:

(2 cos -y/2) 3 cos (D.20)

(}2) as
2cos 2 or 4cos8rcos + 2cos

4 cos3 cosl3, + cos,. 2 ,(2cos-/2) 2

2 cos 2 /3S , (2cos-y/2) 2 + 2 cos 2 /
12i -sa I MLIx-rI

cos f, cos #,(2 cos ^//2) 2  (2 cos-y/2) 2 (2)Cae 2 af (2 cos o2s)2(2) cos 2 a
+Ix - II -s|I
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Expanding (2 cos -y/2)2, making use of the expressions of cos -y and sin 7 in terms

of cos C,.,,, cos #,.,, and rearranging and regrouping terms we arrive at:

acos 0 (D.21)

(2cos,/2)3 Ix-sj [cos #3,. cos a., sin 7 - cos /3, cos #3,. - cos2 f., Cos 7 - cos 2 a.,[2 cos 7/2]+

(2cos,/2)3 I%-L [cos /3, cos a,. sin 7 - COS 138 COS /3,. - cos 2 /3,. COS 7 - cos2 a,.[2 cos 7/2]2]

Defining A., and B,. such that:

A., [Cos /3,. COS aY, sinl 7 - cos /3, cos /3,. - cos 2 /3., COS 7 - cos 2 ar,[2 cos 7/2]2], (D.22)

and

B,. 3[cos /3,, cos a,. sin 7 - cos /, COS /,. - cos 2 /,. cos 7 - cos 2 a,.[2 COS 7/2]2]. (D.23)

We can rewrite equation D.21, as:

1cosO 1 A., B,. (D.2

- (2 cos -y/(c /2) 3 [E- + |O | - r |

Making use of equation D.24 in the surface element defined in equation D.9, we arrive

at:

ac-1 As B r

d = ) " + '' ds d#. (D.25)
- (2 cos7/2)3 | X -a s| |X - r I

However, since we have defined the X3 axis as positive into the earth, we note that the

angle 0 must increase as we go from +x to -X 3 , hence the integration over source

positions s must go from +oo to -oo which is the reverse of how integrals are usually

written. We should therefore place a negative sign in front of equation D.25 so that

it conforms to the standard.

It is worthwhile to note that in A., and B,., in each term of these two variables

cos 3,. and cos /3, appear as pairs and switching receiver and source location would

not change the surface element displayed in equation D.24.
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D.4 The Case of Zero-Offset Borehole Experi-

ments

If we had a borehole tool in which the source and receiver were at the same location

and only moves along a straight line in the experiment, we can modify equation D.24

into a more suitable form. This modification would be useful if we decided to process

the raw data in such a way that it would appear to be zero-offset data. For zero-

offset data s = r, and -y = 0. If our scattering point x is in-between (s > X3 > r)

or below (x 3 > s > r) the source-receiver pair, as we approach zero-offset, that

is as the distance between the source and receiver approaches zero (we hold the

receiver position as constant and let the source approach the receiver), we find that

-+ /2 + a,. and a, - a,.. In these two cases we also note that cosO,. = sin a,..

Substituting these into equation D.24, and defining 0 =,. we arrive at:

d2 sin 2  dr d4. (D.26)
- 1 -r I

For the case of the scattering point being above (s > r> x 3) the source-receiver pair,

- r - #,., a, -- a,. and cos ,. = - sin a,.. We also arrive at equation D.26:

sin 2 0
d2 = r d#

In both of the preceding equations, we have defined the angle 0 in such a way that

the integration over receiver positions r, would be from positive to negative infinite,

we therefore caution the reader to take the negative of this surface element if they

wish to integrate over dr, f"L dr.

117



scatterer

X0- receiver

el 
Or

X3

source - . s

Figure D-1: The relevant angles for a scatterer located above both
source and receiver.
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X1 receiver

X2 V
X3

'7 -- scatterer

ps
source-- ::a

Figure D-2: The relevant angles for a scatterer located between
source and receiver.
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receiver

source -

- scatterer

Figure D-3: The relevant angles for a scatterer located below both
source and receiver.
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