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Abstract

Techniques by which to obtain reliable estimates

for both the single crystal and polycrystalline elastic

properties of various low symmetry solids from a rel-

atively few number of measurements on a given single crystal

would be valuable. In this note, we consider two possible

techniques: (1) the determination of single crystal

elastic constants under an assumption of higher symmetry

than the true symmetry of a given material, and (2) the

estimation of aggregate properties from measurements made

on a single crystal in several random directions. Neither

method is very accurate.
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LIST OF SYMBOLS

aL: direction cosine

BETAV: Voigt average of the compressibility, (Mbars) 1

BETAR: Reuss average of the compressibility, (Mbars)~

C..: stiffnesses (i=l,...,6; j=l,...,6), Mbars
CJ
HIEXC.. : stiffnesses obtained under assumption of hexagonal
1J

symmetry, (Mbars)

CUBC : stiffnesses obtained under assumption of cubic
iJ

symmetry, (Mbars)

ER: Reuss average of Young's modulus, Mbars

EV: Voigt average of Young's modulus, Mbars

GR: Reuss average of shear modulus, Mbars

GV: Voigt average of shear modulus, Mbars

r..: Christoffel constants (i=1,...,6; j=l,...,6)
Kb

KR: Reuss average of bulk modulus, Mbars

KV: Voigt average of bulk modulus, Mbars

PRR: Reuss average of Poisson's ratio

PRV: Voigt average of Poisson's ratio

P: density

S..: compliances (i~l,...,6; j=l,...,6), (Mbars)-

a: standard deviation

V: elastic velocity, km/sec

V : compressional velocity in polycrystalline
p

material, km/sec
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Vs shear velocity in polycrystalline material,

km/sec

VL: longitudinal elastic velocity in single crystals,

km/sec

VT' Vt: elastic velocities of transverse modes, in single

crystals, km/sec
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The ultrasonic techniques for the determination of

the single crystal elastic moduli of solids are difficult

and time consuming for the materials with a low degree of

symmetry. The triclinic class (1 symmetry) has 21

independent elastic moduli. Thus it is not surprising

that some investigators have looked for simpler ways to

estimate elastic properties. Alexandrov and Rhyzhova (1961)

treated some crystals as though they possessed a higher

symmetry and measured the elastic properties with reference

to the higher symmetry. Perhaps the elastic properties

measured under this assumption provide an adequate

estimate of the single crystal elastic properties of

the crystal, or at least constitute a set of data from

which reliable estimates of the polycrystalline aggregate

properties may be calculated by the Voigt-Reuss scheme.

A second possible method to obtain estimates of the

polycrystalline properties from a relatively few measure-

ments on a single crystal might use averages of the

velocities of elastic waves propagating along three

orthogonal directions selected randomly in a given crystal.

In this note, we consider the errors in these schemes

for representative materials of several symmetry classes

(tetragonal, orthorhombic, monoclinic, hexagonal and

trigonal). Our procedure may be illustrated for corundum.

The true symmetry is trigonal (3m) and requires six



independent elastic constants to specify completely the

elastic properties. Because these six constants are

known, the three velocities of elastic waves propagating

in any direction in the crystal, with direction cosines

(aL, may be calculated (Hearmon, 1961) from

11 _ 2 p2  13

r l2 r22 ~ 0,2 r 23 =0

-2
1 3  v23 33 ~

where the r are the Christoffel stiffnesses and are

given by rP = Cijklakae. Suppose that we wish to treat

corundum as though the symmetry were hexagonal (6/mmm).

From the velocities that one would measure for the

directions often used to determine the elastic constants,

we may use equation (1) to solve for the five independent

C .X These values and the corresponding Voigt and Reuss

averages may then be compared with the true values. In a

. . CUBsimilar way, the C.. that result from the assumption of1J

cubic symmetry could be obtained for corundum.

To obtain representative values, several materials

in each symmetry class (for which data were available)

were analyzed. Monoclinic and orthorhombic crystals were

analyzed as though they were tetragonal and cubic, trigonal
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crystals as though hexagonal and cubic, and hexagonal and

tetragonal crystals as though cubic. Data on the true

elastic properties were obtained from Simmons (1965). In

table 1 we show the direction and the set of equations

from which the values of the "pseudo elastic constants"

were determined. Some of the relations that are used

normally as a check on the consistency of experimental

values are shown also in table 1.

For some simulated measurements the polarizations

of the various modes of propagation were not those that

would be expected in a crystal that actually possessed

the assumed symmetry. In these cases the polarization that

came closest to the expected value was chosen and its

velocity was used in the relations of table 1 to determine

the pseudo elastic constants.

The values of the single-crystal elastic constants

obtained in this way are shown in table 2. As can be

seen, the sets of elastic constants obtained under the

assumption of higher symmetry do not provide an adequate

description of the crystal's elastic properties. The

polyaggregate elastic properties derived from these

elastic moduli are presented in table 3, and here again

we see that in general no reliable results are obtained.

Attention is called in particular to the value of the
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Reuss average of Young's modulus for staurolite, derived

under the assumption of cubic symmetry (m3m). Its value

is 8.109, while the true value for this material is 1.638.

This example has been pointed out to show that there

exists a certain instability in the values obtained

assuming higher symmetry, which comes about because of

the indirect way in which the C.. were obtained, viz., as
1J

solutions to sets of equations. Two examples of the

degree of internal consistency which were observed between

the pseudo elastic constants obtained using this method

are shown in table 4.

In table 5 the results have been examined in a

somewhat different way. For a unit uni-axial stress,

three of the resulting strain components are tabulated to

show the extent of the errors introduced by assuming the

crystals to possess a higher symmetry. In table 6 two

measures of anisotropy, A as defined by Hearmon (1961)

and A as defined by Chung (1967), have'been calculated

using the stiffnesses of table 1. For the tetragonal

and hexagonal samples, because of the particular set of

velocity measurements used, the anisotropy calculated

under the assumption that the crystals are cubic agrees

exactly with the true values for the crystals. But, in

general, this method does not provide an adequate estimate

of the anisotropy of the crystal.
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The second method mentioned above, that of using the

averages of the velocities of elastic waves propagating

along three orthogonal directions selected randomly in a

given crystal, was tested by simulating these measurements

for ten random orientations in each of the materials

examined. Table 7 shows the average velocities obtained

in this way and compares them to the true Voigt-Reuss-

Hill averages. In table 8 the bulk and shear moduli

calculated from the velocity averages are shown along with

the Voigt-Reuss-Hill averages of.these quantities. As

is seen there, while the majority of the values are within

1-2% of the average Voigt-Reuss values, there are several

cases in which the error is about 10%, a figure which

which seems to define the reliability of this scheme.
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TABLE #1

Elastic Waves and Velocity-Stiffness Relations for Cubic,

Tetragonal and Hexagonal Crystals

Direction of
Propagation

(1, 1, 0)

m3m

(0, 0, 1)

Direction of
Polarization

(1, -1, 0)

(1, 1, 0)

(0, 0, 1)

(0, 0, 1)

transverse

Velocity Relation

PVT2 = (C - C 1 2)

2 1PVL -2 (C + Cl) + C
2 11 C1 2) + 4 4

p Vt2

pV

p VT 2

= C 4 4 *

- =4

2
t 44

(l, 1, 1) (1, l, 1) pVL2 = (C + 2Cl2 + 4C )VL 3 11 12 C4 4)

(1, 0, 0)

(l, 1, 0)

(0, 1, 1)

(1, 0, 0)

(0, 1, 0)

(0, O, 1)

(-1, 1, 0)

(0, 1, -1)

(0, 1, 1)

(1, 0, 0)

pV 2= C

PVT2 = C 4 4

pVt2 = C66

pV t2 = (C

pVT2 = (C 11 + C 3 3)/4 - c13/2

PVL2 = (C + C33)/4 + C1 3/2 + C44

pVt2 = (C4 4 + C 6 6 )/2

Class Note

4/rnm - Cl2)/2



Table #1--Cont.

Direction of
Propagation

(0, 0, 1)

Direction of
Polarization

(0, 0, 1)

transverse

(0, 1, 0)

Velocity Relation

pVL 2 = C3 3

PV 2 2
pT =pVt =

PVT2 = (C

C4 4

- C 1 2 )

(1, 0, 0) (1, 0, 0)

(0, 0, 1)

6/rmm

(1, 2,4)

(0, 0, 1)

(1, 2, [ )

quasi-transverse

pVT2 - (C6 6 + C 4 4 )

pVL2 = (C + C3 3 + 2C 4 4 ) + (CL 33 4(011

4(C13 + C4 4 ) 21/2

2 1 1
t 11+ 33 + 2C 4 4 )

4(C13 + C44) 2 1/2

- C 33 2 +

- C 3 3 ) 2 +

Note: * Used to solve for C. 's.

f Used as check on internal consistency.

Class Note

pVt2

11

.44



TABLE #2

.i Obtained Assuming Higher Symmetry

Material

Rutile 3

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

Class

4 /mmm

mm

mmm

6 /mmm

6 /mmm

3m

3m

2/m

2/m

Assumed
Class-

m3m

4 /mm
m3m

4/mmm
m3m

m3m

m3m

6 1mm
m3m

6 /mmm
m3m

4 /mmm
m3m

4 /mmm
m3m

C14
C 15

C l

2.7300
3.4200

3.2400
3.2400
2.2582

3.4300
3.4300
2.3554

1.6670
1.7720

0.6332
0.6375

4.9700
4.9700
5.3659

0.8674
0.8674
0.6466

2.0400
2. 0652
2.0292

0.8060
0.8509
1.3932

C 2

1.7600
2.4500

0.5900
1.7630
0.7812

0.6700
2.2700
1.1954

0.1310
0.2360

0.2631
0.2675

1.6360
2.3371
1.8448

0.0699
0.2904

-0.0070

0.8440
1.0241
0.9881

0.4170
0.1425
0.6848

C 3

1.4900
2.4500

0.7900
0.5741
0.7812

0.6100
-0.3610
1.1954

0.6550
0.2360

0.2165
0.2675

1.1090
1.1509
1.8448

0.1191
0.2204

-0.0070

0.8830
0.6892
0.9881

0.5380
0.3322
0.6848

-0.2350
0.0000
0.0000

-0.1791
0.0000
0.0000

-0.1930
0.0000
0.0000

0.1610
0.0000
0.0000



C35C2 2

2.7300
3.4200

1.9800
3.2400
2.2582

1.8500
3.4300
2.3554

1.6670
1.7720

0.6332
0.6375

4.9700
4.9700
5.3659

0.8674
0.8674
0.6466

1.7500
2.0652
2.0292

1.6300
0.8509
1.3932

C 44

1.4900
2.4500

0.7800
0.5741
0.7812

0.1280
-0.3610
1.1954

0.6550
0.2360

0.2165
0.2675

1.1090
1.1509
1.8448

0.1191
0.2204

-0.0070

0.4832
0.6892
0.9881

0.3740
0.3322
0.6848

C46

4.8400
3.4200

2.4900
1.1143
2.2582

1.4700
-0.9121
2.3554

1.3960
1.7720

0.6561
0.6375

4.9800
4.9800
5.3659

1.0720
1.0720
0.6466

2.3800
2.3988
2.0292

1.2420
1.9786
1.3932

-0.3360
0.0000
0.0000

-- 0.0740
0.0000
0.0000

C23

1.2500
1.2500

0.6670
0.8100
0.9416

0.4600
0.9200
0. 8923

0.6630
0.6630

0.1807
0.1807

1.4740
1.4740
1.3725

0.5794
0.5794
0.5994

0.6750
0.5628
0.6012

0.1770
0.2291
0.2061

C25

-0.1960
0.0000
0.0000

0.1710
0.0000
0.0000

C33

-0.1130,
0.0000
0.0000

0.0100
0.0000
0.0000

C55

1.2500
1.2500

0.8100
0.8100
0.9416

0.7000
0.9200
0.8923

0.6630
0.6630

0.1807
0.1807

1.4740
1.4740
1.3725

0.5794
0.5794
0.5995

0.5880
0.5628
0.6012

0.2740
0.2291
0.2061

C66

1.9400
1.2500

0.7930
2.4900
0.9416

0.9200
1.4700
0. 89 23

0.7680
0.6630

0.1851
0.1807

1.6670
1.3165
1.3725

0.3988
0.2885
0.5995

0.7050
0.4820
0.6012

0.3620
0.3740
0.2061



TABLE #3

Voigt-Reuss Averages Obtained Assuming Higher Symmetry

Assumed
Material

Rutile

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

Class

4/mmm

mmm

mmm

6/mmm

6/mmm

3m

3m

2/m

1 2/m

Class

m3m

4/mmm
m3m

4 /mmm
m3m

m3m

m3m

6 /mm
m3m

6 1mm
m3m

4 /mmm.
m3m

4/mmm
m3m

EV

3.171
2.543

2.051
2.714
2.107

1.865
2.176
1.982

1.530
1.609

0.489
0.474

4.083
3.876
3.922

1.011
0.987
0.829

1.663
1.546
1.494

0.832
0.893
0.726

ER

2.617
2.105

1.975
1.944
2.083

1.638
8.109
1.907

1.404
1.603

0.486
0.474

3.973
3.769
3.872

0.903
0.915
0.788

1.544
1.494
1.488

0.622
0.761
0.682

GV

1.259
0.944

0.824
1.134
0.860

0.772
0.955
0.767

0.638
0.705

0.191
0.182

1.661
1.538
1.528

0.478
0.428
0.490

0.658
0.597
0.569

0.319
0.358
0.265

GR

1.012
0.766

0.793
0.827
0.848

0.692
1.439
0.734

0.575
0.701

0.190
0.182

1.607
1.491
1.505

0.411
0.388,
0.449

0.615
0.573
0.566

0.234
0.308
0.248

PRV

0.260
0.347

0.244
0.197
0.224

0.208
0.139
0.291

0.199
0.141

0.279
0.298

0.229
0.260
0.283

0.057
0.153

-0.155

0.264
0.295
0.313

0.303
0.247
0.369



Beta R s(Voigt) s(Reuss) p(Voigt)PRR

0.293
0.373

0.245
0.175
0.227

0.183
1.817
0.299

0.221
0.143

0.280
0.298

0.236
0.264
0.286

0.099
0.177

-0.123

0.255
0.302
0.314

0.329
0.237
0.377

KV

2.198
2.773

1.337
1.491
1.274

1.063
1.005
1.582

0.846
0.748

0.368
0.391

2.514
2.689
3.019

0.380
0.470
0.211

1.176
1.259
1.335

0.704
0.588
0.921

KR

2.106
2.773

1.289
0.996
1.274

0.862
-1.026
1.587

0.339
0.748

0.368
0.391

2.509
2.664
3.019

0.375
0.473
0.211

1.051
1.259
1.335

0.607
0.482
0.921

Beta V

0.455
0.361

0.748
0.671
0.785

0.941
0.995
0.652

1.182
1.337

2.715
2.559

0.398
0.372
0.331

2.629
2.108
4.742

0.850
0.794
0.749

1.420
1.700
1.086

0.475
0.361

0.776
1.004
0.785

1.160
-0.974
0.632

1.193
1.337

2.716
2.559

0.399
0.375
0.331

2.668
2.115
4.742

0.951
0.794
0.794

1.648
2.076
1.086

5.474
4.745

4.979
5.828
5.182

4.787
5.328
4.776

4.453
4.680

3.316
3.240

6.456
6.248
6.158

4.244
4.100
4.300

4.457
4.244
4.149

3.477
3.683
3.161

4.909
4.270

4.886
5.062
5.038

4.533
6.540
4.665

4.228
4.665

3.305
3.239

6.351
6.110
6.145

3.935
3.919
4.101

4.310
4.150
4.132

2.978
3.419
3.064

9.607
9.790

8.560
9.500
8.455

7.881
8.215
8.780

7.261
7.248

5.987
6.027

10.893
10.870
11.250

6.193
6.260
5.720

7.876
7.865
7.953

6.541
6.350
6.946

p(Reuss)

9.071
9.500

8.403
8.061
8.500

7.280
5.142
8.715

7.063

7.248

5.979
6.030

10.804
10.802
11.260

5.896
5.596
5.298

7.519
7.835
7.842

5.900
5.820
6.878
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TABLE #4

Internal Consistency of Data That Would Be Obtained Experimentally for
Crystals with Assumed Hliqher Symmetry

Material

Oligoclase 1

Class

2/m

Assumed
Class

4/mmm

m3m

m3m,

Quartz 6 3m
6 /mmm

6/mmm

m3m

m3m

Relation

(CTET + CTET)/2
(4 4  + 6 6 )/

Pv
2

(C UB(1 1

pV 2

CUB
C4 4

Pv
2

HEX 0.8022

C HE
C4 4

PV 
2

+ 2C B + 4C B )/3

(C4 4 + C6 6 )/2

pV 2

(CUB(C1 1

Pv2pV2

CUB
C4 4

pV 2

+ 2C B + 4C B)/312 44

Value

1.1664

0.2872

1.1958

1.1999

0.2061

0.8022

0.5794

0.6897

0.4339

0.5051

1.0102

0.9951

0.5995

0.0868



TABLE #5

Three Strain Components for a Unit Uni-Axial Stress in
Assuming Higher Symmetry

the (1, 0, 0) Direction

Material

Rutile 3

Olivine

Staurolite

Apatite

Magnesium 6

Corundum

Quartz

Diopside

Oligoc lase

Class

4/mmm

mmm

mm

6/mmm

6/mmm

3m

3m

2/m

2 /m

Assumed
Class

m3m

4 /mmm
m3m

4/mmm
m3m

m3m

m3m

6/mmm
m3m

6 mm
m3m

4 /mmm.
m3m

4 /mmm
m3m

S11

0.6554
0.7273

0.3423
0.4519
0.5386

0.3367
0.5146
0.6449

0.7480
0.5826

2.0146
2.0861

0.2352
0.2637
0.2261

1.2770
1.3351
1.5469

0.6925
0.6659
0.7239

2.3538
1. 2728
1. 0617

Strain

S22

-0.3755
-0.3036

-0.0675
-0.2252
-0.1384

-0.
-0.
-0.

S33

-0.0862
-0.3036

-0.
-0.
-0.

-0.
-0.
-0.

1130
3475
2171

0.0970
-0.0685

-0.6873
-0.6188

-0.
-0.
-0.

-0.
-0.
0.

-0.
-0.
-0.

0.
-0.
-.0.

0874
1168
1384

1299
0661
2171

-0.3965
-0. 0685

-0.4380
-0.6188

0716
1161
0579

1791
3980
0169

2771
2946
2370

1990
1388
3499

-0.
-0.
-0.

0364
0341
0579

1220
1927
0169

1977
1067
2370

0516
1904
3499
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TABLE #6

Elastic Anisotropy Assuming Higher Symmetry

See footnote a for explanation of symbols.

Material

Rutile 3

Olivine

Staurolite

Apatite I

Magnesium 6

Corundum

Quartz 6

Diops ide

Oligoclase

Class

4/mmm

mmm

mmm

6/mmm

6 /mmm

3m

3m

2/m

2/m

Assumed
Class

m3m

4/mmm
m3m

4/mmm
m3m

m3m

m3m

6 /mmm
m3m

6/mmm

m3m

4 /mmm
m3m

A

2.588
2.588

0.504
1.090
1.275

0.333
1.86
1.539

.865

.865

0.9 75
0.975

0.884
1.121
0.778

1.453
2.008
1.835

1.130
1.080
1.157

0.910
0.647
0.583

A = 2C /(C - C1 2 )

* 2 2A = 3(A-1) /[3(A-1) + 25A]

Hearmon (1961)

Chung (1967)

A

0.105
0.105

0.055
0.001
0.006

0.134
0.025
0.021

0.025
0.025

00007
00007

0018
0015
0075

0.017
0.055
0.045

0.0017
0. 0006
0.0024

0.001
0.188
0.264



23.

TABLE #7

Comparison of the Voigt-Reuss-lill Averages of Velocities with

the Velocities Obtained Averaging Velocities in 3 Orthogonal

Directions. The values of V and V are averages from ten
s P

different orientations selected randomly.

Material

Rutile,

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

Class

4/mmm

mmm

mm

6/mmm,

6/mmm

3m

3m

2/m

2/m

V s(VRH)

5.191

4.932

4.660

4.341

3.310

6.403

4.089

4.383

3.227

5.365

4.910

4.614

4.564

3.313

6.404

4.195

4.477

3.340

p (VRI)

9.339

8.481

7.580

7.162

5.983

10.848

6.044

7.697

6.220

p

9.679

8.466

7.759

7.106

5.985

10.915

6.181

7.785

6.632



TABLE #8

Bulk and Shear Moduli Calculated from V and 9 of Table
s p

Material

Rutile 3

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

Material

Rutile 3

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase 1

Class

4 /mmm

mmm

mmm

6 /mmm

6 /mmm

3m

3m

2/m

2/m

Class

4/mmm

mm

mmm

6/mmm

6/mmm

3m

3m

2/m

2/m

(GV + GR)/2 G (Average)

1.135 1.156

0.809 0.798

0.732 0.722

0.607 0.666

0.190 0.192

1.634 1.653

0.444 0.471

0.636 0.646

0.277 0.297

(KV +KR)/2

2.152

1.313

0.963

0.842

0.368

2.512

0.378

1.114

0.655

K (Average)

2.493

1.332

1.061

0.745

0.365

2.530

0.382

1.182

0.780

Standard
Deviation

0.101

0.018

0.025

0.027

0.005

0.092

0.026

0.025

0.040

Standard
Deviation

0.334

0.107

0.112

0.088

0.015

0.307

0.088

0.089

0.123

Maximum
Error

0.210

0.039

0.052

0.092

0.008

0.165

0.076

0.060

0.081

Max imum
Error

0.845

0.163

0.311

0.196

0.030

0.464

0.161

0.240

0.253


