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Abstract

Techniques by which to obtain reliable estimates
for both the single crystal and polycrystalline elastic
properties of various low symmetry solids from a rel-
atively few number of measurements on a given single crystal
would be valuable. In this note, we consider two possible
techniques: (1) the determination of single crystal
elastic constants under an assumption of higher symmetry
than the true symmetry of a given material, and (2) the
estimation of aggregate properties from measurements made
on a single crystal in several random directions. Neither

method is very accurate.
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standard deviation

elastic velocity, km/sec
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shear velocity in polycrystalline material,
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longitudinal elastic velocity in single crystals,
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elastic velocities of transverse modes, in single

crystals, km/sec
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The ultrasonic techniques for the determination of
the single cryétal elastic moduli of solids are difficult
and time consuming for the materials with a low degree of
symmetry. The triclinic class (I symmetry) has 21
independent elastic moduli. Thus it is not surprising
that some investigators have looked for simpler ways to
estimate elastic properties. Alexandrov and Rhyzhova (1961)
treated some crystals as though they possessed a higher
symmetry and measured the elastic properties with reference
to the higher symmetry. Perhaps the elastic properties
measured under this assumption provide an adequate
estimate of the single crystal elastic properties of
the crystal, or at least constitute a set of data from
which reliable estimates of the polycrystalline aggregate
properties may be calculated by the Voigt-Reuss scheme.
A second possible method to obtain estimates of the
polycrystalline properties from a relatively few measure-
ments on a single crystal might use averages of the
velocities of elastic waves propagating along three
orthogonal directions selected randomly in a given crystal.

In this note, we consider the errors in these schemes
for representative materials of several symmetrv classes
(tetragonal, orthorhombic, monoclinic, hexagonal and
trigonal). Our procedure may be illustrated for corundum.

The true symmetry is trigonal (3m) and requires six



independent elastic constants to specify completely the
elastic properties. DBecause these six constants arc
known, the three velocities of elastic waves propagating
in any direction in the crystal, with direction cosines

(aL), may be calculated (Hearmon, 1961) from

13

where the Fij are the Christoffél stiffnesses and are

given by Fi = Cijklakae° Suppose that we wish to treat

J
corundum as though the symmetry were hexagonal (6/mmm).
From the velocities that one would measure for the

directions often used to determine the elastic constants,

we may use equation (1) to solve for the five independent

C??X. These values and the corresponding Voigt and Reuss
averages may then be compared with the true values. In a

similar way, the CS?B that result from the assumption of
cubic symmetry could be obtained for corundum.

To obtain representative values, several materials
in each symmetry class (for which data were available)
were analyzed. Monoclinic and orthorhombic crystals were

analyzed as though they were tetragonal and cubic, trigonal
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crystals as though hexagonal and cubic, and hexagonal and
tetragonal crystals as though cubic. Data on the true
elastic properties were obtained from Simmons (1965). 1In
table 1 we show the direction and the set of equations
from which the values of the "pseudo elastic constants"
were determined. Some of the relations that are used
normally as a check on the consistency of experimental
values are shown also in table 1.

For some simulated measurements the polarizations
of the various modes of propagation were not those that
would be expected in a crystal that actually possessed
the assumed symmetry. In these cases the polarization that
came closest to the expected value was chosen and its
velocity was used in the relations of table 1 to determine
the pseudo elastic constants.

The values of the single-crystal elastic constants
obtained in this way are shown in table 2. As can be
seen, the sets of elastic constants obtained under the
assumption of higher symmetry do not provide an adeguate
description of the crystal's elastic properties. The
polyaggregate elastic properties derived from these
elastic moduli are presented in table 3, and here again
we sce that in general no reliable results are obtained.

Attenticn is called in particular to the value of the
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Reuss average of Young's modulus for stauvrolite, derived
under the assumption of cubic symmetry (m3m). Its value
is 8.109, while the true value for this material is 1.638.
This example has been pointed out to show that there
exists a certain instability in the values obtained
assuming higher symmetry, which comes about because of
the indirect way in which the Cij were obtained, viz., as
solutions to sets of equations. Two examples of the
degree of internal consistency which were observed between
the pseudo elastic constants obtained using this method
are shown in table 4.

In table 5 the results have been examined in a
somewhat different way. For a unit uni-axial stress,
three of the resulting strain components are tabulated to
show the extent of the errors introduced by assuming the
crystals to possess a higher symmetry. In table 6 two
measures of anisotropy, A as defined by Hearmon (1961)
and A* as defined by Chung (1967), have been calculated
using the stiffnesses of table 1. For the tetragonal
and hexagonal samples, because of the particular set of
velocity measurements used, the anisotropy calculated
under the assumption that the crystals are cubic agrees
exactly with the true values for the crystals. But, in
general, this method does not provide an adequate estimate

of the anisotropy of the crystal.



The second method mentioned above, that of using the
averages of the velocities of elastic waves propagating
along three orthogonal directions selected randomly in a
given crystal, was tested by simulating these measurements
for ten random orientations in each of the materials
examined. Table 7 shows the average velocities obtained
in this way and compares them to the true Voigt-Reuss-
Hill averages. In table 8 the bulk and shear moduli
calculated from the velocity averages are shown along with
the Voigt-Reuss-Hill averages of these quantities. As
is seen there, while the majority of the values are within
1-2% of the average Voigt-Reuss values, there are several
cases in which the error is about 10%, a figure which

which seems to define the reliability of this scheme.
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Elastic Waves and Velocity-Stiffness Relations for Cubic,

Direction of

TABLE #1

Tetragonal and Hexagonal Crystals

Direction of

Class Propagation Polarization Velocity Relation Note
= 1 -
(1, -1, 0) oV = 5(Cyp - Cpy) *
\ _ 1
(1, 1, 0) (1, 1, 0} PV, " = 7(¢ll + Clz) + Cyy *
(Or 0, 1) oV = C44 *
mim (0, 0, 1) ov.2 = c T
L 11
(¢, 0, 1) 2
transverse PVp = oV = Cuq T
= 1 .
(1, 1, 1) (L, 1, 1) PV, " = F(Cyq + 2C 5 + 4C,,) 1
(1, 0, 0) pVL = Cll *
(lr 01 0) (0, l, 0) pVT = C44 *
(ol OI l) oV = C66 *
(0, 1, -1) PV = (C11 + C33)/4 - Cl3/2 *
(0, 1, 1) (0, 1, 1) PV (Cll + c33)/4 + C13/2 + Cyy *
(1, 0, 0) PV = (C44 + C66)/2 r

'fl/



Direction of

Class Propagation
(6, 0, 1)
(1, 0, 0)

6 /rmm
(1, 2,45

Note: *

Direction of
Polarization

(0, 0, 1)

transverse

(0, 1, 0)
(1, 0, 0)

(0, 0, 1)

(0, 0, 1)

(1, 2, A5)

quasi-transverse oV

Used to solve for Ci.'s.

Table #1l--Cont.

pV

pV,

DVT
oV

oV

oV

pV

1T Used as check on internal consistency.

Velocity Relation

33
2 _
PV = Cyy
1
7(Cy3 = Cpp)
€11
Cyaq
1
5(Ce6 * Cug)
e +c..+20.) + X1(c,, -
7(C13 33 44 71(C1y
2.1/2
4(C 3 + Cyp)l

l(C + C,, + 2C,,) - EL-[(C
7(C11 * C33 44 71(C11

4(Cy3 # C44’2]l/2

C

- C

33)

33)

2

2

+

-+

§pte

K7



Material

Rutile 3

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

TABLE #2

Cij Obtained Assuming Higher Symmetry

Assumed
Class Class
4 /mmm 3
mmm 4 [mmm
m3m
mmm 4 /romm
m3m
6 /mmm m3m
6 /mmm m3m
3m 6 /mmm
m3m
3m 6 /mmm
m3m
2 /m 4 /mmm
m3m
2/m 4 /mmm
m3m

NWW DWW LN

HFOO NN OO0 UTEES OO0 =i

11

.7300
L4200

. 2400
.2400
.2582

.4300
L4300
.3554

.6670
.7720

.6332
.6375

.9700
.9700
.3659

.3674
.8674
.6466

.0400
.0652
.0292

.8060
.8509
.3932

QOO OHO OO0 HFNH+H OO OO0 HFNO OO N

12

.7600
.4500

.5900
.7630
.7812

.6700
.2700
.1954

.1310
.2360

.2631
.2675

.6360
.3371
.84438

. 0699
.2904
.0070

.8440
.0241
.9881

L4170
. 1425
.6848

O 00 OO0 OO0 HEEH OO0 OO0 HOO OO0 N

13

.4900
.4500

.7900
.5741
.7812

.6100
.3610
.1954

.6550
.2360

.2165
.2675

.1090
.1509
.8448

.1191
.2204
.0070

.8830
.6892
.9881

.5380
.3322
.6848

.2350
.0000
. 0000

.1791
.0000
.0000

OO0 OO0

.1930
. 0000
.0000

.1610
.0000
.0000

9/



HFOK NN OCO UHEREP OO HEHE DWE N Wk

22

.7300
.4200

.9800
.2400
.2582

.8500
.4300
.3554

.6670
.7720

.6332
.6375

.9700
.9700
.3659

.8674
.8674
.6466

.7500
.0652
.0292

.6300
.8509
.3932

Co3

1.4900
2.4500

0.7800
0.5741
0.7812

0.1280
-0.3610
1.1954

0.6550
0.2360

0.2165
0.2675

1.1090
1.1509
1.8448

0.1191
0.2204
-0.0070

0.4832
0.6892
0.9881

0.3740
0.3322
0.6848

OO0 OO0

.1960
.0000
.0000

.1710
.0000
.0000

HE- NN O PSS OO0 HiH= NOFE NDEDN WP

33

.8400
4200

4900
.1143
.2582

4700
.9121
.3554

.3960
.7720

.6561
.6375

.9800
.9800
.3659

.0720
.0720
.6466

.3800
.3988
.0292

.2420
.9786
.3932

O

-0.3360
0.0000
0.0000

.-0.0740
0.0000
0.0000

OO0 OO0 OO0 HEPFE OO0 OO OO0 OO +HiH

44

.2500
.2500

.6670
.8100
.9416

.4600
.9200
.8923

.6630
.6630

.1807
. 1807

L4740
4740
.3725

.579%4
.5794
.5994

.6750
.5628
.6012

.1770
.2291
.2061

OO0 OOOo

.1130,
.0000
.0000

.0100
.0000
.0000

COO0 OO0 OO0 HHEMF OO0 OO0 OO0 OO0 =i

55

.2500
.2500

.8100
.8100
L9416

. 7000
.9200
.8923

.6630
.6630

.1807
. 1807

4740
L4740
.3725

.5794
.5794
.5995

.5880
.5628
.6012

.2740
.2291
.2061

OO0 OO0 OO0 HHEMFEH OO0 OO OO ONO i

.6,



Material

Rutile

Olivine

Staurolite

Apatite 1

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase 1

Voigt-Reuss Averages Obtained Assuming Higher Symmetry

Assumed
Class Class
4 /mmm 3
mmm 4 /romm
m3m
mmm 4 /mmm
m3m
6 /mmm 13
6 /mmm m3m
3m 6 /mmm
m3m
3m 6 /mmm
m3m
2 /m 4 /mmm
m3m
2/m 4 /mmm
m3m

TABLE #3

3

COO FHFrHMHF OQOHFH WWHE OO i HNME NN N

.171
.543

.051
714
. 107

.865
.176
.982

.530
.609

.489
474

.083
.876
.922

.011
.987
.829

.663
.546
494
.832
.893
.726

OO0 FHiEH OO0 WWW OO0 HiEH HOME NHM NN

.617
.105

.975
944
.083

.638
.109
.%07

404
.603

486
474

.973
.769
.872

.903
915
.788

. 544
RATA
.488

.622
.761
.682

OO0 OO0 OO0 HEHFFH OO0 OO0 OO0 OHO OF

.259
.944

.824
.134
.860

772
.955
.767

.638
.705

.191
.182

.661
.538
.528

478
428
.490

.658
.597
.569

.319
.358
.265

|53

QOO OO0 OCO HHMF OO0 OO0 OHO 000 O

.012
.766

.793
.827
. 848

.692
.439
.734

.575
.701

.190
.182

.607
491
.505

411
.388.
449

.615
.573
.566

.234
.308
.248

OO0 OO0 OO0 OO0 OO0 OO OO0 OO0 OO

PRV

.260
.347

. 244
.197
.224

.208
.139
.291

.199
141

.279
.298

.229
.260
.283

.057
.153
.155

. 264
.295
.313

.303
L247
.369

'8/



PRR

0.293
0.373

0.245
0.175
0.227

0.183
1.817
0.299

0.221
0.143

0.280
0.298

0.236
0.264
0.286

0.099
0.177
-0.123

0.255
0.302
0.314

0.329
0.237
0.377

OO0 HHEFE OO0 WNN OO0 OO HHKF MHEFE NN

.198
773

.337
491
.274

.063
.005
.582

.846
.748

.368
.391

.514
.689
.019

.380
470
.211

.176
.259
.335

.704
.588
.921

OO0OQO HHKH OO0 LN OO OO0 HHFHO HOH

NN

.106
.773

.289
.996
.274

.862
.026
.587

.339
.748

.368
.391

.509
.664
. 019

.375
473
.211

.051
.259
.335

.607
482
.921

Beta V Beta R Vs(Voigt) Vs(Reuss) Vp(Voigt) Vp(Reuss)
0.455 0.475 5.474 4.909 9.607 9.071
0.361 0.361 4.745 4.270 9.790 9.500
0.748 0.776 4,979 4.886 8.560 8.403
0.671 1.004% 5.828 5.062 9.500 8.061
0.785 0.785 5.182 5.038 8.455 8.500
0.941 1.160 4,787 4,533 7.881 7.280
0.995 -0.974 5.328 6.540 8.215 5.142
0.652 0.632 4,776 4.665 8.780 8.715
1.182 1.193 4,453 4,228 7.261 7.063
1.337 1.337 4,680 4.665 7.248 7.248
2,715 2.716 3.316 3.305 5.987 5.979
2.559 2.559 3.240 3.239 6.027 6.030
0.398 0.399 6.456 6.351 10.893 10.804
0.372 0.375 6.248 6.110 10.870 10.802
0.331 0.331 6.158 6.145 11.250 11.260
2.629 2.668 4,244 3.935 6.193 5.896
2.108 2.115 4.100 3.919 6.260 5.596
4.742 4,742 4,300 4.101 5.720 5.298
0.850 0.951 4,457 4.310 7.876 7.519
0.79% 0.794 4,244 4,150 7.865 7.835
0.749 0.794 4,149 4,132 7.953 7.842
1.420 1.648 3.477 2.978 6.541 5.900
1.700 2.076 3.683 3.419 6.350 5.820
1.086 1.086 3.161 3.064 6.946 6.878

'8/



TABLE #4

20.

Internal Consistency of Data That Would Be Obtained Experimentally for

Crystals with Assumed Higher Symmetry

Assumed
Material Class Class Relation Value
Oligoclase 1 2/m , (c'ﬁT + crg’g'r)/z 1.1664
4 /mmm
DV2 0.2872
CUB CUB cuB
i (Cll + 2C12 + 4C44 )/3 1.1958
DV2 1.1999
cigB 0.2061
m3m
0V2 0.8022
Quartz 6 3m Cﬁix 0.5794
6 /mmm 5
pV 0.6897
(cﬁx + c’gl‘éx)/z 0.4339
6 /mmm 5 -
oV 0.5051
(C?lJB + 2c§‘2JB + 4c§§1”3)/3 1.0102
m3m 5
pV 0.9951
CEZB 0.5995
m3m 2
oV 0.0868



Three Strain Components for a Unit Uni-Axial Stress in the
Assuming Higher Symmetry

Material

Rutile 3

Olivine

Staurolite

Apatite

Magnesium 6

Corundum 1

Quartz 6

Diopside

Oligoclase

Class

4 /mmm

mmm

mmm

6 /mmm

6 /mmm

3m

3m

2/m

2/m

TABLE #5

Assumed
Class

m3m

4 /mmm
m3m

4 /mmm
m3m

m3m

m3m

6 /mmm
m3m

-

6 /mmm
m3m

4 /mmm
m3m

4 /mmm
m3m

HHEN OO0 HHEKF OO0 N OO0 OO0 OO0 OO

11

.6554
.7273

.3423
L4519
.5386

.3367
.5146
.6449

. 7480
.5826

.0146
0861

.2352
.2637
L2261

.2770
.3351
.5469

.6925
.6659
.7239

.3538
.2728
.0617

(1, 0, 0) Direction

Strain

S92

-0.3755
-0.3036

-0.0675
-0.2252
-0.1384

-0.1130
-0.3475
-0.2171

0.0970
-0.0685

-0.6873
-0.6188

-0.0716
-0.1161

- =0.0579

-0.1791
-0.3980
0.0169

-0.2771
-0.2946
~-0.2370

0.1990
-0.1388
~0.3499

.0862
.3036

.0874
.1168
. 1384

.1299
.06e61
L2171

.3965
.0685

.4380
.6188

.0364
.0341
.0579

.1220
.1927
.0169

.1977
.1067
.2370

.0516
.1904
.3499

"1z



TABLE #6

Elastic Anisotropy Assuming Higher Symmetry

See footnote a for explanation of symbols.

Material Class
Rutile 3 4 /mmm
Olivine mmm
Staurolite mmm
Apatite 1 6 /mmm
Magnesium 6 6 /mmm
Corundum 1 3m
Quartz 6 3m
Diopside 2/m
Oligoclase 1 2/m
& A=2,/(C,, -C,.)

44 11 12
*
A% = 3a-1)%/13(a-1)% + 25A]

Assumed

Class A
- 2.588
m3m 2.588
- 0.504
4 /mmm 1.090
m3m 1.275
- 0.333
4 /mmm 1.586
m3m 1.539
- 0.865
m3m 0.865
- 0.975
m3m 0.975
- 0.884
6 /mmm 1.121
m3m 0.778
- 1.453
6 /mmm 2.008
m3m 1.835
- 1.130
4 /romm 1.080
m3m 1.157
- 0.910
4 /yomm 0.647
m3m 0.583

Hearmon (1961)

Chung (1967)

22.

QOO OO0 OO0 OO0 OO0 OO OO0 o0 oo

.105
.105

.055
.001
. 006

.134
.025
.021

.025
.025

. 00007
.00007

.0018
.0015
.0075

.017
0055
. 045

.0017
.0006
.0024

.001
.188
. 264



23.

TABLE #7

Comparison of the Voigt-Reuss-Hill Averages of Velocities with
the Velocities Obtained Averaging Velocities in 3 Orthogonal
Directions. The values of ?s and Vp are averages from ten

different orientations selected randomly.

Material Class Vs(VRH) | Yg Vp(VRH) ?E
Rutile 4 /mmm 5.191 5.365 9.339 9.679
Olivine mmm 4,932 4.910 8.481 8.466
Staurolite mmm 4,660 4.614 7.580 7.759
Apatite 1 6 /mmm 4,341 4.564 7.162 7.106
Magnesium 6 6 /mmm 3.310 3.313 5.983 5.985
Corundum 1 3nm 6.403 6.404 10.848 10.915
Quartz 6 3m 4.089 4.195 6.044 6.181
Diopside 2/m 4.383 4.477 7.697 7.785

Oligoclase 2/m 3.227 3.340 6.220 6.632



TABLE #8

Bulk and Shear Moduli Calculated from Vs and Vp of Table 7

Standard Maximum
Material Class (GV + GR)/2 G (Average) Deviation Error
Rutile 3 4 /mmm 1.135 1.156 0.101 0.210
Olivine mmm 0.809 0.798 0.018 0.039
Staurolite mmm 0.732 0.722 0.025 0.052
Apatite 1 6 /mmm 0.607 0.666 0.027 0.092
Magnesium 6 6 /mmm 0.190 0.192 0.005 0.008
Corundum 1 3m 1.634 1.653 0.092 0.165
Quartz 6 3m 0.444 0.471 0.026 0.076
Diopside 2/m 0.636 0.646 0.025 0.060
Oligoclase 1 2/m 0.277 0.297 0.040 0.081
Standard Maximum
Material Class (KV_+KR)/2 K (Average) Deviation Error
Rutile 3 4 /mmm 2.152 2.493 0.334 0.845
Olivine mmm 1.313 1.332 1 0.107 0.163
Staurolite mmm 0.963 1.061 0.112 0.311
Apatite 1 6 /mmm 0.842 0.745 0.088 0.196
Magnesium 6 6 /mmm 0.368 0.365 0.015 0.030
Corundum 1 3m 2.512 2.530 0.307 0.464
Quartz 6 3m 0.378 0.382 0.088 0.161
Diopside 2/m 1.114 1.182 0.089 0.240
Oligoclase 1 2/m 0.655 0.780 0.123 0.253

AT



