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ABSTRACT

The effects of the earth tide and the ocean tide on
the semi-diurnal lunar tide in the atmosphere have been
ignored in nearly all studies of this air tide. Elementary
arguments show that these boundary effects are not trivial.

Using linear theory we calculated the combined effect
of the lunar potential, the earth tide and the ocean tide
on a realistic model atmosphere. Love's theory was used
to represent the earth tide. Numerical calculation by
Bogdanov and Magarik (1967) and by Pekeris and Accad (1969)
were used to represent the ocean tide. Our results in-
dicate that the ocean tide has a significant and probably
a dominant effect on the lunar air tide. The ocean tide
of Pekeris and Accad yielded results that agreed better
with the observations.

We calculated the effect of a tide in a "small" or
"point' ocean on the atmosphere and found that its effects
were global. Hence differences between the observations
and our calculations of the lunar air tide cannot easily
be reduced by simple manipulation of ti forcing function,
the ocean tide, in the immediate vicinity of the places
where discrepancies occur.

The forcing functions of the problem were represented
as Fourier-Hough series, involving 232 Hough functions.
The expansions of these Hough functions in terms of
Associated Legendre Polynomials are presented in the



Appendix.

Computations of the semi-diurnal lunar tidal winds
at 98 km are yresented and compared with observations.

Thesis Supervisor: Norman A. Phillips
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Chapter I

1.1 Introduction

The study of the tides of the atmosphere is at least as

old as Laplace and has been pursued with varying intensity

since his time. There are several works available that give

comprehensive reviews of the whole field among which one

might mention Wilkes' book (1949) and the valuable review

article by Siebert (1961), and most recently the book by

Chapman and Lindzen (1970). We will be concerned here with

purely gravitational tides.

The present study was prompted by the results of a study

by Geller (1969, 1970). Geller was mainly concerned with the

effect of the seasonal variations of the vertical temperature

profile of the atmosphere on the phase of the lunar tide. He

considered only the direct forcing by the lunar tidal potential

and ignored vertical motions of the earth-atmosphere inter-

face. The amplitudes he found at the equator were typically

of the order of 30/h (l'#= 10 bar = 1 dyne/cm). Moreover,

because of the fact that he considered only one mode of

oscillation, these amplitudes were independent of longitude.

A perusal of Fig. 1, taken from Haurwitz and Cowley (1970),

shows that the amplitudes near the equator are somewhat

greater than 30,A4 and that the amplitudes do vary with

longitude. Our purpose in this investigation is to study the
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reasons for the discrepancy. Assuming, as we do, that

Geller's model is a reasonable representation of the atmos-

phere the discrepancy suggests that there is some other

mechanism exciting the atmosphere at the lunar semi-diurnal

frequency. Since there is negligible heating at this fre-

quency, Geller, and other writers, have suggested that the

lunar semi-diurnal ocean tides and earth tides provide an

energy input to the atmosphere. If only the earth tide is

taken into account, it can be shown that the amplitudes

Geller calculated should be multiplied by about 0.7, thus

increasing the discrepancy and making a study of the effect

of the ocean tide even more interesting.

1.2 Interpretation of the Data

In the following discussion potentials are defined so

that . = -V where F is the force due to the potential. The

net potential at a point due to the moon is given by

-. ; Va ( 3 Yf(r(, (C

where = acceleration of gravity

MI = mass of the moon

E =mass of the earth



Q = mean radius of the earth

DI = distance between the centers of
the earth and the moon

= height above the surface of the
earth

= north polar distance and the
hour angle of the moon

9, ? = colatitude and longitude

3 A and c( have complicated time variations; Doodson (1922)

has performed the most extensive harmonic development of the

lunar tidal potential. According to his computations the

largest component of the lunar potential is given by

- -O.90/1t (9G (1. 2.1)

where .

)

and is the fully normalized Associated Legendre Poly-

nomial. ' in this expression increases by ;7r in 1 mean

lunar day and hence this potential is periodic of period

half a mean lunar day.

Throughout this thesis we shall mean by semi-diurnal

lunar frequency that frequency whose period is half a mean

lunar day. For the oceanic tide, this is called the td
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tide. [Geller (1969) ignored the numerical factor .90812 in

this last expression.]

It is the response of the atmosphere to periodic forces

at this frequency that we shall be discussing and this res-

ponse is usually spoken of as the semi-diurnal lunar tide.

Observations of the tide (often spoken of as determinations)

have been made at 104 stations over the globe. The tide as

seen in surface pressure is a phenomenon of very small amp-

litude and it is masked by much larger non-periodic events.

Hence, it is no easy task to separate the tide from the

noise. The method used to make most of the determinations

now available is due to Chapman and Miller (1940). Chapman

(Chapman and Lindzen (1970)) points out that this method is

"truly harmonic." By this he means that it follows the

practice of Doodson (1922) who perfected the method of har-

monic analysis for sea-tide analysis.

Thus, the determinations of the semi-diurnal lunar tide

in surface pressure are determinations of the regular vari-

ation of pressure with period half a lunar day. These deter-

minations are not affected by events arising from such

factors as variations in the moon's declination or distance

from the earth.

It is worthwhile to consider the physical interpretation

of the determinations of the lunar tide. Consider the

pressure as observed by a barometer fixed to the ground and



moving vertically with it. Let b, 3-) be the pressure at

the barometer, be the

time derivative following the

barometer and be the vertical velocity at the boundary.

Then

A L--> 0

6&--sD

'i.e

j4&-fAt, ~~tA ) - i'(L~, ~+i4)
AL:

-I- -

(7~)3~ 4~ !~A 1-

In our model we will assume that the pressure field is

posed of a mean field E C with a small perturbation

com-

superimposed. Hence, to first order in the perturbations

C:Db

Again

-: -ctC CO =-
V ~4-
O ? 63

- ~Th ~bj
\~o.-~

'" C



and to first order

But at the ground, i.e. at the lower boundary of the atmos-

phere

this being the kinematic boundary condition.

Thus, to first order in the perturbations

CO

4aor :lower boundary

and we see that the time derivative of the pressure as ob-

served by a barometer fixed to the earth-atmosphere interface

is, to first order, the same as the substantial derivative.

Before concluding this section we consider briefly the

effect of tidal variations in gravity on barometric readings.

Let denote the density of mercury, N.{ the height of

the column of mercury in a barometer, the standard value

of gravity at a given place, the actual value of gravity

at the place, %Ar the pressure reported at a station,

the true pressure at the station, the variation of

due to the tide. a is computed according to the formula



while i g n

14-4

Let

Then

and, to first order,

(I 4 ~~-) JZ~c,4 ,

Now

\:, -'-

~
~-1-4.ID &~~e~4e

Thus

Hence, tidal variations in the force of gravity have negli-

gible effect on determinations of the tide in surface

pressure.

1.3 An Earlier Study

Some writers (Siebert 1961, Chapman, Pramanik and

Topping 1931) have referred very briefly to the fact that

motion of the earth and ocean could be a source of tidal

is given by
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energy in the atmosphere. More recently Sawada (1965) made

an approximate calculation of the effect. He calculated the

effect of the semi-diurnal lunar tidal potential on an

atmosphere with a realistic temperature structure above an

ocean-covered globe. The ocean was o.f uniform depth and the

ocean and atmosphere were coupled by the kinematic and

dynamic boundary conditions at their interface. Problems

such as this are most usefully discussed in terms of Hough

functions. An ocean covering the entire globe has free

oscillations of any given zonal wave number at the semi-

diurnal lunar frequency provided the depth of the ocean

takes on one of a discrete set of values. The latitudinal

structure of such a free mode is given in terms of the

appropriate Hough function. Only the latitudinally symm-

etric modes are relevant in Sawada's problem. There are

latitudinally symmetric free oscillations at this frequency

and of zonal wave number two provided the depth of the ocean

takes one of the values 7077m, 1849m, --- etc. The Hough

function appropriate to these oscillations would be denoted

by -ifn --- etc.

The semi-diurnal lunar potential can be written as a sum

of these (symmetric) Hough functions nultiplied by certain

factors. Sawada considered separately the effect of the

first two terms of this sum on his model ocean-atmosphere

system. For the first term, that involving 4{, he found



that if the depth of the ocean were near 7077m the response

to this part of the forcing became infinite, as one would

expect. For depths away from this value the presence of the

ocean had little effect on the phase of the atmospheric

pressure oscillation but its presence did amplify the os-

cillation. The. effect of the second term of the forcing

function, that involving Ni , was, in the presence of the

ocean, somewhat different. For depths away from the critical

depth of 1849m the ocean had little effect on the amplitude

of the oscillation but it's presence changed the phase of

the oscillation markedly.

These results were interesting but "the effect of

limited oceans closely resembling those actually occurring

on the earth remains to be discussed." Sawada did not ex-

amine the resonance behavior of the model atmosphere he used.

This behavior depends on the value of the separation con-

stant P (cf.) 4.1), in Sawada's notation, and so we can-

not say whether the atmosphere he used was resonant near the

value of t for which his model ocean. was resonant.



Chapter 1I

2.1 Mathematical Theory

We will regard the lunar tidal motions as small pertur-

bations about a.mean state (Dickinson 1969). The mean state

we choose is one in which the m'ean velocities are zero and

we assume the perturbations to be small enough that linear

theory is valid. The temperature in the mean state is

assumed to vary only with height, and electro-magnetic and

viscous effects are ignored. We will also assume that the

perturbations are hydrostatic, that the atmosphere is of

uniform composition, that "standard gravity" is a constant,

and that the ellipticity of the earth is kinematically

negligible (Lamb, 1932 214).

This model atmosphere differs from the mean state of

the real atmosphere in a number of ways, particularly in the

neglect of meridional temperature and velocity gradients.

The effect of meridional temp-erature gradients has been ex-

amined by Chiu (1953) and Siebert (1957), while Sawada (1966)

studied the effects of zonal winds with vertical shear.

Their approximate results would indicate that the effects

were generally small. (The full linear problem under these

conditions is rather intractable as the equations are non-

separable.)
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The linearised equations of motion are (cf. Chapman

and Lindzen, 1970)

S I. - Z + e 0 a

-Z e b

A..Co L 39 2c

VQ d
(2.1.1

+ -- /W[ $ + x d

L" R Tj e

where (A = A Co:\, V =0 - , = longitude, 9 = latitude,

Ct = mean radius of the earth, y = pressure, f. = 1013.25mb,

mean sea level pressure, Z= - / \4 = = L g

= standard geopotential, P = lunar potential, =

T= T(.) , the temperature of the undisturbed atmosphere,

= perturbation temperature, K = RiCp , R = gas constant

for air, Cy = specific heat of air at constant pressure.

We have ignored all heating effects. Since << we have

also made the approximation

as indeed has already been assumed in the standard develop-

ment leading to (1.2.1). The lower boundary condition is

z-oL = (2.1.1lf)



where,/-r is the vertical velocity of the lower boundary.

If we assume solutions of the form

and if w Rr I 7  (, 2 ) (2e.a1.o2)

and if we write-, E = GO the equations become

LVi +2~tQ- ~ -?A

t +- o, (~~I ;,1e) -4- Wt

(2.1.3)

i th 0 ' fo

Solving the horizontal momentum equations for (14 , Vg and

substituting these expressions in the continuity equation we

get

CILAI P- -- 1 4 -GI.1 A

(2.1.4)



vk__' t-J~i 4CAL

and

(2.1. 5)

where F is the so-called Hough operator:

F+

where

is the non-dimensional frequency.

(2.1.6)

Eliminating Ti from the hydrostatic and thermodynamic

relations we get a second relation between 1 and \ 4e

viz.

(2.1.7)

As discussed in 2.3 the operator F has eigenfunctions, known

as Hough functions, denoted by WAI() . Thus

(2.1.8)F( s h ig)u) a ia

where pt is the eigenvalue associated with Hl).

52 o)qt) ;: 7- -

R E e- ~~Az+/t i+T =

The



(, are orthogonal and are presumed complete.

develop Wt, L

$(A 2.7)

Wt (MI,2)

7-4,)

,, and /,I:

fo

nflt-tI

as series of Hough functions-.

()H )

(2.1.9)

(z) [ p>)

(72) K

and let us substitute these series in our equations.

(2.1.5) we have

From

~~'o ~

and this, together with

}

(2.1.7) implies

Ci-
(~ JLo~jA

The lower boundary condition takes the form

-b tL0 f
,_ 3 r

\~J~j- ~ (2.1.12)
2-0

If we make the substitution

W z) - Y.z) (2.1.13)

A) -wa) ~ (2.1.10)

=0. (2.1.11)

Let us now

+M - / r)W

2W 11



then (2.1.11) reduces to

J yL R -[ + P S ) Ya -ZI_ V14 (2.1.14)

Here S=.(2) represents the static stability of the atmos-

phere:

5~~7 -i /iLU
(+ X 41)

where N is the Brunt-ViisUlU frequency and I
The lower boundary condition becomes

where is the "equivalent depth" (Taylor, 1936):

(2.1.15)

Within this theoretical framework the steps involved in

calculating the effect of a forcing potential or of a known

vertical oscillation of the bottom boundary are as follows:

One first must calculate the appropriate Hough functions and

their eigenvalues in order to make the expansions (2.1.9).

Knowing S one then solves the vertical equation (2.1.14)

for each mode subject to the lower boundary condition

(2.1.15) and an upper boundary condition to be discussed

I KV\



shortly (§ 2.2).

2.2 The Stability Profile

The profile for S(z9) , the stability function, (see

Fig. 2) used herein is the "mean annual" profile prepared

by Geller (1969). Geller constructed this profile as follows.

The profile between 30 km and 100 km was calculated from

the temperature profile of the 1965 CIRA mean atmosphere.

The lower part of the profile was calculated by averaging

-temperatures collected in a five-year study by the Planetary

Circulations Project under Professor V. Starr at M.I.T.

These temperatures were first time-averaged for the five

years and then averaged with respect to area over the

Northern Hemisphere. Above 100 km the CIRA atmosphere was

approximated by a straight line

0,. 0. 0 1 2g

The upper boundary condition is that at high levels in

the atmosphere the solutions correspond to waves whose energy

is propagating away from the center of the earth, the so-

called "radiation condition". Following Geller (1970) we
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note that with

and

The solutions of

42y
+ [(aZ+)

are the Airy functions Ac( .')

and (x( >> 0

, and B c () . For

these behave as

where 3 |

At large negative X (large positive 7 ), then,

(-) +V Al(x) '-'k. t .

The time dependence of these solutions is ,P

in this region the solutions are proportional to

and hence

12C X +
The phase 'f is

To keep IV constant as - increases II| must decrease.

Hence the phase velocity is in the direction of increasing

(2.2.2)
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X or, equivalently, decreasing Z . Thus the phase velocity

of the waves (2.2.2) is downwards and by standard theorems

the group velocity of the wave is directed upwards.

Alternatively, we may use Wilkes' (1949) conclusion

that the radiation condition is equivalent to

>0 (2.2.3)

In terms of our X this is

Y <0

For + I K real, we find

so that the combination (2.2.2) is indeed the proper solution

in the thermosphere. Our model thermosphere begins at

-Z = ~2 t 14-

and at this level we require the solution in the lower

region and its first derivative to be continuous to a

solution of the form

and its first derivative where K is a constant.

Following Geller still the two conditions on the

function and its derivative may be rewritten, so as to

eliminate K , in the form

(2.2.4)



where

-. ~ / )C&v, 4-4c )A+L 2

with

Given a knowledge of S the equation (2.1.14) can

be solved, subject to the boundary conditions (2.1.15),

(2.2.4), using exactly the same method used by Geller. The

equations were written out in their real and imaginary parts

and cast into finite difference form, giving a set of simul-

taneous linear equations. These were solved using an IBM-

supplied routine GELB which is suitable for solving band-

structured matrices. The interval A2 was 0.1 , corres-

ponding roughly to A3-g0.9 km. The reader is referred to

Geller (1969) for further details.

2.3 Hough Functions

Hough functions are defined as solutions of the eigen-
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value problem

~a -pi (2.3.1)

for pA& 6[-/, 13 where is an integer and the boundary

conditions are that kf be finite at 1i.

This equation was first treated by Laplace (1775, 1776)

and it is known as Laplace's tidal equation. Margules (1893)

and Hough (1897, 1898) presented solutions of the equation

and Hough (1898) presented asymptotic solutions valid for

P small and positive. Longuet-Higgins (1968) has extended

the analysis to all values of p while Flattery (1967),

using Hough's methods, presents some computations of the

Hough functions for different values of f and -

We are interested in solutions for the semi-diurnal

lunar frequency i.e. for

- =0. 96549D

and for - a positive or negative integer. Longuet-Higgins

showed that for fixed t and f|I<i the problem has two

families of eigenfunctions; for one family the eigenvalues

have an accumulation point at +60 and for the other family

the accumulation point is at-co. For the second family he

derived relatively simple asymptotic expressions in the

limit JJ-4 i . In this limit the eigenfunctions assumed

a boundary layer character, being of appreciable size only



near one of

the equator

2 .

the poles and decaying exponentially towards

beyond a certain turning point co-latitude,

This turning co-latitude in the Northern Hemisphere

is given by (cf. his equation 11.6)

X

where

,q 11-:- 1
,4 Xc! (2.3.1)

' = (

17 = co-latitude in the Northern Hemisphere

k = { l ) .- i+/)3

Sri = i /~//

= zonal wave number

= any positive integer

p = eigenvalue in question

The asymptotic relationship between the frequency and the

eigenvalue is then

S-I - 40( (2.3.2)

Taking the value for } appropriate to the lunar semi-

diurnal tide it is easy to show that no matter which mode

(i.e. value of 1) ) is chosen

' /7.4
Beyond this latitude the eigensolutions decay as
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Since - is small it is clear from (2.3.2) that

is large (9 0o) . By latitude 60N these functions have

decayed to insignificance. Exactly similar arguments apply

to the Southern Hemisphere.

Since the calculations of the ocean tide that we used

did not extend much beyond 60N or 60S it was decided on the

grounds of the arguments just presented, to ignore the modes

having negative eigenvalues. These modes are insignificant

in this problem because the non-dimensional frequency is so

close to unity. For lower frequencies, however, such as the

diurnal tide, they become very important (cf. Lindzen 1967).

Sets of Hough functions were calculated for twenty nine

wave numbers I

- 14 : 5

For each zonal wave number eight Hough functions were cal-

culated, the four gravest symmetric and the four gravest

anti-symmetric modes. The only exception was the case of

-t{= o . In this case thore is a certain degeneracy in that

the gravest symmetric mode is a constant and has eigenvalue

V= o.This mode was therefore excluded and the next four

lowest symmetric modes were computed. The numerical method

used was that of Flattery (1967). It is a slight modifi-

cation of Hough's original method, in which the eigenvalues

are found as the zeros of certain continued fractions. The

Hough functions are expressed as sums of Associated Iegendre
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Polynomials and a knowledge of the eigenvalue enables one

to compute the coefficients in these sums. The eigenvalues

and coefficients are presented in the Appendix.
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Chapter III

3.1 Motivation

As mentioned in the introduction this study was prompted

.by Geller's (1970) work where he found that the maximum

surface response to the lunar tidal forcing to be about

30/A% while the observed tide has a maximum amplitude of

90,wa . It seemed clear that some additional forcing must

be acting. There is negligible heating at the lunar semi-

diurnal frequency so the next matter to be investigated is

the tidal oscillation of the lower boundary of the atmos-

phere. If we look at the lower boundary condition (2.1.15)

and put , C a-- where is the amplitude of

the vertical excursion then we see that if ~ -

-20 cm the effect of the vertical oscillation of the lower

surface is just as important as the effect of the forcing

potential. The oscillation of the lower boundary of the

atmosphere has two components, one due to the earth tide

over land and the other due to the combined effect of the

earth and ocean tides over the ocean.

3.2 Equilibrium Tide

A concept much used in discussions of tides is the notion

of an equilibrium tide.



Suppose a thin ocean completely covered the globe, and

suppose a gravitating body like the moon or sun remained

in the same position relative to the earth and exerted a

potential on the earth. Then the surface of the water would

adopt a position where it coincided with an equipotential

of the combined potential fields of the earth and the

heavenly body. Elementary theory then shows that if is

the deviation of the free surface from its position in the

absence of any perturbation then

- (3.2.3)

where is the potential of the disturbing body.

Suppose the lunar ocean tide were an equilibrium tide

in the sense that the surface deviation is given by (3.2.3).

From our lower boundary condition (2.1.15) we then have

and thus

The forcing term in our problem now vanishes and the only

solution for \J ( is the trivial one

At Z= 0 we have

and so if the deviation of surface height were given by

(3.2.3) then a barometer moving up and down with the ocean



surface would observe no tidal pressure change. The same

argument would apply to the earth's surface in the absence

of an ocean if the earth tide were an equilibrium tide. We

therefore conclude that (within the framework of the standard

linear analysis) the observed atmospheric lunar tidal os-

cillation depends on the extent to which the air-ocean and

air-land interfacesdeviate from an equilibrium tide.

3.3 Earth Tides

Until recently relatively little was known about the

world wide distribution of the earth tide. Data have been

accumulated rapidly during the last twenty years or so and

now a fair deal is known about the phenomenon.

The free modes of oscillation of the earth have

frequencies of the order of about an hour at most (Press,

1962). Hence, one would expect that static theory would be

a good approximation in the study of the phenomenon. Love

(1911) developed a theory based on this approximation.

According to this theory, if is the disturbing potential

then the potential c at the surface of the earth due to

the deformation caused by [ is given by i = where

is a constant; and the elevation of the surface of

the earth caused by these two potentials acting together is

given by

where P is another constant.

Ow
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Various observable effects of the earth tide, such as the

variation of the local vertical with respect to the earth's

axis, can be described within this theory by simple com-

bination of 11, A and two other numbers; these numbers

are known collectively as Love's numbers. Melchior (1966)

gives an up to date discussion of the field.

It appears from observations that Love's theory gives

a good approximation to the phenomenon. The observed phase

lags of the earth tides are never more than 10 minutes;

their theoretical phase lag should be zero. The dis-

tribution of the amplitude is less well behaved but nonethe-

less is such that Love's theory still provides a very useful

framework in which to organize the results. The Love

numbers can also be calculated from observations of the

Chandler wobble and of changes in the rate of the earth's

rotation. Considering these various sources of information

Melchior gives the following values for h and A as the

most satisfactory to date

0. = - 90

Let us now suppose that there are no oceans on the earth and

that the earth tide responds according to Love's theory.

Then we see that our lower boundary condition assumes the

form

-All



Thus we see that our forcing term is reduced to about 70%

of what it was when the earth was assumed rigid. We carried

out this computation, using four Hough functions to re-

present the forcing potential ( see Appendix for the ex-

pansion of as a sum of Hough functions); (Geller used

only one term of this expansion for his forcing; and also

ignored the numerical coefficient .90812 in equation (1.2.1)

for the tidal potential.) The amplitude of the response was

of course independent of longitude. Fig. 3 shows the

latitudinal variation of the amplitude. (The minor "wiggles"

at the equator may be due to the truncated representation

of ?I by only 4 Hough functions, and the details at very

high latitudes may be changed slightly if the functions

with negative J had been included.) The amplitude near

the equator is ^- 28,k6 . Had we considered the earth rigid

this amplitude would be ~ 40/a . These amplitudes are the

amplitudes that a barometer fixed to the moving surface of

the earth would see. This reduction of the amplitude when

one takes the earth tides into account makes it even more

interesting to take the ocean tides into consideration.
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3.4 Ocean Tides

The phenomena of ocean tides and earth tides are

closely inter-related (Kuo et al., 1970, Hendershott and

Munk 1970) and ultimately they must be treated as two aspects

of the same problem. This task has not been undertaken as

yet. All published calculations of tides in the open ocean

have regarded the ocean bottom as fixed relative to the

center of the earth.

Even with the simplification of ignoring the effect

of the earth tides the problem of calculating the tides in

the open ocean is arduous. The first attempts to deduce

the character of the tides in the open oceans were based on

deductions from coastal tide-gauge data. Until quite

recently, with the development of sensitive pressure

sensors which can be placed on the ocean floor, no obser-

vations had been made of the tides in the deep ocean. Tide

guage data is not a very reliable guide to the behavior of

the tide in adjacent regions of the ocean because a multi-

plicity of local effects complicate the.water motions near

coasts. Despite this difficulty some authors have prepared

co-tidal charts for various ocean basins, based on coastal

data and the theory of flow in various idealised ocean

basins. The classic paper is that of Dietrich (1944) who

presented co-tidal charts for two diurnal tides as well
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as for the lunar and solar semi-diurnal tides. However,

no attempt was made to deduce the amplitudes of these tides

on a global basis.

The accumulation of observations of the tides in the

deep ocean will be slow and expensive. Meanwhile research

on the problem is advancing rapidly on a third front, namely

solving the tidal equations for rea.listic geometries using

electronic computers. A good survey of the work done in this

field is presented by Hendershott and Munk (1970). At the

time our work was undertaken, two separate calculations of

the semi-diurnal lunar tide in the world ocean were available

to us, one due to Pekeris and Accad (1969) (denoted by P & A),

Fig. 4, and the other due to Bogdanov and Magarik (1967)

(denoted by B & M), Fig. 5.

Boganov and Magarik solved Laplace's tidal equations

in a model of the world-ocean basin with the boundary con-

dition that the amplitude at coasts and islands take on

specified values; these values being taken from tide-guage

data. Pekeris and Accad solved the tidal equations in a

more detailed representation of the world-ocean basin than

B & M, using the boundary condition of zero normal velocity

at coasts.

Neither of these solutions are altogether satisfactory.

The treatment of dissipative processes is very simplified

in P & A and there is no dissipation in the model of B & M.

'71
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Fig. 5. Computation of ocean tide by Bogdanov and Magarik (1967). Isophase lines

denoted by (- ) and Isoamplitude lines denoted by (-- - ) . Amplitudes

given in cm, phases in degrees. Convention for the phase e is 't C' (drt -- ).
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In P & A the results are very sensitive to apparently small

changes in the shape of the boundaries. We may quote

Hendershott and Munk (1970): "The results suggest that one

or more normal modes of the world ocean lie close to the

driving frequency. This means that numerical models of the

global tides are much more sensitive to details of dis-

cretization---than one would have expected."

It was felt that if one were to take account of the

ocean tides in this study one should also take the earth

tide into account. It is a very difficult problem to

correctly take both effects into account so the following

crude approximation was adopted. Over land it was assumed

that the vertical displacement 9 at the bottom of the

atmosphere was given by the Love theory 'earth tide, :

Over the ocean was given by

GLz +

where & represents the ocean tide solutions by B & M or

P & A.

Finally, for completeness, the effect of the additional

potential due to the ocean tide itself was taken into account.

Suppose is the surface elevation of the ocean. Let

L -~ ~ ~ (3.4.1)
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Then the potential due to this deformation is given by

VO CO _

eo Oz r+(3.4.2)

where ( is the density of the water and fo is essentially

the mean density of the earth (Hough 1898).

3.5 Treatment of the Data

The expansions of the Hough functions in terms of

Associated Legendre Polynomials that are presented in the

Appendix were prepared using the method of Hough (1897, 1898)

as presented by Flattery (1967). Standard methods of

evaluating the Associated Legendre Polynomials were used in

conjunction with these expansions to evaluate the Hough

functions (and their derivatives) at intervals of ten degrees

in latitude. We now had to calculate the expansions (2.1.9),

the Fourier-Hough expansions, for the ocean tidal elevation

calculated by P G A and B & M.

B & M and P & A calculated the sea surface height in

the form

and they presented their results as maps of A, and 6. From

these maps we read values of Q and 6 at intervals of ten

degrees in latitude and longitude. We denote such a point

value of (cri c) by
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was written in the form

where

OL -e-

For each latitude circle (i.e. for each n) a complex Fourier

analysis of A,, was performed, the Fourier coefficients

being denoted by /c. A second quantity

was calculated for each point by summing the Fourier series.

Thus
P -RtR

-S <1 18

These sums were calculated for three values of 'S ,'= 6,9, i

A correlation coefficient I between and was cal-

culated as follows

<g '-

VV %K- )C

where ( >) indicates an average over one period.

are shown in Table 3.5.1.

where

0 6 I <36

The

values of t-



-sP A B & M
6 .8968 .9074

9 .9513 .9516

14 .9844 .9835

Table 3.5.1 Correlation coefficients betweeng

and IF for three values of S.

The latitudinal behavior of the coefficients /ct,

(Ifixed) now had to be expressed by expansions in sums of

Hough functions. Since the Hough functions are real, the

real and imaginary parts of /Ctw, could be handled separately.

For each . we had a set of nineteen numbers, Qlxt" Ol Sw1/cQm

to be represented in a least squares sense by a sum of eight

Hough functions. This number, eight, was chosen as a com-

promise between the desire for accuracy and the cost of

calculating the expansions in the Appendix. This problem

in the method of least squares is well known, (Hildebrand

1956). To solve it one must solve the so-called normal

equations. Two IBM supplied routines APFS and APLL (IBM

1968) were used to set up and solve these equations, using

the values of the Hough functions already calculated as

data. The solutions yielded the coefficients Jo in the

expression

01-- ~ ~ e, ' 1 a
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The Fourier-Hough expansions were then summed for each point

Fte
to yield a new quantity SM given by*

A correlation coefficient between

culated according to a formula similar

The results are shown in Table 3.5.2

I's
6

9

14

P A

.8503

.9011

.9301

and 9F4 was cal-

to that given above.

B & M

.8538

.8908

.9146

Table 3.5.2 Correlation coefficients between
and for three values of - .

It was felt that taking 14 wavenumbers was sufficient

since with such a representation one accounted for over 80%

of the variance of the functions being fitted. Expressions

*oA) is a constant (= i) and the term in Ro0 jA)
represents a purely radial oscillation of the lower boundary
of the atmosphere. Such an oscillation is physically im-
possible and so this term must be excluded. In order to use
eight Hough functions for each sum on r- the limits on this
sum in the case J.--o were 1 -Q1+ to l-t+8 .

(3.5.1)
F) 119 01+7 e RU -e_-a 2E -t r- 14rMN f--- Ix I



of the form (3.5.1) with-'S = 14 were used in all further

calculations involving the ocean tidal elevation.

The amplitude and phase of for P & A and B & M

are plotted in Figs. 6 and 7 respectively. (Note that in

these figures the solid lines are lines of equal amplitude

and the dashed lines are lines of equal phase.) The co-

efficients ,4 in the expansion of the vertical velocity

at the lower boundary are then given by

The expansion of the lunar tidal potential as a Fourier-

Hough series was straightforward since only wave number two

was involved and an expression for V as a sum of Hough

functions had already been calculated.

The gravitational potential due to the displacement of

the ocean waters was relatively small, being in magnitude

about 10% of the lunar potential. This "ocean tide"

potential was computed in straightforward fashion. The

Associated Legendre Polynomials were evaluated at intervals

of ten degrees in latitude and a truncated Fourier-Legendre

series of the form

for the ocean tide was generated in exactly the same way as

the Fourier-Hough series already discussed. The calculation
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of the potential in the form*

-+ 4, (3.5.2)

analogous to (3.4.2) was then a simple matter. The ex-

pansions for the Associated Legendre Polynomials in terms

of Hough functions (cf. Appendix) were then used to trans-

form the Fourier-Legendre serids into a Fourier-Hough series.

For a given . the largest values of Cr were those for which

liL r- & 1(4t. The expressions for the Associated

Legendre Polynomials are fairly accurate for 4Ch-e. For

t >M,i+ the expressions underestimate the variance of the

Legendre functions by a not insignificant amount. However,

this was not thought a serious error since these coefficients

were relatively small to begin with and the factor -

in the expression (3.5.2) further reduces them relative to

the coefficients for I41rs[+|.

When the expressions for the ocean tidal height and

the potential due to this displacement were calculated we

were then in a position to solve the vertical equation

(2.1.14) with the boundary conditions (2.1.15) and (2.2.4)

*F?.(p)is a constant and the term in 0A) in this
series represents a purely radial oscillation of the lower
boundary of the atmosphere. Such an oscillation is physically
impossible; it is precluded by the effective incompressib-
ility of the earth and the oceans, and so this term must be
excluded (cf. footnote to (3.5.1)).



for each mode of interest. With -14 -tlt and 8 co-

efficients for each value of . this meant that the vertical

equation had to be solved 232 times.

Once V was known as a function of 2 it was a simple

matter to compute the value of V/ (and hence CO), kA( V at

any point, using the expressions for these quantities pre-

sented in Chapter II. We discuss the results of these

computations in the next chapter.



Chapter IV

4.1 The Resonance Curve of the Model Atmosphere

Before considering the response of our model atmosphere

to the forcing functions described in previous chapters it

is important to investigate its resonance behavior. Once

the forcing function A to ~ >77< is fixed

the solution of the vertical equation depends only on the

atmospheric stability function S and the separation con-
*stant P . The atmosphere is said to have a free mode if

there is a value of P for which there is a non-zero

solution of the vertical equation when the forcing term is

zero or equivalently if there is a value of 3 for which

the solution to the vertical equation is infinite when the

forcing term is finite. For such a value of the atmos-

phere is said to be resonant.

For an arbitrary value of the forcing function 4 the

ratio

\/!Zo

was computed, at intervals of 0.1 in for 0 < 63S. The

amplitude and phase of 1 are shown in Fig. 8. For <

the value of the phase was between - 0. 0O0j and 00 but

this cannot be shown on a log-graph. This curve is called
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a resonance curve.

There are two peaks in the resonance curve. The major

peak occurs at f -2 corresponding to an equivalent depth

of 10.006 km. This may be compared with Taylors (1929)

calculation based on the waves generated by the Krakatoa

explosion, that the atmosphere had a free mode with an

equivalent depth of 10.3 km., We note too that at this

value of P a 1800 shift occurs in the value of the phase

of M . There is a second maximum in the resonance curve at

= 13.4 corresponding to an equivalent depth of 6.56 km*.

This second maximum is not a true resonance but it is

associated with some changes in the phase. This feature of

the resonance curve may be compared with a similar feature

in a resonance curve presented by Jacchia and Kopal (1952).

They were seeking to construct an atmospheric temperature

profile which met the requirements of the resonance theory

of the solar tides (Pekeris 1937) and was consistent with

what was then known about the vertical temperature structure

of the atmosphere. The profile they settled on had two

maxima in its resonance curve. The larger maximum occurred

at A = 2.47 (equivalent depth 10.388 km) and appeared to be

a true resonance. The smaller maximum occurred at 13 = 11.05~

(equivalent depth 7.93 km). At this maximum the value of IM

* M was computed at intervals of 0.001 in for



was 81. We have no information on the phase of their I

and so we cannot say if this was a true resonance. The

profile which Jacchia and Kop-al were led to had an un-

realistically high temperature of about 3500 near 50 km,

and they found that the location and magnitude of the lesser

maximum on the resonance curve were very sensitive to small

changes in temperature near '50 km. It seems reasonable

to suppose then that the peak which Jacchia and Kopal found

near S= ll.0 is simply an unrealistic modification of the

secondary peak on Fig. 8.

For J >3? * the factor M decreases slowly,as J in-

creases,to a value of - at 2 -looo The phase does

not change significantly in this region.

Also shown in Fig. 8 are the seventeen values of

in the range 0< ( ,S and the corresponding mode numbers

for which the equation was solved in our computations of

the response to oceanic forcing. For all but four of these

we have I1 ) ; the largest value of I M1 is

about 6. It is clear therefore that we were not exciting

any resonant modes of the atmosphere.

* Mg was computed at intervals of 2.0 in for

3; $ P < I coo



4.2 Influence of a Small Ocean

As a further exploration of the behavior of the model

atmosphere the following experiment was performed.

It was supposed that the entire surface of the globe

was immovable land with the exception of a small square

ocean ten degrees of latitude and longitude on a side

(i.e. one point in the latitude-longitude grid mesh of

section 3.5). The surface of the ocean was supposed to

execute a vertical oscillation of amplitude one meter at

the lunar semi-diurnal frequency. This may be thought of

.then as an approximation to a point source of ,r , We

calculated the amplitude and phase of the resulting

oscillation as it would be seen by a barometer fixed to

the ground. For the "oceanic" region we applied the

correction discussed at the beginning of the next section.

All effects of the lunar potential and the earth tide were

ignored. The result of the calculation is shown in Fig. 9,

for an ocean centered on 40 0N and 00 E whose "tide" had zero

phase lag relative to local lunar time.

The effect of this localized forcing is felt globally.

In the calculations presented below there are differences

between the calculated and the observed pressure oscill-

ations. The conclusion to be drawn from Fig. 9 is that

these differences cannot easily be reduced by simple
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manipulation of the forcing function, (the imperfectly

known ocean tide) in the immediate vicinity of the places

where discrepancies occur.

4.3 Calculated response when the ocean tide is taken
into account.

The results of the calculations described at the end

of f3.5 are shown in Figs. 10 and 11 for the ocean tides

of B & M and P & A respectively. The result of solving

(2.1.14) was to give an expression for CO . As

discussed in section 1.2, this would be the pressure as

seen by a barometer fixed to the moving ocean or land

surface. Now the "oceanic" barometers for the lunar tidal

observations are fixed to islands, which we shall assume

to move vertically with the Love earth tide. In order to

compare the theoretical results with observations in an

oceanic area, we must therefore compute the pressure change

as seen by a barometer which moves up and down with the

earth tide. This requires a correction over the ocean.

Now

where is the vertical velocity due to the earth tide

and is the vertical velocity due to the ocean tide.

The quantity we wish to compute,
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is given by

This quantity - (.AJ is plotted in Figs. 10 and 11

for the two cases in whichf&,, corresponds respectively

to the B & M and P & A data. As discussed'earlier, in both

.cases the forces perturbing the atmosphere were

1) The force due to the lunar tidal potential

2) The force due to the potential caused by the earth
tide

3) The effect of the vertical oscillation of the lower
boundary of the atmosphere due to the earth tide

4) The effect of the vertical oscillation of the lower
boundary of the atmosphere due to the ocean tide

5) The effect of the potential due to the ocean tide

It turned out that the introduction of the forcing due

to the ocean tide had quite marked effects on the atmos-

phere. For convenience the data on which Fig. 1 is based

are entered on Figs. 10 and 11 in the form t/6 where .

gives the amplitude and C the phase,when the oscillation

is written in the form

E being in degrees. When we speak of the tidal crest moving

in a given direction we mean that the phase 6 decreases

in that direction. This convention is opposite to the

oceanic convention used on Figs. 4, 5, 6, and 7. The data

was prepared from the tabulations of Haurwitz and Cowley (1970).



We consider first the response when B & M was used.

The comparison is best made on a regional basis.

Melanesia and Micronesia The computations yield an amphi-

drome in this region. The com-

puted amplitudes are small by a factor of two. The com-

puted phases appear to be of the right size and the direction

of motion of the computed tidal crest agrees with the ob-

servations in the region 10S - 15N.

Eastern Asia and Indonesia The observed amplitude maximum

over Indonesia is not found in

the computations; rather a maximum occurs over Korea with

a local minimum over Indonesia. The computed tidal crest

moves north-eastward, not westward, so that while the com-

puted and observed phases agree near southern Japan, they

disagree over the rest of the region.

Australia The computed amplitudes are of the right order of

magnitude but here too the computed tidal crest

moves towards the northeast rather than towards the west.

India The computed amplitudes are too small again by a

factor of two, roughly. The computed phases differ

from the observed phases by 1800. The computed tidal crest



63

moves towards the northeast; the motion of the observed

tidal crest has an easterly component also.

Africa East of 15E The calculated amplitudes disagree very

much with the observed amplitudes, being

too small by a factor of 3 or more. The computed phases

typically lead the observed phises by 300; the computed

tidal crest moves northwest while the observed tidal crest

moves westward.

West Africa The calculated amplitudes appear to be of the

right order of magnitude. The calculated

phases lag behind the observed phases by about 600. The

computed and observed tidal crests both move towards the

southwest.

Europe The calculated amplitudes are too high, in some

cases by a factor of two. However, the computed

amplitudes do decrease towards the north. The computed

phase was very nearly uniform at ^, 3450 over most of

Europe west of 30E. Thus the computed tidal crest moves

towards the southeast over northwestern Europe, towards

the southwest over southern Europe and North Africa and

towards the northeast over Russia. The observed tidal

crest moves towards the northwest over northern Europe and



towards the southwest over southern Europe.

North America The computed amplitudes disagree markedly

with the observations in western North

America. The observations show a noticeable increase in

amplitude from west to east across the continent while the

computations show the amplitude increasing from east to west.

The observed tidal crest moves westward while the computed

crest moves north-westward over the United States.

Latin America The agreement between the computed and ob-

served amplitudes is good except in the

neighborhood of the River Plate; this region will be dis-

cussed further shortly. The computed phases agree fairly

well with the observed phases and the computed tidal crest

moves more or less due west.

Isolated Island Stations:

Bermuda The computed amplitude is too small by a factor of

two. The computed phase lags the observed phase by

about 600.

Azores The computed amplitudes are about right. The com-

puted phases lead the observed phase by about 500.

St. Helena The computed amplitude is small by a factor of

two. The computed phase lags the observed phase

=OEM--W



by 600.

Honolulu The computed amplitude is too large by a factor

of two. The computed phase leads the observed

phase by 700.

We turn now to consider the response when P & A is used

as the ocean tide forcing.

Melanesia and Micronesia The computed amplitudes are too

small by a factor of two. The com-

puted phases agree fairly well with the observed phases and

the direction of motion of the computed crest is westward.

Eastern Asia and Indonesia The computed amplitudes agree

quite well with the observed

amplitudes in this region. The computations show a maximum

in amplitude, of about 80,," in the China sea and the com-

puted amplitude declines towards the north at about the same

rate as does the observed amplitude. In northern Japan the

computed phases lead the observed phases by about 600 but

over the rest of the region the agreement between the two

is much better and consequently the directions of motion

of the computed and observed tidal crests agree well.



Fig. 11. Tidal response in surface pressure to forcing by lunar potential, earth tide and
ocean tide due to P & A. Amplitudes (~') in . Phases -) in degrees. The
convention for the phase 6 is C.) Script letters 46 are observed
amplitudes and phases.



Australia The computed amplitudes do not agree well with

the observations, particularly near Tasmania.

The computed phases seldom differ from the observed phases

by more than ~ 300 and the computed motion of the tidal

crest has a large westerly component.

India The computed amplitudes agree fairly well with the

observations as do the computed phases. The computed

motion of the tidal crest is towards the southwest while the

observed crest appears to have an eastward motion.

Africa East of 1SE There is controversy about some of the

determinations of the lunar tide in this

region. Haurwitz and Cowley (1967) point out that some of

the amplitudes determined in earlier studies turned out to

be erroneously large. It may be that the true, amplitudes

in the region of Tanzania are nearer 60 than 90/4 .

In any event our computations yielded a maximum amplitude

of 9 0/&A at 40 0E 10 0S. The computed amplitudes were too

high by a factor of two in southern Africa. In the region

where observations are available the computed phases were

typically 1000 thus leading the observed phases by ~ 40O.

The Middle East The existence of the amphidrome indicated

by the computations does not agree with the



available observations.

West Africa The calculated amplitudes agree well with two

of the three available observations but do not

agree well with the large amplitude reported for Lagos.

The computed phases do not agree well with the observations,

for the computed tidal crest moves north-westward while the

observed tidal crest waves moves south-westward.

Europe The computed amplitudes are too high by a factor of

two or three. The computed phases do not agree with

the observed phases because the computed tidal crest moves

northwards while the observed tidal crest moves mainly west-

ward.

North America As with the computations using B & M the

present computations yield a pattern in which

the amplitude declines from west to east across the con-

tinent. The computed tidal crest moves towards the south-

east rather than towards the west.

Latin America The computed amplitudes in the northern part

of the continent agree fairly well with the

observations. However, the computed tidal crest moves east-



ward while the observed tidal crest moves westward. The

calculations yield an amphidrome near the east coast of

the continent in the vicinity. of the River Plate. Haurwitz

and Cowley (1967) point out that the determinations for

Montevideo and Buenos Aires yield amplitudes that are con-

siderably lower than those for other stations at the same

latitude or further south. -The computed amplitudes agree

quite well with the observations in the southern part of

Latin America. The calculated phases agree fairly well

with the observations also.

Isolated Island Stations:

The Azores The comments on the computations for Europe also

apply here.

Bermuda The computed amplitude is a little low in comparison

with the observed amplitude; the computed phase

lags the observed phase by 1400.

St. Helena The existence of the amphidrome predicted by

the computations in the vicinity of St. Helena

is contradicted by the large observed amplitude at St.

Helena.

Honolulu The computed amplitude is a little low but there

is fair agreement between the computed and ob-

served phases.



We might summarise these results as follows.

Forcing of our model atmosphere with the lunar potential

and the solid earth tides produces a response which is

uniform in longitude and has a maximum amplitude of ~28,^G

at the equator. The lines of equal phase run almost due

north-south, the only amphidromes being at the poles. The

introduction of an additional forcing due to ocean tides

changes the picture considerably. The longitudinal uniformity

of the amplitude of the response is destroyed and the pattern

of equal-phase lines becomes more complex. Certain features

of the calculated response seem to be directly related to

similar features in the forcing. For example, over the

central and southern Atlantic there is a distinct resem-

blence between the patterns of ocean tidal amplitude and

atmospheric air tide amplitude when P & A was used. On

the other hand, over land there is no such simple explan-

ation for the results of the computation.

The results using P & A gave fairly good agreement

with the observations over Asia, East Africa, and South

America and poor agreement over Europe and North America.

The agreement between the results using B & M and the ob-

servations was not as good.

In order to further illustrate the difference that the

introduction of the ocean tide makes to these calculations
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two scatter diagrams, Figs. 12 and 13, were prepared. For

each station listed by Haurwitz and Cowley (1970) we

plotted the pressure amplitude determined from observations

against the pressure amplitude for that station predicted

by one of two computations. Each figure has the observed

amplitude as abscissa. Fig. 12 has as ordinate the pre-

dicted amplitude when only the -lunar potential and the earth

tides are taken into account (i.e. the amplitudes predicted

in Fig. 3). Fig. 13 has as its ordinate the amplitude pre-

dicted when in addition to these effects the ocean tide due

to P & A is taken into account (i.e. the amplitudes pre-

dicted in Fig. 11). Points falling on the diagonal are

perfect predictions. It is clear fromi a comparison of these

two figues that the ocean tide is an important and possibly

the most important influence on the lunar air tide.

4.4 Tidal Winds

The subject of lunar tides in the ionosphere is a sub-

ject of some interest (Matsushita 1967). We computed the

tidal winds at Z= 14- i.e. at a height of -- 98 kmy

in our model when the forcing consisted of the lunar

potential, the earth tide (potential and surface movement)

and the ocean tide and its potential according to P & A.

The computations were made at ten-degree intervals in lati-

tude and longitude. The results are presented in the form
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of tidal ellipses in Fig. 14. The line that is flagged at

each of these points indicates (1) the sense of rotation

of the wind vector (the wind -rotates in the sense in which

the tip of the flag points) and (2) the wind direction when

the mean moon is in upper or lower transit at Greenwich

i.e. the phase of the wind oscillation. For example,

consider the wind at 40N, 30W near the Azores. At upper

or lower transit of the mean moon at Greenwich the wind at

this location is towards 30.240 west of south. Some 1.6

mean lunar hours before this transit at Greenwich the wind

had attained its maximum speed of 5 m/sec while blowing

towards 12.50 south of west. Some 4.4 mean lunar hours

after this transit at Greenwich the wind at 40N, 30W will

again attain its maximum speed while blowing towards 12.50

north of east. The tidal ellipses were computed by first

computing

LA +.~ ±V~

at the point in the form

We then calculated e , A-) & so that the velocity

could be written
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where

The appropriate formulae. for the transformation are

Most observations of motions in the region 80-110 km

fall into two classes. The first class consists of radar

observations of meteor trails. It is generally accepted

that the velocities computed by this method represent motions

of the neutral atmosphere. The second class consists of

"drift" observations by the radio fading technique. It is

not known whether the velocities derived from these latter

observations pertain to the neutral atmosphere or to the

charged species (Rawer, 1968). Even if these velocities do

pertain to the neutral atmosphere there is some doubt as to



the.height at which the velocities are being measured.

Greenhow and Neufeld (1961) from meteor wind obser-

vations at Jodrell Bank derived an upper bound of 2 m/sec

on the semi-diurnal lunar tidal velocity. MUller (1966)

made an extensive study of tides in meteor wind data from

Sheffield, England but did not report any determinations at

the semi-diurnal lunar period. MUller (1968, 1970) reports

an experiment he carried out to compare velocities measured

by the two methods. He found evidence that the velocities

measured by the radio fading meth-od do represent motions

of the neutral atmosphere at levels somewhat higher than

the levels where meteor trails are measured. In his ex-

periment he found that meteor-wind observations gave winds

that pertained to an average height of 95 km while the

average E-region reflection height was 103 km. Our cal-

culations were made for an intermediate level, 98 km.

Using drift observations Phillips (see Briggs and

Spencer, 1954) determined lunar tidal winds at Cambridge,

England, Chapman (1953) did a similar calculation for

Montreal, and Ramana and Rao (1962) did one for Waltair,

India. Table 4.4.1 shows a comparison between these deter-

minations and our computations for the points indicated.

C is local lunar time.



Cambridge

52. 2NO.lE

Montreal

45.4N,73.8W

Waltair

17. 7N ,83.3E

At: Co-
Observed Computed ordinates

u = u = -9K d-/bo) 50NOE

v = I4 + v = (0-1 -08)

u = OIA(2Co) u = 3-0 SC, (I -3 2 ) 50N,70W

V = -A v = -0

U J= - ( 2.8+8i*) u = 4-2 n(9 +PZ) 20N,80E

v = S O (' +90) = 4.0 (9 it:L88)

Table 4.4.1 Tidal velocities determined from E-region
drifts and computed tidal velocities at 98 km. Unit
is 1 m/sec.

The drift velocities tend to be somewhat larger than

the computed velocities, which is what one would expect,

given the height difference between the levels to which the

velocities pertain.

Some determinations of tidal winds at the surface have

been made (Chapman and Lindzen, 1970). A comparison of the

observed winds and the computed winds is shown in Table

4.4.2. Velocities at 2 o were computed using P & A as the

ocean tidal forcing. The determinations are presented in

the form

where U is the local lunar time.



Observed Computed
At co-
ordinates

Upsala

Greensboro,
NC

Iong Kong

San Juan,
P.R.

Aguadilla

Balboa,
Panama

Mauritius

0.75 179 0.6 24

1.8 800

2.2 690

0.6 2530

1.5 1000

1.3 110

1.0 278

1.4 870

1.5 650

0.6 1950 1.2 290

1.0 2200 1.2 3560

0.1 3330 0.4

0.6 300

0.3 253'

0.8 3290

0.8 3294

1.2 41*

2690

0.6 2490

0.6 60

0.5 2040

0.5 2040

0.6 1620

1.2 355* 0.3 2880

60N 20E

40N 280E

20N 110E

20N 290E

20N 290E

1ON 280E

20S 60E

Table 4.4.2 Comparison of observed surface tidal winds
and winds computed at the coordinates shown. Unit is
lem/sec.

There is no agreement between the computed and observed

phases. The computed wind speeds generally underestimate

observed wind speed.

4.5 Summary and Conclusions

The results of the previous chapters show that the lunar

air tide is significantly influenced by both oceanic tides

and solid earth tides. Our computations exhibited some

measure of agreement with the observations, but the agreement



was by no means perfect.

However, given the uncertainties of our knowledge of

the ocean tide it is encouraging that the agreement was as

good as it was.

It would appear that a good deal of work remains to be

done before one- could say that the semi-diurnal lunar air

tide is fully understood. On the observational side there

have been a total of 104 determinations of the tide in sur-

face pressure. Many large gaps in our knowledge of the

distribution of tidal parameters remain. For instance,

there are no determinations available over most of Asia.

As regards the ocean tide hardly any observations of the tide

in the deep ocean have been made.

It was disappointing that over North America, where

the air tide is well known, agreement between theory and

observation was so poor. It was interesting nonetheless

that P & A and B & M produced similar distributions of

amplitude in this region. This raises the question of the

effect of topography on the lunar tide. Wallace and

Hartranft (1969) show that topography markedly affects the

solar diurnal tide in the troposphere and lower stratos-

phere. However, it is not clear to what extent the effect

is mechanical rather than thermal.

The model we used neglected dissipation. Geller (1969)

studied the effect of infra-red cooling to space and found
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that our knowledge of the physical processes involved,

particularly those involving ozone, was poor and uncertain.

Because of this uncertainty it was thought best, at this

time, not to pursue the matter in the present study.

In summary, it is felt that this study has achieved

its primary purpose of showing that solid earth tides and

ocean tides particularly must have a considerable effect

on the semi-diurnal lunar air tide.



Appendix

Hough functions were computed following the method of

Hough as presented by Flattery (1967). This method yields

expressions for the Hough functions as sums of (completely

normalized) Associated Legendre Polynomials, thus

S/- A.1

The 1A§f) are normalized so that

A.2

or equivalently

A.3

It follows that

k0
;- A-4

and

00 A .5

For any given Hough function coefficients were calculated

successively until the stage was reached where the addition

of the square of the last coefficient when added to the sum



of squares of the previous coefficients changed this sum by

less than one part of 10 . No further coefficients were

determined and the coefficients were normalized so that the

sum of their squares was 1.

To illustrate the use of the tables, suppose we want

to find C , the coefficient of ' in the ex-17,1 Lj/ )

pansion of 'j (,A) . In 'the table of expansion co-

efficients for anti-symmetric Hough functions of zonal wave

number -i4 we find the column headed I(-141 ') . This

column lists the C4;.. . In that row of the column

labeled Y(-14121) we find the value of C to be

O.1Io S27-

The degree to which the Associated Legendre Polynomials

are represented by the resulting sums of the form A.4 is

shown by the sum of the squares of the relevant coefficients

in the rightmost column. For a perfect representation this

sum would be 1.

Shown above the expansion coefficients of a Hough

function is the value of the eigenvalue pertaining to it.

These are further tabulated in Table A.l.



TAPLE OF EIGENVALUES

7 ON A L
WAVE
NC.t N

ILI ILI+1 ILI+2 ILI+2' IL +4 IL +5 IL +6- ILI+7
-14 217.3 263.4 314.6 371.1 433*0 5CC.2 572.9 651.'.
-13 187.8 230.7 278.9 332.3 391.1 455.3 524.9 600.0
-1P 160.4 200.3 245.3 ?95.7 351.4 412.5 479.0 551.1
-11 135.2 172.0 213.9 261.2 313.8 371.8 435.4 504.4
-10 112.1 145.8 184.7 228.8 278.4 333.4 303.9 460.0
-9 91.2 121.8 157.6 -198.6 245.1 297.1 354.6 417.7
-8 72.5 99.9 132.6 170.6 214.0 263.) 317.5. 377.6
-7 55.9 80.2 109.P 144.8 185.1 ?31.1 282.6 339.8
-6 41.5 62.7 89.2 121.1 158.4 201.4 249.9 3l4.?
-5 29.2 47.3 70.7 99*5 133.9 173.8 219.5 270,9
-4 19.0 34.1 54.4 8C.2 111.6 14P.6 191.4 ?39.9
-3 11.1 23.0 40.3 63.0 91.5 125.6 165.6 211.4
-2 5.2 14.1 28.3 48.1 73.7 1C 5.0 14?.2. 1F5.4
-1 1.6 7.3 18.5 35.5 58.3 87.') 121.6 162.3

- 0 0.0 2.7 11.1 25.4 45.6 71.9 104.3 142.8
1 6.7 18.8 37.1 61.7 9?.6 129. 173.6 2?3.6
2 12.5 27.1 47.7 74.2 106.7 145.4 19.2 241.?
3 20,.5 38.0 61.A 90.4 125.4 166.3 213.3 266.3
4 30.6 51.2 77.3 1n9.? 146.9 19.4 239,9 2Q5.3
5 43.0 66.5 95.6 130.4 170.9 217.2 269.3 327.3
6 57.5 84.1 116.2 153.9 197.3 246.4 301.3 362.0
7 74.1 103.8 138.9 179.6 225.9 277.9 335.7 399.2
8 93.0 125.7 163.9 207.6 256.8 311.7 372.4 4?8.7
9 113.9 149.7 191.0 237.7 289.9 347.8 411.3 480.6
10 137.1 176.0 220.2 270.0 325.3 396.1 452.6 524.7
11 162.3 204.3 251.7 304.5 36?.8 426.6 46.0 571.1
12 189.8 234.9 285.3 341.1 402.4 469.3 541.7 619.7
13 219.4 267.6 321.1 380.0 444.3 514.2 599.6 679.6
14 251.1 302.4 359.0 42n.0 488.3 561.2 639.7 723..7

187.4

TABLE A.1



- EXPANSION COEFFICIENTS FOR
1-CUGH FUNCTICNS OF ZONAL WAVE NUMBER L=-14

SYMMETRIC EIGENFUNCTICNS AND EIGENVALUES

EIGEN
VALLES

P(-14,14)
P(-14,16)
P(-14,18)
P(-14,20)
P(- 14, 22)
P(-14,24)
P(-14,26)
P(-14,28)
P(-14,30)
P(-14,32)
F (-14,34)
P-14,36)
P(-14,38)
SLM OF
SQUARES

217.281 314.629 432.990 572.884

H(-14,14) H(-14,16) H(-.14,18) H(-14,20)
0.993105

-C. 116399
0.013866

-0.001464
0.0C0135

-0.000011
0. 000001

-0.C0000
C.000000

-C.Coooo
0.000000
0.0
0.0

0.115039
0.945198

-0.2S8831
0.062921

-0. 010321
0.001391

-0.000158
0.000016

-0.000001
0.CCCOO

-0.C00000
0.000000

-0.0oCCOCO

0.021765
C.289659
C.820911

-0.467060
C. 149446

-0.034757
C.006407

-C.C00977
0.000127

-0.000014
0.C00001

-0.000000
0.000000

0.005368
0.089696
C.436794
0.614712

-C. 58703C
C.266966

-0.083491
0.020121

-0.003947
0.0006-51

-C.003092
0.000011

-C. Co3CC1

SUM OF
SCLARES
0.999993
0.998895
C.954176
0.599'77
0.367044
0.C724E1
0.007012
C.c 00406
0.000016
C.0Co00
C. CCCCC
0.000000
C.C00000

1.000000 1.CC0000 1.000000 1.000000

ANTI-SYMMETRIC EIGENFUNCTICNS 'AND EIGENVALUES

EIGEN 263.368 371.147 500.219 651.031
VALLES

P-14,15)
F(-14,17)
F(-14,19)
P(- 14,21)
F (-14,23)
P(-14,25)
P1-14,27)
P(-14,29)
P(- 14,31)
P(-14,33)
P(-14 ,35)
P(-14,37)

(-14,39)
SLM OF
SQUARES

H(-14,15) H(-14,17) H(-14,19) I(-14,21)
C.977580

-C.207778
0.C33834

-C.CC4520
0.000509

-0.C00049
C.CC00C4

-0.CC0000
C.CC0000

-C.C00000
C.C00000
C.0
0.0

0.203751
0.893449

-0.386661
0.101577

-0. 020009
0.003176

-C.0C0421
0.000048

-0.CCCCC5
0.0000C00

-0.000000
0.000000

-0.0000000

C.050647
0.368963
0.727511

-C.535391
C.205294

-0.055642
0.011781

-0.002C46
C.000300

-0.00CC38
0.000004

-C. 000000
0.CCCoc

0.014934
0.137607
0.488227
0.485598

-0.617777
0.3314C7

-0.118716
0.C32329

-0.007111
0.CC13C9

-C.0002C6
0.000C28

-C.0)CC3

SLM OF
SCUARES
0.999966
0. 996491
0.' 18290
0.532788
C. 424195
0.112.937
0. 014232
0.001049
0.000051
C.CCCO2
0.0C0000
C. COC000
C.CCCCCO

1.000000 1.COOOO 1.0CCOOO 1.CCOCCc
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EXPANSION COEFFICIENTS FOR
I-HCUGH FUNCTICAS CF ZONAL WAVE NUMBER L=-13

SYMMETRIC EIGENFUNCTICNS ANC EIGENVALUES

EICEN
VALUES

P(-13,13)
P(-13,15)
P(-13,17)
P(-13,19)
P (-13,21)
P(-13,23)
P(-13,25)
P(-13,27)
P(-13,29)
P(-13,31)
P(-13,33)
P(-13,35)
P(-13,37)
SU CF
SQLARES

187.762 278.905 391.094 524.872

H(-13,13) H(-13,15) H(-13,17) H(-13,19)
C.993198 0.114213 0.021830 0.C055C6

-C.115643 0.945335 C.289131 0.090523
0.C13504 -0.298860 C.820042 C.436757

-0.001382 0.062273 -0.468932 0.610929
0.000122 -0.010C19 0.149465 -0.59007C

-0.C00009 0.001314 -0.034371 C.268705
C.CC0001 -0.00C145 0.006224 -O.C83589

-C.C00000 0.000014 -C.CC0927 C.C19926
C.CCOOOO -0.000001 0.000117 -0.003848

-0.CCOOOO 0.OC000 -C.000013 0.000622.
0.0 -0.000000 0.C00001 -0.000066
C.0 0.000000 -0.000000 0.000010
0.0 -0.00000 0.CC00CC -C.CC00C1

1.000000 1.C00000 1.000000

SUM CF
SCLARES
0.999994
0.998823
0.952725
0.597011
C.370623
0.C73385
0.007026
0.0C398
0.300015
C.C00000
C.CCCccO
0.Ccoc00
0Co0O

1.000000

ANTI-SYMMETRIC EIGENFUNCTICNS AND EIGEAVALUES

EIGEN 230.744 332.330 455.256 599.98E
VALUES

P(-13,14)
P(-13,16)
P(-13,18)
P(-13,20)
P(-13,22)
P(-13,24)
P(-13,26)
P (-13,28)
P(-13,30)
F(-13,32)
P(-13,34)
P(-13,36)
F(-13,38)
SLP CF
SQLARES

h-13,14) H(-13,16) H(-13,18) V(-13,20)
C.977727

-0.2C7187
C.C33245

-0.004333
0.000472

-C.000044
0.C00003

-0. 000000
0. CC0000

-0.000000
0.000000
0.0
0.0

0.202929
0.893298

-0.387581
0.101118

-0.019622
0.003046

-0.000393
0*000043
-0.00CCO4
0.000000

-0.000000
0. C00000

-0.000000

C. 050991
0.368783
0.725420

-C. 538045
0.20607C

-0.05-5401
0.011566

-0.001971
C.0C0282

-0.000035
0.000004

- 0.000000
C. 000000

0.015319
C. 13907C
0.487895
0. 4 79 7f6

-C.620614
0.334193

-C.1193 i6
0.032244

-0.0070C3
C.001268

-0.000196
C.C0C026

-0.00)003

SLM OF
SCLARES
0.999965
0.996248
C.915601
0.529931
C.428012
0.114764
0.014384
0.0C1044
0.000049
0.COCO2
c0C00000

C.C00000
C.CCC CCC

1.000000 1.000000 1.000000 1.0000CC



EXPANSION COEFFICIENTS FOR
ICLGH FUNCTICNS OF ZONAL WAVE UMBER L=-12

SYPMETR4IC EIGE.NFUNCTICNS ANC EICENVALUES

EIG EN
VALLES

16C.398 245.335 351.357 419.033

P(-12,12)
P(-12,14)
P(-12,16)
P (-12, 18)
P(-12,20)
P(-12,22)
P(-12,24)
P(-12,26)
P(-12,28)
P(-12,30)
F(-12,32)
P-12,34).
P(-12,36)
SLM OF
SCLARES

H(-12,12) H(-12,14)
0.993305

-C.114770
0.013097

-C. 001293
0.000109

-0.000008
0.CC0000

-0.CC0000
C.CCO0000

-0.CC0000
0.0
C.0 C
0.0

0.113267
0.945491

-0#298889
0.061546

-0.009687
0.001232

-0.000131
0.000012

-0.0C00001
0.CC000

-0.000000
0.000000

-0oCCOOC

H(-12, 16)
0.021886
C. 288529
C. 819052

-0.471048
C. 149497

-0.033951
C.006029

-0.000875
0.000107

-0.000011
0.000001

-0.000000
0.000000

H (-12,18)
0.005623
0.091434
0.4367C5
0.606648

-0.593463
0.270673

-0.083717
0.019721

-C.003743
0.000592

-C.002080
0.000OCC9

-0.C000Cl

SUP CF
SQLARES
0.999995
c.998734
C. S51065
0.593698
0.374642
0. C744 18
0.007045
C. 000390
c .0CC1
C.C00000
C.Ccco0
0.00000C
C. CC 0000

1.C00000 1.CC000 1.C00000 1.000000

ANTI-SYMMETRIC EIGENFUNCTICNS AND EIGENVALUES

EIGE h 200.274 295.67C 412.459 551.126
VALLES

P(-12,13)
P(-12,15)
P(-12,17)
P(-12,19)
P (-12 , 2 1)
P (-12,23)
P (-12, 25)
P(-12 ,27)
P(-12,29)
P(-12,31)
P(-12,33)
P (-12 ,35)
P(-12 ,37)
SLM OF
SCUMRES

H(-12,13)
(.977894

-C.2C6504

C. C32 583
-C.CC4128
0.000433

-C.000038
0.C000C3

-0.C00000
C. C (C00C c

-0.CCC000
0.C00000
0.0
C.C

H(-12, 15)
0.2C1983
0.893126
-0.388624
0.1C06C7

-0.019198
0.0029C8

-0.000363
0.000038

-0. 0 CCCC3
0.00C0000

-0.000000
0.00Cc CO

-0.000000

H (-12, 17)
C. 051354
C.368576
0.723048

-0.541C29
0.206955

-0.055146
0.011336
-0.001891

C.C00264
-0.C00031

0.000003
-C.000000
0.000000

I(-12,19)
0.015743
C. 140692
0.487493
0.473235
-0.62379
0.337327

-C. 12C137
0.032167

-0.0068S1
0.001225

-0.000185
0.000C24

-0.000003

SLM OF
SCLARES
0.999960
0.995961
0.912537
0*526803
0.43225C
0.116839
C.C14562
0.0101038
0.000C48
0.CCCCC2
C.CCC000
C.C00000
C.c0oc00

1.000000 1.000000 1.000000 1.0030CC



EXPAtSICN CCEFFICIENTS FOR
HCUGH FUNCTIONS OF ZONAL WAVE UMBER L=-1l

SYMMETRIC EIGENFUNCTICNS AND EIGENVALUES

E)CEN
VALUES

135. E7 213.920 313.781 435.36 -

H(-11,11) H(-11,13) H(-ll,15) H(-1l,17)
P(-ll,11) 0.993428 0.112157 0.021950 C.005774
P(-ll,13) -C.113750 0.945671 C.287841 0.092451
F(-11,15) 0.012636 -0.298916 C.817914 0.436637
P(-11,17) -C.C01197 0.060723 -0.473458 0.601762
P(-11,19) 0.C00096 -0.009323 0.149547 -0.597273
P(-11,21) -0.000006 0.001146 -0.033492 0.272919
P(-ll,23) 0.CCOOOO -0.000116 C.005819 -0.083885
P(-ll,25) -0.CC0000 0.000010 -0.00C821 0.019507
P(-ll27) C.CC0000 -0.000001 0.000097 -0.003634
P(-11,29) -C.CCOOOO 0.000000 -0.000010 C.000561.
F(-ll,31) 0.0 -0.000000 0.COOOO1 -0.000073
P(-11,i33) C.0 0.CCCCCO -C.000000 0.COCC8
P(-ll,35) 0.0 -0.000000 0.COOCOC -C.C0CCC1
501 CF
SCLARES 1.000000 1.000000 1.000000 1.000000

ANTI-SYMMETRIC EICENFUNCTICNS AND EICENVALUES

EIGEN
VALUES

SUP CF
SCUARES
C.999994
0.998633
0.949145
0.5 89969
0.379186
C2C56C8
0.0C7071
C.CCC381
0.C00013
C.C00000
CoCCCeC0
C.CC000
C.000000

171.959 261.167 371.830 504.449

H(-11,12) H(-11,14) H(-ll,16) F(-11,18)
P(-11,12) 0.978088 0.20C882 C.051756 0.016241
P(-11,14) -0.205707 0.892930 0.368343 C.1425C8
P(-11,16) 0.C31832 -0.389816 0.720327 0.486999
P(-11,18) -C.CC3905 0.10C035 -C.5444C9 C.465792
F(-11,20) 0.000392 -0.018732 0.207976 -C.627195
P(-11,22) -C.000033 0.002760 -0.054877 0.340880
P(-11,24) 0.000002 -0.000333 0.011C91 -C.121C25
P(-ll,26) -0.OCOOOO 0.00034 -0.C01808 0.032100
P(-11,28) C.CCOOOO -0.O0CC3 C.000245 -C.006775
P(-11,30) -0.C00000 0.000000 -C.000028 0.001181
F(-11,32) 0.000000 -0.000000 0.000003 -0.0001~4
P(-1l,34) C.C 0.CCCOCO -C.COOOC C.000022
P(-11,36) 0.0 -0.000000 0.000000 -0.0000C2
SLP OF
SCLARES 1.0C0000 1.000000 1.000000 1.000CCC

SUM OF
SCUARES
0.999952
0.995625
0.9 C 9C
0.523366
0.436979
0.119218
*C14770

0.001034
0.000046
0.C00001
C.CCCCCC
C*CC00
C.cc a ccc



EXPAASICN COEFFICIENTS FOR
HCUGH FLNCTICNS OF ZONAL WAVE NUMBER L=-10

SYtPETRIC EIGENFUNCTICNS AND EIGENVALLES

EIGEN
VAL LES

P(-10,10)
P(-10,12)
P(-10,14)
P(-10,16)
P(-10,18)
P(-10,20)
P(-10,22)
F(-10, 24)
P(-10,26)
P(-10,28)
P(-10,30)
P-10,32)
P (-10, 34)
SLM OF
SCLARES

112.131 184.661 278.370 393.866 -

h(-10,10) H(-10,12) H(-10,14) H(-1C,16)
C.9S3573

-C.112541
0.012110

-0.001092
0.000082

-0*000005
C.CCOOOO

-0.cC0000
C.CCOOOO

-c.Coco
0.0
c.c
0.0

0.110849
0.94561

-0..298942
0.059787

-0.OC8921
0.001054

-0.0001C2
0.0CCOC8

-0.000001
C. 0COCO0

-0.000000
0.000000
0.0

0.022019
C.287047
0.816589

-0.476229
C.149621

-0.032989
0.005594

-0.000765
0.000087

-C. CCCC8
0.0000CO1

-C.CCCOOO
C.000000

0.005947
C.093591
C.43654 5
0.596132

-C.6C15EC
0.275506

-0.0841C8
0.C19284
-0.003520
C.CCC3C

-0.00006i
0.000C7
-0.CC0C1

SUP., OF
SCLARES
0.999994
C.998512
C.946902
0.5E5743
0.384364
0.076993
0.007106
C.OC0372
0. Co12
0.000030
C.CCCCC
Gc.oooo
C.CC0000

1.CCOOOO l.CCoooo 1.000000 1.000000

ANTI-SYMMETRIC EIGENFUNCTICNS'AAD EICENVALUES

145.799 228.823 333.371 459.965

HM-10,11) H(-10,13) H(-10,15) hi(-10,17)
P-10, 11)
P(-10, 13)
P(-10 ,15)
P- 10, 17)
P-10, 19)
F (-10, 21)
F (-10,23)
P (-10, 25)
F(-10,27)
P(-10,29)
P(-10,31)
P-10,33)
P(-10,35)
SLP OF
SCLARES

C.978314
-0.204767

C.03C975
-C.CC3660
0.000350

-0.00C028
0.C00002

-CCCOCCO
0.000000

-0. C C00
o0.cooco
0.0
c.0

0. 1 s161C
0.892697

-0.391191
0.CSS391

-0.018218
0.002603
-0.000302
0.00C029

-0.000002
0.0000000

-0. CCoco
0.000000

-0. CCOOCC

0.C52197
C.368075
0.717178

-C.54827C
0. 2C9167

-0.054597
0.010829

-0.001720
0.000226

-0.000025
C.000002

-0.C00000
0.000000

0.0168C1
C.144548
0.486387
C.457263

-0.631035
C.344940

-C.122072
C.032049
-0.006657
0.001136

-0.000163
0.000020
-0.000002

SLM OF
SOLARES
0.999949
0.99521C
0.9C4907
0.519531
0.442238
0.121971
O.C15C19
0.CC1030
C.CCCC044
2*000001
C. c10000
0. CC C000
0.000CO

1.CCOOOO 1.000000 1.000000 1.00000

EIGEN
VALLES



EXPANSICN COEFFICIENTS FOR
KCUGH FUNCTICAS OF ZONAL WAVE NUMBER L= -9

SYNMETRIC EIGENFUNCTICNS AND EICENVALUES

EIGEN
VALUES

P( -9, 9)
PC -9,11)
P( -9,13)
PC -9,15)
Pc -9,17)
PC -9,19)
PC -9,21)
P( -9,23)
P( -9,25)
P( -9,27)
P( -9,29)
Pc -9,31)
P( -9,33)
SUM OF
SCUARES

91.230 157.557 245.123 354.590

H( -9, 9) H( -9,11k H( -9,13) F( -9,15)
C.993744

-0.111088
0.0 11504
-0.CCC78
C.000068

-C.C00004
0.000000

-C.oCCOO
0.CC0000

-0.0C0000
0.0
0.0
.Coo

0.1C9283 0.C220U5
0.946128 0.286115

-0.29E96-3 C.815032
0.058711 -0.479451

-0.CC8476 0.149733
0.CCC957 -C.032438

-0.000088 0.005353
0.000007 -0.000706

-0.0C00C0 C.00CC77
0.0000.00 -0.C00007

-0.00C000 C.o COOI
0.000000 -C.CCCCO
0.0 0.000000

1.000000 1.000000 1.000000

C.C06164
0.094879
0.436423
0.589572

-C.606488
0.278519

-0.C84405
0.019054

-C.CC34C1
0.000497

-0.000061
0. COjC6

-0.000001

1.000000

SUM OF
SCUARES
0.999994
C. 998363
0.q44252
C. 580917
C.39C320
0.C78626
0.CC7153
0.000364
C.CO0012
0.C000

0.C00000

C. CC 000C

ANTI-SYMMETRIC EICENFUNCTICNS AND EIGENVALUES

E IGE
VALUES

F( -9,10)
P( -9,12)
P( -9,14)
P( -9,16)
P( -9,18)
P( -9,20)
P( -9,22)
P( -9,24)
P( -9,26)
P( -9,28)
P( -9,30)
F( -9,32)
P( -9,34)
SUM OF
SCUARES,

121.792 19E.63E 2S7.C87 417.682

H( -9,10) H( -9,12) H( -9,14) H( -9,16)
0.978581

-0.203640
C.C29987

-0.003391
C.C00306

-C.000023
0.000001

-C.CCOOO
0.CCOOOO

-C.CCOOO0
C.CC00
0.0
C.C

0.198094 0.052683
0.892422 0.367766

-C.392797 C.713489
0.098662 -0.552721

-0.017648 0.210575
0.002434 -0.0543C7

-0.000270 0.010550
0.0C0025 -0,001629

-0.00C002 0.0C0207
0.000000 -0.000022

-0.0C0000 0.000002
000000CO -0.000000

-0.CcCCC0 C.000000

C.C17435
0. 146855
0.485615
0.447393

-C.635321
0.349625

-0.123320
0.C32022

-0.C06536
0. COIC90

-0.000152
0.000018
-0*0000C2

SUM OF
SCUARES
0.999941
0.994705
C.90C077
0.5154C7
0.448286
C.125193
0.C15319
0.001028
C.CCC043
0.C00001
C.C00000
0.cCCCCCC
0.000coo

1.000000 1.000000 1.000000 1.000000



E>PANSION CCEFFICIENTS FOR
I-CUGH FUNCTICNS OF ZONAL WAVE NUMBER L= -E

SYMMETRIC EIGENFUNCTICAS AND EIGEAVALUES

EIGEN
VALUES

Pf -8, 8)
P( -8,10)
P( -8,12)
P( -8,14)
P( -8,16)
P( -8,18)
P( -8,20)
P( -8,22)
P( -8,24)
P( -8,26)
P( -8,28)
p -8,30)
PC -8,32)
SUM OF
SCLARES

72.482 132.610 214.045 317.488

H( -8, 8) H( -8,10) H( -8,12) H( -8,14)
C.993949 0.107380

-0.109308 0.946423
C.C1C8C1 -0.28977

-C.CCC856 0.057463
C.C00054 -0.0C7982

-0.C000C3
0.000000

-C.CC0000
0.CC0000

-0.000000
C.0
0. 0
co

0. CC855
-0.00C073

0.000005
-0.000000
0.00000

-0.000000
0.00000
0.0

0.C22C81 C.CC6312
0.285011 0.096335
C.813171 C.436255

-0.483244 C.581835
0.149898 -0.612133

-0.031832 0.282073
C.C05C93 -0.C848C2

-0.000646 C.018821
0.000067 -C.003278

-0.000006 0.000465
C.CO0000 -0.000055

-C.CCcco 0.C000CC6
0.000000 -0.0000CO

SLM OF
SCLARES
C. 999993
0. 998176
0.941069
0.575360
C. 39 7240
C. C80579
C.CC7217
0.000355
C. Ccol1
0.ccC000
0.000000
C.CCCC00
0.0000cC

1.000000 1.000000 1.000000 1.0000C0

ANTI-SYMMETRIC EIGENFUNCTICNS AND EIGENVALUES

EIGEN 99.941 170.613 262.983 377.612
VALUES

H( -8, 9) H( -8,11) Hf( -8,13) H( -8,15)
P( -8, 9) 0.978901 0.196270 0.053197 0.C18160
P( -8,11) -C.2C2266 0.892091 0.367402 0.149487
P( -8,13) 0.C28837 -0.394699 C.709111 0.484627
P( -8,15) -0.003095 0.C97830 -0.557913 0.435835
P( -8,17) C.00026) -0.017014 0.212262 -0.640130
F( -8,19) -C.000018 0.002254 -0.C54013 C.355093
P( -8,21) C.000001 -0.000238 0.010252 -C.124830
P( -8,23) -0.CC0000 C.CCC021 -0.001~534 0.C32C32
P( -8,25) C.CC0000 -0.OCOCC1 C.0C0187 -C.006416
F( -8,27) -0.000000 0.0000C0 -0.000019 0.001044
P( -8,29) C.0 -0.000000 0.000002 -0.000142
P( -8,31) 0.C 0.000000 -C.CCCCCC C.C00C16
P( -8,33) 0.0 -0.C00000 C.000000 -0.000002
SLM CF
SCUtRES 1.000000 1.000000 1.0CC0000 1.000CCc

SUM OF
SCUARES
0.999929
0.994068
0. 894321
0.510800
C.455111
0.129C13
0.C15638
C.CC1028
C.000041
C. C 001

C.0)3000
C.C00000
0. CCCC0



EXPANSICN CCEFFICIENTS FOR
I-CLGH FUNCTICNS OF Z0NAL WAVE NUMBER L= -7

SYPMETPIC EIGENFUNCTICNS ANC EIGENVALLES

EIG EN
VALLES

Pc -7, 7)
F( -7, 9)
F( -7,11)
P( -7,13)
Pc -7,15)
P( -7,17)
P( -7,19)
F( -7,21)
P( -7,23)
Pc -7,25)
Pc -7,27)
P( -7,29)
P( -7,31)
5LM CF
SCUARES

55.889 109.819 185.141 2E2..93

H( -7, 7) H( -7, 9) H( ;-7,11) H( -7,13)
0.994200
C. 107081
0.009976

-C.00C724
C.000041

-0.000002
C.C00000

-0.0 C0000
C.CC0000
C. *

0.0
0.0
0.0

0.105014
0.946779

-0..298980
0.056002

-0.007431
0.000749

-0.0CCC6C
0.C000C4

-0.0000000
0. 0CCCC0

-0.000000

0.022054
C.283682
C.81C9C8

-0.487778
C. 150145

-0.031167
C.004815

-C.0C0583
0.000057

-C.000005
0.CC0000

0.000000 -0.000000
0.0 0.00000C

1.C00000 1.0C000 1.000000

0.006593
0.097996
0.436024
C.572569

-C.618691
0.286329

-0.085341
C.C185E89

-0.003151
C.00C432

-0.000049
0.000C5

-0.0 CooC

1.C00000

SUM CF
SCLARES
0. 999991
0.997936
0. 37 178
0.568899
0.405377
0.C82956
0.007306
0.C00346
c.ocoolo
0.00CC000
C.CCCcCC
0C 00000
C.C00000

ANTI-SYMMETRIC EIGENFUNCTICNS *AAO EICEAVALUES

EIGEN
VALLES

P( -7, 8)
P( -7,10)
P( -7,12)
P( -7,14)
P( -7,16)
P( -7,18)
P( -7,20)
P( -7,22)
P( -7,24)
P( -7,26)
P( -7,28)
P( -7,30)
P( -7,32)
SUM OF
SCUARES

80.243 144.751 231.067 339.771

H( -7, 8) H( -7,10) H( -7,12) H( -7,14)
0.979292 0.194C35 C.C53761

-C.200558 0.891682 0.366978
0.C27484 -0.396988 0.703822

-C.CC2769 0.096677 -C0.564047
0.000215 -0.016306 0.214324

-C.000013 0.002062 -0.053727
. 0.000001 -0.0C0205 0.C09936
-0.OCOOO 0.000017 -C.001436
C.CCC000 -0.CCCCC1 0.000168

-0.CC0000 0.CC0000 -0.CC0016
0.0 -0.00C0 C.000001
0.0 0.0C0000 -0.0C0000
C.C -0.000000 0.000000

0.019010
C.152521
0.483340
C.422114

-0.645548
0.361560

-0.12668E
0.C32096

-0.006298
0.000%7

-0.000131
0.000015

-0.C00001

SLM OF
SQLARES
0.999914
C.993255
C.B87338
0.505721
C.462933
0.133616
C. C16149
0.CC1C32.
C.CC0040
0.CCcCC
0.000000
0 C(000

C.cCCCOC

1.000003 1.0C0000 1.000000 1.000000



- EXPANSICN CCEFFICIENTS FOR
HCUGH FUNCTICNS CF ZONAL WAVE NUMBER L= -6

SYMMETRIC EGENFUNCTICNS ANC EICEA\VALUES

E IC EN
VALUES

P( -6, 6)
PC -6, 8)
PC -6,10)
PC -6,12)
Pt -6,14)
PC -6,16)
P( -6,18)
PC -6,20)
P'( -6,22)
F( -6,24)
SUP OF
SQUARES

41.451 89.186 158.416 249.922

H( -6, 6) H( -6, 8) H( -6,10) F( -6,12)
C.994514

-C. 104216
0.0C09001

-0C.CC5E5
0.0
0.0
0.0
0.0
c0
0.C

0.101997
0.947219

-0.298967
0.054268

-0.006816
0.000638
0.0
0.0
0.0
0.0

0.021948
0.282058
0.808095

-C.493296
0.150521

-0.030437
0.004518

-C.C00520
C.0
0.0

O.006875
C. C9916
C*4357C6
0. 561260

-0.626399
0.291520

-0.CE60EE
0.C18369

-C*003022
C.0003 9.

SUM OF
SCLARES
C.999990
0.997624
0.932319
C.561299
C.415078
0.C85911
C.007432
0.CC0338
G.COOC09
C.CCQcO

1.CC0000 1.CCOOO 1.CCococ 1.CCoCCC

ANTI-SYMMETRIC EIGENFUNCTICAS AND EIGENVALUES

EIGEN 62.701 121.056 201.351 304.182
VALUES

P( -6, 7)
P( -6, S)
F( -6,11)
P( -6,13)
P( -6,15)
P( -6,17)
PC -6,19)
P( -6,21)
PC -6,23)
PC -6,25)
SUM OF
SCUARES

H( -6, 7) H( -6, 9) H( -6,11) H( -6,13)
0.979781 0.191233 0.054344 0.C19992

-C.198380 - 0.891163 0.366473 C.156052
0.C25873 -0.3998C1 0.697310 0.481622

-0.002411 0.095779 -0.5714C7 0.405557
C.CC0169 -0.015513 C.216896 -C.651678
0.0 0.001858 -0.053468 0.3692.28
0.0 -0.000173 C.C096C3 -0.129022
0.0 0.0 -0.001334 C.C32244
0.0 0.0 0.000149 -0.006188
C.C 0.0 0.0 0.000951

1.CCOOOO 1.000000 1.000000 1.00)001

SUM OF
SCUARES
C. 999893
0.992181
C.878711
C.5C0162
0.471969
C. 129266
0.0 16739
C.C01041
0.C00038
0.003001

93 a



93 b

E)PANSICN COEFFICIENTS FOR
ICUGH FUNCTICNS OF ZONAL %AVE AUMBER L= -5

SYMMETRIC EIGENFUNClICNS AND ElGENVALLES

29.166 70.712 133.882 219.498

H( -5, 5) H( -5, 7) H( -5, 9) H( -5,11)
P( -5, 5) C.9
P( -5, 7) -0.1
F( -5, 9) 0.C
P( -5,11) -0.C
P( -5,13) 0.0
P( -5,15) C.0
P( -5,17) 0.0
P( -5,19) Ceo
P( -5,21) 0.0
F( -5,23) 0.0
SUM OF
SCUIRES 1.0

94916
00402
C7835
00440

0.098022
0.947772

-0.298931
0.052184

-0.006128
0.0C0525
0.0
0.0
0.0
0.0

0.02169E C.C07133
0.280030 0.102138
C.804498 C.435249

-C.500166 0.547153
0.151103 -0.635583

-0.C29641 0.297cc4
0.004201 -C.0871'42

-0.000456 C.018178
0.0 -0.002894
0.0 0.000366

SLM OF
SCLARES
0.999988
C.997201
0.926081
0.552266
0.426835
C. C89679
C.CC7611
0.000331
C.CC008
0.C0ccc0

00000 1.000000 1.0CCOOO i.COOCC

ANTI-SYMMETRIC EIGENFUNCTICNS ANC EIGEAVALLES

EIGEN
VALLES

P( -5, 6)
F( -5, 8)
P( -5,10)
P( -5,12)
P( -5,14)
P( -5,16)
P( -5,18)
P( -5,20)
P( -5,22)
P( -5,24)
SUM OF
SCUARES

47. 312 99.531 173.850 27C.878

H( -5, 6) H( -5, 8) H( -5,10) H( -5,12)
C.980407 0.187622 0.054922 0.021129

-C.195515 0.89C482 0.365872 C.160213
0.C23926 -0.403350 C.689CE5 C.47926C

-0.002021 0.094511 -C.5804C7 0.385179
C.000125 -0.014623 C.220196 -C.658626
0.0 0.001642 -0.05327C C.378839
C.C -0.000141 0.C09258 -C.132026
0.0 0.c -0.001230 0.032520
0.0 00 0.000130 -0.006C93
C.0 0.0 0.0. 0.0009C8

1.000000 1.000000 1.00000 1.CCOI

SUM OF
S CU A R ES
C. 999862
0.990714
C.867792
C. 494172
0.432488
C. 146360
0.C17517
C.001059
C.CCCC37
0.0C00001

EIGEN
VALUES



EXPANSION CCEFFICIENTS FCR
bCUGH FUNCTICNS OF ZONAL 1%,AVE NUMBER L= -4~

SYMMETRIC EIGENFUNCTICNS ANC EIGENVALUES

EIGEN
VA LLES

19.035 54.401 111.555 191.360

H( -4, 4) HI -4, 6) H( -4, 8) H( -4,10)
P( -4, 4) C.995448
P( -4, 6) -0.095091
P( -4, 8) C.CC6437
P( -4,10) -C.000297
P( -4,12) C.C
P( -4*14) 0.0
F( -4,16) 0.0
P( -4,18) .C
P( -4,20) 0.0
P( -4,22) 0.0
SUM OF
SCUAPES 1.CC0000

ANTI-SYMMETRIC

E IGEN.
VALUES

34. 079

H( -4
P( -4, 5) C.9
P( -4, 7) -C.1
P( -4, 9) 0.0
P( -4,11) -0.0
P( -4,13) C.C
F( -4,15) C.0
P( -4,17) C.0
P( -4,19) C.0
F( -4,21) 0.0
P( -4,23) C.C
SUM OF
SCUtRES 1.0

, 5) H
81237
91592
21540
C1601
C0CCE5

0.092552 C.021178 C.007358
0.948463 0.277436 C.104736

-0.29S865 C.799732 0.434516
0.C49644--C.506S68 C.529C46

-0.005360 0.152039 -C.646695
0.000412 -C.02E790 0.306299
0.0 0.0C3867 -0.088676
0.0 -0.000392 0.018047
0.0 coo -C.CC2771
0.0 0.0 0.000335

1.000000 1.C00000 1.C000CC

EIGENFUNCTICNS AND EIGENVALLES

80.166 148.591 239.910

C -4, 7) H( -4, 9) H( -4,11)
0.182797 0.055422 0.C22454
0.889544 0.365154 0.165201

-0.4C7983 0.678361 0.475ES4-
0.093053 -C.591669 0.359464

-0.013624 0.224574 -C.666479
0.001418 -0.0532C2 C.39C763

-0.000111 0.008910 -0.136012
0.0 -0.001127 0.033003
0.0 C.000112 -C.C06C27
0.0 0.0 C.000868

SUM OF
SCUAR ES
C.999985
0.996605
0.917790
0.5414C2
0.441359
C.094648
C.CC7878
0.C00326
C.C0oooe
C.Co0000

SUM OF
SCUARES
C.SSSE17
0.988625
C.6853563
C.487947
0.-494814
0.15552E
0.016579
001090
C.CCC036
0000C001

00000 1.CCoooo 1.000000 1.C00C0



- EXPAASICN CCEFFICIENTS FOR
CUGH FUNCTICNS OF ZONAL WAVE AUMBER L= -3

SYMMETRIC EIGENFUNCTICNS ANC EICEAVALUES

95

EIGEN
MIALUES

Pc -3, 3)
F( -3, 5)
Pc -3, 7)
Pc -3, 9)
P( -3,11)
P( -3,13)
F( -3,15)
Pc -3,17)
Pc -3,19)
P( -3,21)
SUM OF
SCUARES

11.058 40.256 91.463 165.571

H( -3, 3) H( -3, 5) H( -3, 7) H( -3, 9)
C.996176

-C.C87233
C.C04768

-0.000165
0.0
coo
C.o
C.o
0.0
c *o

1.000000

ANTI-SYPPETRIC

EICEN
VALLES

23.000

H( -3, 4)
P( -3, 4) C.982386
Pt -3, 6) -C.185932
F( -3, 8) 0.018571
P( -3,10) -C.001160
P( -3,12) C.000050
P( -3,14) 0.0
P( -3,16) co
F( -3,18) C.0
P( -3,20) C.C
P( -3,22) C.C
SVP OF
SCUARES 1.CCOOOO

0.084576
0.949419

-0.298776
0.C46500

-0.C045C9
0.000302
0.0,
0.0
0.0
0.0

C.020113
0.274032
C. 7931C2

-C.520676
C.153611

-C.027912
0.003523

-C.000330
0.0
0.0

C.CC7450
0.1C7799
C.433535
C*504924

-C.660379
0.317349

-0.090996
0.018036

-0.002662
0.0003C7

1.000003 1.000000 1.CO0CCO

EIGENFUNCTICNS ANC EICENVALUES

63.036 125.621 211.362

H( -3, 6) H( -3, 8) H( -3,10)
0.176039 0.055676 0.023938
0.888165 C.364315 0.171289

-0.414319 0.663773 C.470857
0.C914C8 -0.606180 0.325970

-0.012511 C.23C6 2 -C.675235
0.001187 -C.C53397 0.40617C

-0.OCCC83 C.0C8579 -0.141515
0.0 -0.001026 C.C3383C
0.0 0.000095 -0.006015
0.0 C.0 C.CC0835

1.000000 1.000000 1.000001

SUM OF
SCUARES
C.999981
0.995721
C.936253
C.528214
0.459717
0.1C1490
0.CC8293
0.000325
C. CCC CC7
0.000000

SU CF
SCLARES
0.999746
C.985473
C.6834306
0 .4 820 68
C.5C9300
G. 167826
G.C20100
C..C01146
C.C00036
0.C00001



. EXPANSICN CCEFFICIENIS FOR
hCUGH FUNCTICAS OF ZONAL NAVE NUMBER L= -2

SYMMETRIC EIGENFUNCTICNS AND EIGENVALLES

EIGEN
VALUES

5. 233 28.291 73.661 142.245

P( -2, 2)
P( -2, 4)
P( -2, 6)
P( -2, 8)
P( -2,1C)
P( -2,12)
P( -2,14)
P( -2,16)
P( -2,18)
P( -2,20)
SUP OF
SCJJIRES

H( -2, 2) H( -2, 4) H( -2, 6) H( -2, 8)
0.997212

-C.C74568
0.002848

-0.000062
C.C
0.0
c.0
0.0
0.0
C.e

1.000000

ANTI-SYMMETRIC

EIGEN
VALLES

F( -2, 3)
P( -2, 5)
PC -2, 7)
PC -2, 9)
P( -2,11)
F( -2,13)
P( -2,15)
PC -2,17)
PC -2,19)
PC -2,21)
SUM OF
SCLARES

14.077

H( -2, 3) H
0.984072

-C. 177148
0.014837

-0.000724
0.0
0.0
C0
C.C
0.0
CC 0

0.071942
0.950658

-0.298745
0.042565

-0.0C3581
0.000201
0.0
0.0 .
0.0
0.0

0.017875
0.269415
0.783215

-C*537C79
C. 156436

-0. 027101
0.003 182

-C.000272
0.0
0.0

O.0C7129
0.111437
C. 431799
C.4711C9

-0.677547
C.3328C2

-0.0947C7
0.018268

-0.0025E6
0.000282

1.000000 1.000000 1.0CCO

EIGENFUNCTICNS AND EIGENVALUES

48.111 105.020 185.381

C -2, 5) H( -2, 7) H( -2, 9)
0.165933 0.055261 0.025453
0.885927 0.363396 0.178922

-0.423591 0.642715 C.462791
0.089681 -0.625610 0.280433
-0.011294 0.239623 -C.684569
0.0C0958 -C.054142 0.4269CC
0.0 0.008309 -0.149537
0.0 -C.000934 C.C35276
0.0 0.0 -0.0061C6
0.0 00 0.000816

SUM OF
SCUARES
0.999977
0.994314
C.889132
0.5 122 1W
0.483555
0.111492
0.CC8980
C.CCC334
C.CCC07
0.00C0000

SUM OF
SCUARES
C.999634
0.980318
C.8C69C8
0.476C73
0.526181
C0185176
0.C22430
0 C01245
C. CCC37
0.000001

1.000001 1.600001 1.000001 1.C00001



EXPASICN CCEFFICIENTS FCR
CUGH FUNCTICNS OF ZONAL hAVE NUMBER L= -1

SYMMETRIC EIGENFUNCTICNS AND EICENVALUES

EIGEN
VALUES

1.556 18.535 58.270 121.614

H( -1, 1) H( -1, 3) HC -1, 5) 1, ( -1, 7)
PC -1, 1) C.998679 0.C49264 0.012806 0.005559
F( -1, 3)'-0.051378 0.952150 0.263017 0.115812
P( -1, 5) C.CCC038 -0.29.9262 0.766798 0.428497
P( -1, 7) 0.0 0.037664 -C.561815 C.420007
P( -1, 9) C.0 -0.002614 0.162046 -C.699403
P( -1,11) 0.0 0.000116 -0.026624 0.356053
P( -1,13) 0.0 0.0 C.C02880 -0.101164
P( -1, 15) C.C 0.0 -0.000222 0.019036
P( -1,17) C.0 0.0 C.0 -C.C025E6
P( -1,19) 0.0 0.0 0.0 0.000267
SLM OF
SCUARES 1.C00001 1.000000 1.000000 1.CO0CCC

ANTI-SYMMETRIC

EIGEN
VALUES

F( -1, 2)
P( -1, 4)
P( -1, 6)
P( -1, 8)
P( -1,10)
P( -1,12)
P( -1,14)
P( -1,16)
F( -1,18)
P( -1,20)
SUP OF
SCUIRES

7.310

SUM OF
SCLARES
C.999982
0.91820
0.861147
0.493528
0.515430
C.127482
C.C1C242
0.C00362
C.C00007
0.CCCooo

EIGENFUNCTICNS AND EIGENVALLES

35.4E5 86.962 162.267

H( -1, 2) H( -1, 4) H( -1, 6) t-( -1, 8)
C.986742 0.149281 0.053C28 O.C2643

-C.161979 0.881689 0.362637 0.183863
C.010160 -0.438673 C.6CS477 C.448412

-0.000337 0.088350 -C.653013 C.214582
C.0 -0.01CC43 C.254114 -0.693C32
0.0 0.000743 -C.056138 C.456415
0.0 0.0 0.008213 -0.162213
C.C 0.0 -C.000864 0.037956
0.0 0.0 0.0 -0.CC6A15
C.C 0.0 0.Q 0.000828

1.000000 1.000001 1.000001 1.C30CC1

SUM OF
SCLARES
C. 999457
0.970787
C.765127
0.480278
0.544969
C.211521
C.C26381
C.CC1441
0.CCCC41
O C C 3001



EXPANSION COEFFICIENTS FOR
t-CUGH FUNCTICNS OF ZONAL WAVE NUMBER L= C,

SYMMETRIC EIGENFUNCTICNS AND EIGENVALUES

EIGEN
VALUES

11.101 45.617 104.274 187.445

P( 0, 0)
p 0, 2)
PC C, 4)
Pc 0, 6)
Pc 0, 8)
P( 0,10)
PC 0,12)
P( 0,14)
Pc 0,16)
Pc 0,18)
P( 0,2C)
F( 0,22)
SLM OF
SCUARES

H( 0, 2) H( 0, 4) H( 0, 6) H( 0, 8)
c.0
0.952265

-C. 303573
0.032122,

-0.001716
C.C00055
0.0
c.0
0.0
0.0
0.0
0.C

1.0C0000

ANTI-SYMPETRIC

EIGEN 2.703
VALUES

Pc 0,
PC 0,
Pc o,
Pc 0,
F( 0,
FC 0,1
PC 0,1
F( 0,1
Pc 0,1
Pc 0,1
SLM CF
SQLARES

1)
3)
5)
7)
9)
1)
3)
5)
7)
9)

0.0
0.254643
C.733842

-0.6C4289
0.175243

-0.027412
0.002728

-0.000189
0.0
0.0
0.0
0.0

0.0
0.121459
C.420358
0. 332460

-0.726672
C.395561

-0.1141E6
0.021211

-0.0027ES
0.000275
C.0
0.0

0.c
0.C73174
C.267869
C.3581E5

-C.096282
-0.600398

C.5874C2
-0.270813
C.C78727

-0.016185
0.002509
-0.0003C6

SUM OF
SCUARES
0.0
C.991758
0.879134
C.605023
C.568036
0.517698
0. 3580E7
0.073790
0.CO6206
0.000262
0.000006
C.CCCCoo

1.000000 1.000000 1.0C3000

EIGENFUNCTICNS AND EIGEAVALLES

25.373 71.900 142.778

H( 0, 1) H( 0, 3) h( 0, 5) H( C, 7)
C.914C8 0.117C78 0.045234 0.024754

-C.130722 0.871187 C.363C24 C.2C2517
0.004661 -0.4682C4 0.548326 0.418120

-C.0C0077 0.089609 -C.694633 C.109364
0.0 -0.009060 0.281306 -C.694556
0.0 0.000572 -0.061520 C.502887
C.0 0.0 0.008643 -C.185214
0.0 0.0 -C.000855 0.043637
0.0 C-.0 0.0 -0.007288
C.0 0.0 0.0 0.0C0017

1.C00000 1.000000 1.000001 i.0OCCCl

SLIv CF
SCLARES
0.999256
C.948678
0.694722
0.502505
C. 56 1622
0.2956681
C. 34379
0.CC19C5
0.0C00053
C. CCCl



EXPANSICN CCEFFICIENTS FOR
hCLGH FUNCTICAS OF ZONAL WAVE AUMBER L=

SYMPETRIC EIGENFUNCTICNS ANC EICENVALLES

6.734 37.95 92.604 173.567

H( 1, 1) H( 1, 3) H( 1, 5) H( 1, 7)
0.937637

-0.346065
0.032555

-C.001384
C.000034

-0.000001
0.CCOOOO

-C. C0occo
c.0
c.0
0.0
C.0
C.C

0.257775
0.632025

-0.696041
0.2200C6

-0.034773
0.003351

-0.000219
0.0COO010

-0.00000C
0.CC0o CO

-0.0000000
0.000000
0.0

0.135686 0.C88029
C.383567 0.259137
0.137349 0.2C8198
-0.747753 -0.2770C7
C.482477~-C.491967

-0.151042 0.656672
C.029200 -0.345514

-0.003896 0.1C8729
0.000383 -0.023534

-C.000029 C.CC3712
C.000002 -0.000469

-0.000000 0.000047
0.000000 -C.C03CC4

SUM CF
SCLARE-S
0.971771
C.733507
C. 547744
0 *684272
0.476024
0.454Ci3
0.120233
C.C 11837
0.COC554
0. C000014
C.CCCCOO
0.000000
C. C 00000

ES 1.CCOOCO 1.CCooo 1.000000 1.000CCC

ANTI-SVMMETRIC EIGENFUNCTICNS AKC EIGENVALUES

18.808

H 1, 2)
C.825998

-0.553053
C.1C8415

-C.0C1C31
0.000583

-C.C00022
C.000001
0.0
C.0
0.0
0.0
C.0
0.0

61.679 129.896 223.62C

H( 1, 4) H( 1, 6) F(
0.3664C8 C.220813
0.39C970 C.323962

-0.763298 -0.C05CC8
0.351536 -C.652583 -

-0.080954' 0.59C795 -

0.011502 -0.242018
-0.001121 0.060625 -

0.000080 -C.01C490
-0.CCCCO4 C.001343 -
0.0 -C.C00133
0.0 0.000011 -
0.0 -C.CCcoo
0.0 0.0

SLP OF
1, 8) SCLARES

0.152498
0.246856
C. 62183
0.388353
0.289251
0.6660C4
0.4487%9
0.174033
0.045965
C. CC8971
0.001360
0.000166
0.00)017

0.B88541
0.624614

.6C 727C
C.7CC366
0.43 259
0.502267
C.2C5C88
0.03C398
0.002115
C.CCCC8C
C. CCCC 02
C.CC0000
c.CcCCCC

1.000000 10000000 1.occc0 1.C0cCCC

EIGEN
VLLES

PC 1,
P( 1,
PC 1,
PC 1,
PC 1,
PC 1,1
P( 1,1
P( 1,1
PC 1,1
PC 1,1
P( 1,2
PC 1,2
PC 1,2
SLM OF
ISCLAR

1)
3)
5)
7)
9)
1)
3)
5)
7)
9)
1)
3)
5)

EICEA
VALLES

PC 1,
PC 1,
P( 1,
PC 1,1
PC 1,1
PC 1,1
P( 1,1
PC 1,1
PC 1,1
PC 1,2
PC 1,2
P( 1,2
PC 1,2
SLM OF
SCLARES

2)
4)
6)
8)
0)
2)
4)
6)
8)
0)
2)
4)
6) -



- E)PANSICN CCEFFICIENTS FOR
KCUGH FUNCTICNS OF ZONAL WAVE AUMBER L= 2

SYPMETRIC EICENFUNCTICAS ANC EIGENVALUES

E )GEN
VALUES

12.462

100

47.66C 106.743 190.214

P( 2, 2)
Pt 2, 4)
P( 2, 6)
P( 2, 8)
P( 2,1C)
Pt 2,12)
F( 2,14)
Pt 2,16)
Pt 2,18)
Pt 2,20)
P( 2,22)
Pc 2,24)
Ft 2,26)
SUM OF
SCLARES

h( 2, 2) H( 2, 4) H( 2, 6) F( 2, 8)
C.9627C8

-0.268877
C. C 299 10

-0.001739
C.C0CC62

-C.coco
C.COOOOO

-C. CCCCCO
C. 000000
co
C.c
C. C
0.0

0.228431
C.750658

-0.5941%6
0.174547

-0.028C58
0.002688

-0.000208
0.000011

-0.0C0000
0.0C0000

-0.000000
0.CCCCCC
0.0

0. 105E93
0.42197C0
C.342C66

-0.723269
C.395859

-C.115799
C.021874

-0.002931
C.C0C295

-C.COCC23
0.000001

-C.CC0000
0.000000

0C.C62925
C.266311
0.364523

-C. C92896
-C .597958
0.567225

-0.272972
0.080172

-C.C16612
C.CC2616

-C.0003 23
0.000032

-C.CCOCC3

SUM OF
SCLARES
C.994161
0.884763
C.6C3850
0.562217
C.515045
C.358251
C.C74992
0.306436
C.OC0278
0. CCCCC7
.C0oc00

0.C00000
0.CCCCCo0

1.CCOOOO 1.0C0000 1.CCCCCC 1.CCOCCC

ANTI-SYMMETRIC EIGENFUNCTICNS AND EICENVALLES

EIGEN
VtLUES

27. 121 74.177 145.409 241.189

H( 2, 3) H( 2, 5) H( 2, 7) H( 2, 9)
P( 2, 3)
P( 2, 5)
P( 2, 7)
P( 2, 9)
P( 2,11)
P( 2,13)
P( 2,15)
P( 2,17)
P( 2,19)
P( 2,21)
F( 2,23)
P( 2,25)
P( 2,27)
tLM OF
SQUARES

C.EE8712 0.355676
-C.449822 0.561821
C.088118 -0.689011

-0.009316 0.281261
C.CC062C -0.062649

-0.000029 0.0090C6
C.00001 -0.0CC914

-0.C00000 0.000069
C.CC0000 -0.0000C4

-C.CCo0CO 0.CC00C0
0.0 -0.000000
C.C 0.C00000
c.0 -0.000C000

C. 195323
0.423556
0.115459

-0.692C05
C. 503138

-C.187203
C.044675

-0.007570
0.000967

-C.00CC97
C.COCCC8

-0.000001
C.000000

0. 126179
C.304346
(.2 569(9

-C.26C29 2
-C.451779
0.633965

-0.365669
C.129912

-0.03245 7
0.006111

-0. CC39C6
0.0001C9

-0.00011

SUM OF
SCUARES
C.97(386
C0.790CC9
C.561834
C.625818
0.461178
0.437038
0.135710
0. C16934
0.C c1054
0.000037
C. CCCCC1
0.000000
C.C0000O

1.CCCOOO 1.CC0CO 1.C00000 1.000000



101

EXPANSICN CCEFFICIENTS F R
F-CUCH FUNCTICNS OF ZONAL WAVE AUMBER L= 3

SYMMETRIC EIGENFUNCTICNS AND EIGENVALLES

20. 450

.( 3, 3) H( 3
0.972315 0.2

-C.231893 0.8
C.C28728 -0.5

-0.002079 0.1
0.000098 -0.0

-0.000003 0.0
0.0 -0.0
c.0 0.0
0.0 -0.0
c.c 0.0
0.0 0.0
.C 0.0

0.0 0.0

619276 125.379 213.292

, 5) Hi 3, 7)
07817 0.085685
C3626 C.421437
35644. 0.450442
53039 -0.692498
25572 'C.349571
02847 -C.100123
30228 0.019134
D0014 -0.002(51
30001 0.000280

-C.000023
0.000002
0.0
0.0

EIGEN
VALUES

FC 3,
PC 3,
PC 3,
P'( 3,
P( 3,1
FC 3,1
P( 3,1
P( 3,1
P( 3,1
PC 3,2
PC 3,2
P 3,2
P( 3,2
SUM OF
SCLARES

ANTI-SYMMETRIC

h(i 3, 9)
0.046175
0.246234
C.429225
0.030425

-C.63315';
C0.538898

-0.236562
C.C679CC

-0.014C06
0.002237

-C.000282
0.000029

-0.0003C3

SUM OF
SCLARES
C.998058
0.937829
0.674872
C.5C3905
0.523-144
C.200444
0.056328
0.C04617
0.000198
0*000005
C. C00
0.CC0CCC

0.000O0

1.c00c0C

EIGENFUNCTICNS ANC EIGENVALUES

EIGEN
VALUES

P( 3, 4)
P( 3, 6)
P( 3, 8)
P( 3,10)
P( 3,12)
PC 3,14)
P( 3,16)
P( 3,18)
P( 3,20)
PC 3,22)
FC 3,24)
PC 3,26)
PC 3,28)
SUM OF
SQLARES,

38.C01

h( 3, 4)
C.914728

-C.396181
0.C78918

-0.009208
C.000710

-0.000039
C.C00C02
0.0
C.0
0o.0
0.0
C. 0
0.0

1.000000

900 377

i( 3 6) 1
0.336790
0.6 4654

-0.6 8191
0.2 6194

-0.C 5014
0.018217
-0.CC887
0.000073

-0.003005
0.0
0.0
0.0
0.0

1.00000

166.336 266.285

H( 3, 8) H( 3,10)
0.168334 0.100186
C.453122 0.304480
0.238805 C.354340

-0.691316 -0.153864
0.451499 -C.523044

-0.161376 C.599037
0.038216 -C.320568

-0.00656C 0. 109856
0.000862 -0.027C43

-C.CCO090 C.0C5CE9
C.COCCC8 -C.0C0762
0.0 0.003C93
0.0 -C.CCCO1C

1.000000

SUP CF
SCLAPES
0.968528
0.870566
C. 5961C1
0.562288
C.48C454
C.364956
0.104238
0.C12111
0.CCC732
C.C00026
C.CoCC0
o*CC0000
0.cCCC00

1.000000

1.CCOOOO 1.090000 1.000000

3)
5)
7)
9)
1)
3)
5)
7)
9)
1)
3)
5)
7)



EXPANSICN CCEFFICIENTS FOR
FCUGH FUNCTICNS OF ZONAL hAVE NUMBER L= 4

SYMMETRIC EIGENFUNCTICNS AND EIGENVALLES
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EIGEN
VALUES

P( 4, 4)
Pt 4, 6)
P( 4, 8)
P( 4,10)
P{ 4,12)
P( 4,14)
P( 4,16)
P( 4,18)
P( 4,20)
P( 4,22)
PC 4,24)
P( 4,26)
P( 4,28)
SUP CF
cCLARES

30.624

H( 4, 4)
0.977301

-C.210CC8
C.C 27830

-0.002346
C.000136
0.0
c.
c.0
0.0
coC
0.0
0.0
coo

1.0C00000

77.2317 146.8S5 239.899

4, 6) H( 4, 8) H( 4,10)
0.193726
0.834156

-0.496544
0.139656

-0.C242C2
0.0C2890

-0.000254
0.0
0.0
0.0
0.0
0.0
0.0

0.072442
0.413655
C.519861

-C.665695
-0.318918

-0.0906C8
0.017641

-0.002537
0.OC0282
0.0
0.0
0.0
0.0

1.000000 1.000000

0.035721
C.225647
0.46137 
C.120177

-0.6469C8
C.502749
-0.213090

C.C6C616
-0.012675
0.002054

-C.CC0261
0.0
0.0

1.000000

SUM OF
SCUAPES
0.999171
0.961947
C.730456
0.477102
0.52C785
C.26C575
0-.045718
C. C03681
C.C0 0161
0.000004
C.oC 0000
0.0

0.0

EIGENFUNCTICNS NC E IENVALUES

EIGEN
VALLES

P( 4, 5)
P( 4, 7)
P( 4, 9)
P( 4,11)
P( 4,13)
P( 4,15)
P( 4,17)
P( 4,19)
P( 4,21)
P( 4,23)
Pc 4,25)
P( 4,27)
PC 4,29)
SLM OF
SCLARES

51.157 1C9.205 190.444 295.25E

H( 4, 5)
C.929039

- C. 36 2547
0.073219

-C.0C9234
C.CCC801
0.0
C.0
0.0
c0.
C.C
0.0
0.0
0.0

4, 7) H( 4, 9) H
0.320838
0.6S4530

-0.601194
0.223799

-0.050528
0.0C7851

-0.CCC9CO
0.0
0.0
0.0
0.0
0.0
0.0

0.147865
C.462367
0.322574

-0.682100
0.415 591

-C.145242
C.034505

-0.006C47
0.000821
*C. 0
0.0
0.0
0.0

C 4,11)
0.C81563
0.292462
C.411CE5

-0.068822
-C.561594
C.569023

-C.290409
C.C7615

-0.023973
C.CC4555

-0.000655
0.0
0.0

SLP CF
SCLARES
C.954567
0.913686
C.635840
0.520168
0.491107
0.344944
0.C85529
0.CC9565
C.CC0575
C.000021
C.CCCo0O
0.0
C. C

1.ooo0O1 1.C00001 1.CC0001 1.000000

ANTI-SYPPETRIC
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EXPANSICN CCEFFICIENTS FOR
1-CUGH FUNCTICNS OF ZONAL WAVE NUMBER L= 5

SYMMETRIC EIGENFUNCTICNS ANC EIGENVALLES

42.965 95.639 170.911 269.323

H( 5, 5) H( 5, 7) H( 5, 9) H( 5,11)
5, 5) C.980312 0.183652 0.063317 0.028881
5, 7) -C.195571 C.853986 0.404731 0.207979
5, 9) C.C27081 -0.468446 0.568401 C.478485
5,11) -0.002548 0.130334 -0.643204 0.,188673
5,13) 0.C0C172 -0.0233C C,296719 -0.651542
5,15) 0.0 0.002953 -0.084C54 C.474436
5,17) C.C -0.000281 0.016688 -0.196284
5,19) C.C 0.0 -0.002487 0.05567C
5,21) 0.0 0.0 C.00291 -0.011775
5,23) C.C 0.0 0..0 0.001951
5,25) c.0 0.0 0.0 -C.000262
5,27) 0.0 0.0 0.0 0.0
5,29) C.C 0.0 0.0 0.0
OF
RES 1.000000 1.000000 1.000000

SUM OF
SCUARES
0.999584
C. 74602
C.772202
C.4663C2
0.5 13C92
0.232163
0.C388C6
0.C03105
C.CCC139
0.000004
C.CCcc00
0.C
0.c

1.000000

ANTI-SYMMETRIC

EIGEN
VALUES

EIGENFUACTICNS ANC EICENVALUES

66.523 130.41-1 217.200 ~327.32C

H( 5, 6) H( 5, 8) H( 5,10) H( 5,12)
5, 6) 0.938037 0.308094
5, 8) -C.339422 C.728778
5,10) C.C69222 -0.573059
5,12) -C.CC9277 0.207966
5,14) 0.CCC885 -0.C47491
5,16) -0.000063 0.007651
5,18) C.CCOCC4 -0.0CC926
5,20) -C.CO0000 0.00CC88
5,22) C.C(C000 -0.000007
5,24) -C.CCOOOO 0.0000C0
5,26) 0.000000 -0.000000
5,28) -C.CCOCO 0.000000
5,30) 0.000000 -0.000000
OF
RES

0.132514
0.463823
0.383587

-0.67C867
C.388729

-C.133926
C.032041

-0.005741
0.0C008C7

-C. C00092
0.cococs

-0.000001
C. cccCc

0.068285
0.278180
0.4466E5
-0.0000C4
-C.5852C6

0.543647
-0.268257
C.C89145

-0.021955
0.004228
-0.000659
0.000085

-C. C00CC

SUM OF
SCLARES
0.997058
0.938841
C.679S54
0.493398
C.495832
0.313546
C.072989
C.CC780
C.C00C483
C.CCOO18
C.CCCCc
C.0Cccoo
C. CoCo0

1.CCOOo 1.oCCCC 1.C00000 1.00)000

EIGEN
VALUES

P(
P(
P(
P(
P(
F(
P(
Pf
P(
P(
P(
P(
P(
SUM
SCUA

P(
P(
P(
P(
P(
P(
P(
P(
P(
P(
F(
P(
P(
SU
SCLA



EXPANSION COEFFICIENTS FOR
HCUGH FUNCTICAS OF ZONAL WAVE AUMBER L= 6

SYMMETPIC EICENFUNCTICNS AND EIGEAVALUES,
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57.469 116.186' 197.281 301.286

P( 6, 6).
P( 6, 8)
P( 6,10)
P( 6,12)
P( 6,14)
P( 6,16)
P( 6,18)
P( 6,20)
P( 6,22)
P( 6,24)
P( 6,26)
SLM CF
SQUARES

H( 6, 6) H( 6, 8) H( 6,10) Hl 6,12)
C. 98 23 13

-0.185352
C.026444

-0.C02700
0. 000 204
0.0
0.0
0.0
c.C
0.0
C.0

1.000000

0. 176141
0.867859

-0.447262
0.123406

-0.022643
0.0C3018

-0.0003C8
0.0
0.0
0.0
0.0

1.000000

C.056727
0.396258
'0.604253
-0.62435E
0.279785

-C.C79207
0.016021

-0.002468
0.000302
0.0
0.0

0 . 024148
C. 193316
C.487747
C.242647

-C.651783
0.451588

-0.183525
0.05205C

-0.011149
0.CO1869

-0.000261

SUM OF
SCLAPES
0.999765
C.9 81927
.0.803762
C.463937
0.503614
0.210215
0.C3 3938
0.C02715
0.000124
C.COCCC4
c.ocooo

1.000000 1.000000

ANTI-SYPMETRIC EICENFUNCTICNS AND EIGENVALLES

84.074 153.898 246.395

P( 6, 7)
P( 6, 9)
P( 6,11)
P( 6,13)
P( 6,15)
P( 6,17)
P( 6,19)
P( 6,21)
P( 6,23)
P( 6,25)
P( 6,27)
SLM OF
SQUARES

h( 6, 7) H( 6, 9) H( 6,11) H( 6,13)
0.944188 0.2i7889 C.120776 0.C58568

-C.322549 0.753088 C.462000 0.264418
0.C66222 -0.55C965 C.43C041 C.470059

-0.CC9311 0.196092 -0.659627 0.056538
C.CCC959 -0.045264 0.367749 -0.599617
0.0 0.007530 -0.125459 C.5221C3
C.C -0.0CC956 C.030266 -0.251131
0.0 0.0 -0.005541 C.C82861
c.0 0.0 0.000804 -C.C20514
0.0 0.0 C.0 C.CC4CCE
0.0 0.0 0.0 -0.00063;

1.000001 1.000001 1.000001 1.CCoCCC

SUI CF
SCLARES
0.998245
0.954541
C.713839
0.476843
C.4S6829
0.288386
0.C63984
0.,C6897
0.COC421
C.CO0016
0.Cccc00

EIGEN
VALUES

EICEN
VALUES
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EXPANSION COEFFICIENTS FOR
hCUGH FUNCTICNS CF ZONAL WAVE NUPBER L=

SYMMETPIC EIGENFUNCTICNS ANC EIGENVALUES

74.131 138.932 225.933 335.656

h( 7, 7) H( 7, 9) H(- 7,11) H( 7,13)
C.93731

-0.17775C
0.025899

-C.CC2817
C.000234

-C.000015
C. COCCI

-0.Cc0000
C. C C0000

-C.CC0000
0.0
0.0
0c

0.170343
0.878C83

-0443C722
0.118032

-0. 022132
0.003078

-0.0CC333
0.000029
-0.00002
0.CCCCCC

-0.000000
0.CCOOOO

-0. 0000 00

0.051782
0.388636
0.631788

-0.608454
0.266400

-0.075451
0.015526

-C.C02465
0.000313

-C. CC0033
0.000CC3

-0.000000
C.CCCCCC

C.020747
0.1811E4
C.492627
C.286217

-0. f4979'
C.432745

-0.173458
0. C49268
-0.010688
0.C01851

-0.000263
0.000032

-C.CC0CC3

ES 1.CCOOOO 1.CCCOOO 1.CCOOOO 1.00)000

ANTI-SYMMETRIC EIGENFUNCTICNS NC EICENVALUES

103.799 179.620 277.929 399.154
S

H(~ 7, 8) H(c 7,10) H( 7,12) H(t 7,14)
P( 7, 8)
P( ~ 7,10)
P( 7,12)
P( 7,14)
P( 7,16)
P( 7,18)
P( 7,20)
P( 7,22)
P( 7,24)
P( 7,26)
P( 7,28)
P( 7,30)
P( 7,32)
SLM OF
SQLARES

C.94864 0
-0.3CS9701
C.063871

-C.CC9332
0.001024

-C.CC0C88
C.000006

-0.00cooo
C.oCCOC0

-0.0ccoco
C.CCO0OO
C.C
0.0

0.2E86C8
0.771360

-0.533173
0.186825

-0.043544
0.007450

-0.0CC987
0.C001C5

-0. CCCCC9
0.c00001

-0.000000
0.CCOCCO

-0.000000

C. 111589
0.45E791
0.466565

-C.649C59
C.350866

-0.118850
0.028911

-0.005403
C.CCSC8

-C.00CC99
C.000010

- C.000001

0 .051265
C.251958
0.4E5888
0.10364E

-C.6C8712
C.503666

-0.237431
C.C7797

-0.C19430
C.CC3852

-0.000627
C.CCCCE6

C.CCCOOO -0.000010

SU GF
SCLARES
C.99SE55
C.c86491
C.E28C29
0.466076
0.493698
0.192970
0.C30329
0.CC2433
0.CO0114
C.C00003
c.Ccoccc
C.CCM:coo
C. CrCCoG

SLM OF
SCLARES
0 .98871
0.964883
C.742 123
C.46701 1
C.495535
0.267861
0.C57211
0.C06111
0.000378
C. 00CC15
0.CCCCCC
C.000000
C.CCCCCC

1.000000 1.CCCooo 1.000000 1.CCOCCC

7)
9)
1)
3)
5)
7)
9)
1)
3)
5)
7)
9)
1)

EIGEN
VALUES

F( 7,
Pc 7,
P( 7,1
P( 7,1
P( 7,1
P( 7,1
P( 7,1
P( 7,2
Pc 7,2
P( 7,2
Pc 7,2
Pc 7,2
P( 7,3
SUm OF
SCLAR

EIGEN
VALLE
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EXPANSION' CCEFFICIENTS FOR
HCLGH FUNCTICNS OF ZONAL WAVE NUMBER L= 8

SYPPETRIC EICENFUNCTICNS ANC EICENVALUES

92.950 163.862 256.827 372.354

SUP CF
H( 8, 8) H( 8,10) H( 8,12) H( 8,14) SCLARES

Pc 8, 8) .. 984785 0.165744 0.047944 -0.018197 0.9999C3
P( 8,10) -C.171879 0.865915 0.381896 0.171073 C.98949B
F( 8,12) C.C25430 -0.417454 C.653574 C.49494 C.47048
P( 8,14) -0.CC2906 0.113730 -0.5949C7 0.322086 0.47C597
P( 8,16) C.000260 -0.021718 C.255539 -C.646693 0.483983
P( 8,18) -0.000019 0.003133 -0.072443 0.416933 0.179091
P( 8,20) C.CO0001 -0.0CC356 C.015140 -C.165289 0.027550
P( 8,22) -C.CCOOO 0.000033 -0.00246S 0bC47056 0.002220
P( 8,24) C.CC0000 -0.000003 0.000326 -C.010334 C.C0C107
P( 8,26) -C.CCOOOO 0.CCCC00 -0.000036 0.001826 0.000003
P( 8,28) 0.0 -0.0000CO C.CCOCO3 -0.0002e7 C.CCCCCC
P( 8,30) 0.0 0.000000 -0.000000 0.001C33 0.000000
P( 8,32) 0.0 -0.000000 C.00000 -0.CCOCC3 C.C00000
SLM OF
SCLARES 1.COOOO 1.CCOCOO 1.000000 1.00)000

ANTI-SYMMETRIC EIGENFUNCTICNS ANC EICENVALUES

P(
P(C
F(C

P(
P(C
P(C
P(C
P(C

F(C
P(C
P(C
P(
SUM
SQUA

125.689 207.551 311.746 438.694

SUM OF
H( 8, 9) H( 8,11) H( 8,13) I-( 8,15) SCUARES

8, 9) C.9520C5 0.2E27E5 C.104251 0.045624 0.999231
8,11) -0.299595 0.765575 C.455064 C.240913. C.972C007
8,13) 0.C61974 -0.518550 C.496001 0.496845 C.7656CE
8,15)- -C.C09342 0.179378 -0.639365 C.143410 C.461618
8,17) 0.001080 -0.042168 0.336972 -C.61I445 C.492E73
8,19) -C.OCCC99 0.0073S4 -C.11353C 0.487753 0.250846
8,21) 0.0000C7 -0.001017 C.027853 -C.22616 C.C51941
8,23) -0.0C0000 0.000113 -0.005304 0.074C81 0.CC5516
8,25) C.CCCOCO -0.000010 C.00815 -0.018581 0.C00346
8,27) -0.000000 0.000001 -0.000104 0.C03737 0.CCCC14
8,29) C.CC000.0 -0.000000 0.000011 -0.000621 C.C000
8,31) 0.0 0.CCCCC -0.000001 0.000CEi C.CCCCCO
8,33) 0.0 -0.000000 C.000000 -0.0C0011 0.0000CC
CF
RES 1.000000 1.000000 1.000000 1.CCOCCC

EICEN
VALLES

EIGEN
VALLES
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EPANSICN CCEFFICIENTS FOR
HCUGH FUNCTICNS CF ZGNAL WAVE NUMBER L= 9

SYPMETPIC EIGEAFUNCTICNS AND EICENVALLES

ElGEN 113.926 190.967 289.939 411.335
WALUES

SUM OF
F( 9, 9) H( 9,11) H( 9,13) H( 9,15) SCLARES

P( 9, 9) 0.985599 0.162010 0.044902 0.016250 0.999933
P( 9,11)--C.167212 C.892C96 0.375967 0.162573 C.991577
P( 9,13) 0.025023 -0.40.6577 0.671219 0.495734 0.862218
P( 9,15) -C.C02976 0.110204 -0.583259 C.352C9C 0.476313
P( 9,17) C.000283 -0.021371 0.246542 -C.a43C50 C.474753
P( 9,19) -0.000022 0.003181 -0.C69974 C.403476 0.1677CO
P( 9,21) C.CCOCC1 -0.C0C378 C.014831 -0.158519 0.02534E
P( 9,23) -0.OCOOOO 0.000037 -C.C02478 0.045250 0.CC2C54
Pt 9,25) C.CC0000 -0.000003 0.000338 -0.010054 C.C00101
P( 9,27) -C.CC000 0.CCCCCO -C.C00038 C.OC1EC C.000003
F( 9,29) 0.000000 -0.000000 C.000004 -C.000271 C.CCOOC0
P( 9,31) C.C 0.CC0000 -0.000000 0.000035 0.COCOO
P( 9,33) 0.0 -0.000000 C.CCCCOC -C.COCC4 O.CCCOOO
SUM OF
SCUARES 1.000000 1.0Coco 1.COOOO 1.000000

ANTI-SYMMETRIC EIGENFUNCTICNS AN EICENVALUES

EIGEN 149.743 237.676 347.809 480.557
VALUES

SUM OF
h( 9,10) H( 9,12) H( 9,14) H( 9,16) SCLARES

P( 9,10) C.954633 0.277C83 C.098265 0.041175 C.999450
P( 9,12) -0.291443 0.796933 0.451225 C.231195 C.577C97
P( 9,14) 0.C60407 -0.506326 0.520213 0.504544 C.785201
P( 9,16) -0.009343 0.173256 -C.630562 C.177350 C.459167
F( 9,18) 0.001128 -0.041035 0.325331 -0.617SI4 0.489418
P( 9,20) -C.CCO1IO 0.007353 -0.109147 0.473902 0.236550
P( 9,22) C.CCCC09 -0.001045 0.026.89 -C.2168C2 0.047733
P( 9,24) -0.000001 0.000122 -0.005229 C.07C875 0.C05051
P( 9,26) C.CC0000 -0.OCOC12 C.0C824 -0.017899 0.000321
P( 9,28) -C.CCOCOO 0.000001 -. CCOiC8 0.CC365C C.C00013
F( 9,30) C.CC0000 -0.CO0000 0.000012 -0.000619 0.002000
P( 9,32) C.C 0.0000CO -C.CCCOC1 C.CCOC89 C.CC0co0
F( 9,34) 0.0 -0.000000 C.C00000 -0.000011 C.CCCCOC
SLM CF
SQLARsES 1.000000 1.000000 1.000000 1.000CCC



EXPANSION CCEFFICIENTS FOR
HCUGH FUNCTICNS OF ZONAL WAVE NUMBER L= 10

SYPPETRIC EIGENFUNCTICNS ANC EICENVALUES

108

EICEN
VALLES

P( 10,10)
P( 10,12)
P( 10,14)
P( 10,16)
P( 10,18)
Pc 10,20)
P( 10,22)
P( 10,24)
F( 10,26)
Pc 10,28)
F( 10,30)
F 10,32)
P( 10,34)
SLM OF

QLARES

131.057 220.242 325.252 452.56f

H( 10,10) H( 10,12) H( 10,14) H( 1C,16)
0.986245

-0.163413
0.024669

-0.003031
C.C00303

-0.000025
C.CCO002

-0.CCO0000
CoCCOOO

-C.CCocco
0.cC0000
0C c
0.0c

0.158921
0.897C94

-0.397501
0.107258

-0.021075
0.003223

-0.0CC3c8
0.000041

-0.000004
0.CC0000

-0.000000
0.000000

-0.000000

0.042439
C.370746
0.685790

-0.573153
C. 23896 

-0.067905-
C.014575

-0.002489
0.000349

-C.000041
C.000004

-0.000000
0.000000

0.C147C3
0.155349
0.495579
C.377539

-C.639199
0.391887

-C.152810
0.C43744

-0.009826
C CC18 Cl.

-0.000276
0.000036

-0.COOC(4

SUP CF
SCLARES
0.999951
0.993068
C.874523
0.482554
0.466124
0,158197
0.C23563
0.CC1920
0.00C97
C.000003
C.CCCCCC
0.000000
C.COOOO

1.CCOOO 1.CCOOO 1.000000 1.000000

ANTI-SYMMETRIC EIGENFUNCTICAS AAW EICENVALUES

EIGEN 175.958 269.985 386.098 524.703
VALLES

P( 10,11)
F( 10,13)
P( 10,15)
P( 10,17)
F( 10,19)
P( 10,21)
P( 10,23)
P( 10,25)
P( 10,27)
F( 10,29)
P( 10,31)
P( 10,33)
P( 10,35)
SIM CF
SCUARES

H( 10,11) H( 10,13) H( 10,15) F( 10,17)
0.956739 0.272250 C.093315

-0.2E4730 0.806210 0.447477
C.C59C89 -0.495959 0.540454

-(.CCS338 0.168131 -0.622595
0.001171 -0.04CC84 0.315435

-0.CCO120 0.0C7321 -0.105469
0.CC0010 -0.001071 0.026272

-0.000001 0.000129 -0.005172
C.CC0000 -0.OCCO13 C.000834

-0.CCOOOO 0.COOOC1 -0.000113
C.CC00 -0.COOCO 0.000013

-0.000000 0.CCCOOO -0.000001
0.0 -0.03000 0.00000

0.037593
C.222645
C . 51)0 C 4
0.206619

-0. 620027
0.461752

-C.208E2,6
0.C68192

-0.017337
0.C03582

-0.000618
0.COOCC1

-0.00012

SLM OF
SCLARES
0.999590
C.98C853
0.801663
0.45E672
0.4E554C
0.224392
C.C44299
0.CC4677
D.C0 0301
C.CCCC13
C.C0CCC
C.C00000
C.CCoCCO

1.000000 1.000000 1.0C0000 1.0000CC



EXPANSICN CCEFFICIENTS FOR
HCUGH FUNCTICIS CF ZONAL WAVE NUMBER L= 11

SYMMETRIC EIGENFUNCTICNS ANC EICENVALUES
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EICEN
VALUES

P( 11,11)
P( 11,13)
P( 11,15)
P( 11,17)
P( 11,19)
P( 11,21)
P( 11,23)
F( 11,25)
P( 11,27)
P( 11,29)
PC 11,31)
P( 11,33)
P( 11,35)
SUM OF
SCLARES

162.344 251.682 362.757 496.031

I( 11,11) H( 11,13)- H(. 11,15) h( 11,17)
0.986769

-C.160264
0.024358

-C.C03075
0.000321

-0.000028
0.CC0002

-0.CCOOOO
C.oCCOOOO

-C'CC0000
0.0 00000
0.
0.0

0.156324
0.9C1215

-0,389814
-0.104758
-0.02C818
0*003259

-0.CCC416
0.000044

-0.000004
0.CCOOCO
-0.000000
C.CCCCCO

-0.000000

0.040390
0.366127
C.698019

-0.564312
0.232492

-0.066144
C.014360

-C.002502
0.000361

-0.000044
0.000CCA5

-C.000000
C.CoCCOC

0.013468
0.149155
C.49485 C
0.399377

-C.63 53 23
0.381805

-0.147928
0.042469

-0.009637
0. CC17 55

-C.000282
0.000038

-C. COOC4

SUM OF
SCLARES
0.999963
0.994170
C.864657
C.488934
C.458122
0.150-16C
0.022089
0.CC1810
0.000093
C.COCOC3
0.cccco
o.cC0000
0. CC 0000

1.COOOO 1.000000 1.000000 1.003000

ANTI-SyMMETRIC EIGENFUNCTICA5 A\C EIGEAVALUES

EIGEN 204.331 304.470 426.595 571.103
VALUES

P( 11,12)
P( 11,14)
P( 11,16)
P( 11,18)
P( 11,20)
P( 11,22)
P( 11,24)
P( 11,26)
P( 11,28)
P( 11,30)
P( 11,32)
P( 11,34)
F( 11,36)
SUM OF
SQUARES,

C.958463
-C.279107
C.C57964

- C.CC9329
0.C012C8

-C.CCC129
C.000012

-0.000001
C.CC00

-0.CC0000
C.CCC000

-C.CCOCO
0.0

0.268114
0.813921

-0.487061
0. 163777

-00039272
0.007295

-0.001C96
0.00C137

-C.0CC014
0.000001

-0.CC0000
0.CCOOO

-0.000000

C.089149
0.4439C7
0.557621

-C.615388
0.306916

-0.102335
C.025f65

-C. C05127
C.000844

-0.000117
0.000014

-C.000001
0.C0000C

0.034659
C. 2151C4
0.513891
0. 232091

-C.621072
0.451018

-C.201965
0.065912

-0.016866
0.003527

-0.000620
C.CCC93

-C.00)012

SLM OF
SQLARES
0.999685
0. 983691
0.815613
0.459479
C.481471
0.213943
0.C41450
0.004371
0.00C285
0. COC012
0.CCCC00
C.COCOC
C.CCCCCC

1.0C0000 1.C00000 1.000000 1.CCoCCC

H( 11Y12) H( 11,14) H( 11,16) I-( 11,18)



EXPANSION COEFFICIENTS FOR
HCUGH FUNCTICNS OF ZONAL WAVE NUMBER L= 12

SYPMETRIC EICENFUNCTICNS ANC EICENVALUES

EIGEN
VALLES
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189.786 285.287 402.445 541.70E

H( 12,12) H( 12,14) H( 12,16) H( 12,18)
P( 12,12) 0.987203 0.154106 0.038680 0.012453
P( 12,14) -0.157610 0.9C467C C.362C27 0.143793
P( 12,16) 0.024082 -0.383222 0.708420 0.493712
P( 12,18) -C.C03111 0.1C26C9 -0.556519 0.418310
P( 12,20) 0.000337 -0.020591 0.2269CC -C.631526
P( 12,22) -0.000031 0.003292 -0.064626 jC.372953
P( 12,24) C.C00002 -0.00C433 C.C14175 -C.1437C3
P( 12,26) -0.CCOC0 0.000048 -0.00-2514 C.041372
F( 12,28) C.CCO0CO -0.CCOC5 0.000371 -0.009479
P( 12,30) -C.CC0000 0.CCCCCO -0.000047 C.001793
F( 12,32) C.C00000 -0.CCCOOO C.000005 -0.0002E7
P( 12,34) C.C 0.000000 -0.000000 0.000040
P( 12,36) 0.0 -0.000000 C.000000 -C.C0CC5
SLP CF
SCLARES 1.CCOOOO 1.000000 1.000000 1.003000

ANTI-SYNETRIC EIGENFUNCTICNS ANC EICENVALUES

EIGEN
VALUES

SUN CF
SCLARES
C.999969
0.995010
C. 893 1C9
0.495234
0.450733
0.143282
0.020852
0.001718
0.00CC9c
C.00C003
C.CCCCC
0.000000
C.coo0o

234.863 341.127 465.290 619.738

H( 12,13) H( 12,15) Ht 12,17) H( 12,19)
P( 12,13) C.959899 0.264530 0.085611 0.032228
P( 12,15) -C.274330 0.820430 0.44C555 C.2C8429
P( 12,17) 0.056993 -0.479341 0.572351 0.516651
P( 12,19) -(C.0C9316 0.160C29 -0.608857 0.254439
P( 12,21) 0.001240 -0.038569 0.299507 -C.621420
P( 12,23) -C.0C138 0.0C7272 -0.099632 0.441474
P( 12,25) C.000013 -0.001118 C.025145 -C.196CCC
P( 12,27) -0.000001 0-.000144 -0.005090 0.C63948
.P( 12,29) C.CCOOO -C.CCCC16 C.C00855 -C.016465

P( 12,31) -C.CCCCCO 0.000001 -C.000122 0.0034E4
P( 12,33) C.CCOO0O -0.000000 0.000015.-0.000622
P( 12,35) -C.C00000 0.CCCOCO -0.000002 0.C00C 5
F( 12,37) 0.0 -0.000000 0.000000 -C.C00C13
SLM CF
SQUARES 1.0000000 1.C0000 1.CCOOC 1.CCoCCO

cLP CF
SCL4RES
0.999751
C.985893
C.827E30
0.461142
C.477357
0.204878
C.C39050
C.CC4115
0.000272
C.CCCC12

Ccc coo
C.CCoooo
C.CCCCcC
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EXPANSION COEFFICIENTS FOR
HCUGH FUNCTICNS CF ZONAL WAVE AUMBER L= 13

SYMMETRIC EICENFUNCTICNS ANC EICENVALLES

EICEN
VALLES

219.383 321.052 444.310 SES.5EE

.( 13,13) H( 13,15) h( 13,17) H( 13,19)
P( 13,13) 0.987568 0.152198 0.037225 0.011595
P( 13,15) -C.155343 0.SC76C6 C.35E37C 0.139112
P( 13,17) 0.023838 -0.377507 C.717371 C.4924E9
P( 13,19) -C.CC3140 0.100742 -0.549601 0.434873
P( 13,21) 0.000352 -C.02C390 0.2220-19 -0.f27E63
P( 13,23) -0.000034 0.003320 -0.063303 0.365122
P( 13,25) C.CCCC03 -0.CCC449 0.01A015 -C.140010
F( 13,27) -C.CCO000 0.000051 -C.002526 C.040419
P( 13,29) C.CC0000 -0.0000C5 0.000382 -0.009343
P( 13,31) -C.CCOOO 0.CCOCCC -C.000049 0.CC1792
F( 13,33) 0.000000 -0.000000 0.00CCC6 -0.CC029-2
P( 13,35) C.C 0.0C00C0 -0.000001 0.000041
P( 13,37) 0.0 -0.COOOOO C.0OC0C -C.CCOCC5
SU V OF
SCUARES 1.000000 1.CCCCCO 1.000000 1.000000

ANTI-SYMMETRIC EIGENFUNCTICAS AAC EICENVALUES

267.552 379.953 514.174 67C.592

H( 13,14) H( 13,16) H( 13,18) F( 13,20)
Pc 13,14) C.61114 0.2614C2 C.082562
P( 13,16) -0.270220 0.825993 0.437427
P( 13,18) C.C56145 -0.472581 0.585126
P( 13,2C) -C.CC9302 0.15677C -C.6C2925
F( 13,22) 0.001269 -0.037954 C.293004
P( 13,24) -C.00146 0.0C7253 -0.097274
P( 13,26) 0.000014 -0.001139 C.024493
P( 13,28) -0.000001 0.000151 -0.005061
P( 13,30) C.CCOOOO -0.00CC17 C.CC0865
F( 13,32) -0.C00000 0.CC002 -C.000126
F( 13,34) C.C00003 -0.CO0000 0.000016
P( 13,36) -C.CCOCCO 0.000000 -C.CCC002
F( 13,38) 0.0 -0.00COOOO 0.000000
SLV CF

0.030173
C. 202489
0.518593
0.274192

-C.6212E
0.432935
-C. 19C765
0.C62239
-0.016119
0.00344E

-0.000625
C.CCCC E

-0.000013

SUM OF
SCLARES
0.999975
0.995661
C.90C246
0.501335
C.443920
0.137333
0.C19799
0.CC1f4C
0.COCC87
C.oC0003
C.CCCCoo
o.ccooo
C.C00000

CLM OF
SCLARES
0.999799
0.9E7628
C.E37797
C.463363
C.473 291
0.196948
0.C37002
0.CC3899
0.000261
C.CCO012
C.CCCo0
C.CCCCO
0. oCCC0

1.000000 1.000000 1.000000 1.C00CCC

EIGEN
VALLES

SCLAkES



EXPANSION COEFFICIENTS FOR
HCUGH FUNCTICNS OF ZONAL WAVE NUMBER L= 14

SYPPETRIC EIGENFUNCTICNS ANC EICENVALLES

EICEN
VALLES
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251.135 35E.979 488.348 639.663

H( 14,14) H( 14,16) H(.14,18) H( 14,20)
P( 14,14) C.SE7879 0.150537 0.035965 C.C1CEE2
P( 14,16) -0.153386 0.910130 0.355088 C.134997
P( 14,18) C.C23619 -0.3725C5 0.725154 C.491C94
P( 14,20) -0.003164 0.C99104 -0.543423 C.A49418
F( 14,22) C.CC0364 -0.020209 0.217721 -0.624363
P( 14,24) -0.0C0036 O.C03345 -C.C62138 C.35E146
P( 14,26) 0.000003 -0.000463 0.013874 -C.136753
P( 14,28) -C.CCCCO0 0.CCC055 -C.002538 C.C395E3
P( 14,30) 0.CCOOOO -0.0000C6 C.CCC391 -0.CC9225
P( 14,32) -C.CCGOOO 0.000000 -0.000052 C.C01793
P( 14,34) C.CCOOOO -0.o0C00C0 C.000006 -C.000297
F( 14,36) 0.0 0.000000 -. C0000C1 0.000043
P( 14,38) 0.0 -0.000000 0.000000 -0.000005
SLM OF
SCUIRES 1.000000 1.000000 1.000000 1.C000CC

ANTI-SYMMETRIC EICENFUNCTICNS' AND EICEAVALLES

EIGEN
VALLES

SUP CF
SCLARES
C. 9C78
0.996176
0.906339
C.5C717C
0.43764C
C. 132 141
0.018894
0.001573
C. CCC C85
0.CCC003
0.C00000
C.CCCCOO
0.000000

302.3S7 420.944 561.240 723.655

H( 14,15) H( 14,17) H( 14,19) H( 14,21)-
F( 14,15) 0.962154 0.258650 C.C79919 0.028424
P( 14,17) -C.266649 C.830800 0.434523 C.197182
P( 14,19) 0.C55399 -0.466615 0.5963C4 C.519932
P( 14,21) -0.CC9286 0.153910 -0.597522 0.291766
P( 14,23) C.CC1294 -0.037411 C.287249 -0.620819
F( 14,25) -C.CC0153 0.0C7236 -0.095199 C.425255
P( 14,27) C.CC0016 -0.001158 0.024296 -0.186133
P( 14,29) -C.CCO001 0.000157 -C.005036 C.C6C736
F( 14,31) 0.000000 -0.000018 C.0CCE75 -C.C15818
P( 14,33) -C.CC0000 0.000002 -0.000130 0.003418
P( 14,35) C.CC0000 -0.0CCOCO 0.000017 -C.CC0c2E
P( 14,37) -0.000000 0.OOOOCO -0.000002 0.OC01CC
P( 14,39) 0.0 -0.CC0C0 0.000000 -0.000014
SLM OF
SCUARES 1.0C0000 1.000000 1.000000 1.000CCC

SLM OF
SCUARES
0.C99836
0.989C22
C.846707
0.465935
0.469329
C. 189957
C.C35 237
0.C03714
C. CCC251
0.000012
C.CCoco
C.CCCOCC
c.CCo00



113

BIBLIOGRAPHY

Bogdanov, K. T. and Magarik, V. A., 1967: Numerical solution
of the distribution problem for the semi-diurnal tidal
waves (M2 and S2 ) in the world ocean, Dokl. Akad. Nauk
SSSR, 172, 1315-1317.

Briggs, B. H. and Spencer, M., 1954: Horizontal movements
in the ionosphere, Rep. Progr. Phys., 17, 245-280.

Chapman, J. H., 1953: A study of winds in the ionosphere
by radio methods, Canad. J. Phys., 31, 120-131.

Chapman, S. and Lindzen, R. S., 1970: Atmospheric Tides,
Thermal and Gravitational, D. Reidel Publ. Co. Dordrecht
Holland, 200 pp.

Chapman, S., Pramanik, S. K. and Topping, J., 1931: The
world wide oscillations of the atmosphere, Gerland's
Beitr. z. Geophys., 33, 246-260.

Chiu, W. C., 1953: On the oscillations of the atmosphere,
Arch. Meteorol. Geophys. Biokl. A, 5, 280-303.

CIRA, 1965: (COSPAR Intern. Reference Atmosphere), North-
Holland Publ. Co. 313 pp.

Dickinson, R. E., 1969: On the formulation of a non-linear
atmospheric tidal theory from the meteorological prim-
itive equations, Pure and Applied Geophysics, 72, 1969/I
198-203.

Dietrich, G., 1944: Die Gezeiten des weltmeeres als geo-
graphische erscheinung, Zeitschrift der Gesellschaft
ffur Erdkunde zu Berlin, No. 3/4, 69-85.

Doodson, A. T., 1922: The harmonic development of the
tide generating potential, Proc. Roy. Soc. A 100, 305-
329.

Flattery, T. W., 1967: Hough Functions, Tech. Rept. 21,
Dept. Geophys. Sci., Univ. of Chicago.

Geller, M. A., 1969: The Lunar Tide in the Atmosphere.
Ph.D.' Thesis, Massachusetts Institute of Technology.

Geller, M. A., 1970: An investigation of the semi-diurnal
lunar t-ide in the atmosphere, J. Atmos. Sci. 27, 202-218.



114

Greenhow, J. S. and Neufeld, E. L., 1961: Winds in the
upper atmosphere, Quart. J. Roy. Meteorol. Soc., 87
472-489.

Haurwitz, B. and Cowley, A. D., 1967: New determinations
of the lunar barometric tide, Beitr. Phys. Atmos.,
40, 243-261.

Haurwitz, B. and Cowley, A. D., 1970: The lunar barometric
tide, its global distribution and annual variation,
Pure and Applied Geophysics, 75, 1-29.

Hendershott, M. and Munk, W., 1970: Tides, in Annual Re-
view of Fluid Mechanics, Vol. 2, Annual Reviews, Inc.,
Palo Alto, California, 205-224.

Hildebrand, F. B., 1956: Introduction to Numerical Analysis,
McGraw-Hill, New York, 511 pp.

Hough, S. S., 1897: On the application of harmonic analysis
to the dynamical theory of tides, Part I. On Laplace's
'Oscillations of the first species', and on the dynam-
ics of ocean currents, Phil. Trans. Roy. Soc. A, 189,
201-257.

Hough, S. S., 1898: The application of- harmonic analysis
to the dynamical theory of the tides, Part II. On the
general integration of Laplace's dynamical equations,
Phil. Trans. Roy. Soc. A, 191, 139-185.

IBM, 1968: System/360 Scientific Subroutine Package
(360A-CM-03X) Version III, Programmer's Manual, Fourth
Ed.

Jacchia, L. G. and Kopal, Z., 1952: Atmospheric oscilla-
tions and the temperature profile of the upper atmo-
sphere, J. Meteorol. 9, 13-23.

Kuo, J. T. et al., 1970: Transcontinental tidal gravity
profile across the United States, Science, 168, 968-
971.

Lamb, H., 1932: Hydrodynamics, 6th ed., Cambridge Univer-
sity Press, Cambridge, England.

Laplace, P. S. (Later Marquis de la Place), 1775, 1776:
Recherches sur quelques points du systeme du monde,
Mem. de l'Acad. Roy. des Sciences.



115
Lindzen, R. S., 1967: Thermally driven diurnal tide in the

atmosphere, Quart. J. Roy. Meteorol. Soc., 93, 18-42

Longuet-Higgins, M. S., 1968: The eigenfunctions of Laplace's
tidal equations over a sphere, Phil. Trans. Roy. Soc. A
262, 511-607.

Love, A. E. H., 1911: General theory of earth tides, in
Some Problems of Geodynamics, Cambridge University Press.

Margules, M., 1893: Luftbewegungen in einer rotierenden
Spharoidschale, Sitzber. Akad. Wiss. Wien, lla, 102
11-56, 1369-1421.

Matsushita, S., 1967: Lunar tides in the ionosphere, in
Handbuch der Physik, XLIX/2, Springer-Verlag, 547-602.

Melchior, P., 1966: Earth Tides, Academic Press, New York.

MIuller, H. G., 1966: Atmospheric tides in the meteor zone,
Planet. Space Sci., 14, 1253-1272.

Muller, H. G., 1968: Meteor winds and ionospheric drifts,
J. Atmosph. Terr. Phys., 30, 701-706

Muller, H. G., 1970: The Sheffield meteor wind experiment,
Quart. J. Roy. Meteorol. Soc., 96, 195-213.

Pekeris, C. L., 1937: Atmospheric oscillations, Proc. Roy.
Soc., A 158, 650-671.

Pekeris, C. L., and Accad, Y., 1969: Solution of Laplace's
equation for the M 2 tide in the world oceans, Phil.
Trans. Roy. Soc. A 265, 413-436.

Press, F., 1962: Long period waves and free oscillations
of the earth, in Research in Geophysics Vol. II,
M.I.T. Press, Cambridge, Mass., 1-26.

Ramana, K. V. V. and Rao, B. R., 1962: Lunar daily variation
of horizontal drifts in the ionosphere at Waltair,
J. Atmosph. Terr. Phys., 24, 220-221.

Rawer K. (ed), 1968: Winds and Turbulence in Stratosphere,
Mesosphere and Ionosphere, North Holland Pub. Co.,
421 pp., op. cit.

Sawada, R., 1965: The possible effect of oceans on the
atmospheric lunar tide, J. Atmos. Sci., 22, 636-643.

Sawada, R., 1966: The effect of zonal winds on the atmo-
spheric lunar tide, Arch. Meteorol. Geophys. Biokl.,
A 15, 129-167.



116

Siebert, M., 1957: Tidal Oscillations in an Atmosphere with
Meridional Temperature Gradients, Sci. Rept. No. 3,
Project 429, N. Y. Univ., Dept. of Meteorol. Oceanogr.

Siebert, M., 1961: Atmospheric tides, in Advances in Geo-
physics, Vol. 7, Academic Press, New York, pp. 105-182.

Taylor, G. I., 1929: Waves and tides in the atmosphere,
Proc. Roy. Soc. A 126, 169-183.

Taylor, G. I., 1936: The oscillations of the atmosphere,
Proc. Roy. Soc. A 156, 318-326.

Wallace, J. M. and Hartrauft, F. R., 1969: Diurnal wind
variations, surface to 30 km., Monthly Weather Review,
96, 446-455.

Wilkes, M. V., 1949: Oscillations of the Earth's Atmosphere,
Cambridge University Press, 1949, 74 pp.



117

BIOGRAPHICAL SKETCH

I was born and reared in Dublin. They tell me the

day was July 6, 1943, a Tuesday. I went to school to the

Christian Brothers in James' Street from 1950 to 1960 and

I did fairly well there. I got a cadetship in the Irish

Meteorological Service in the year 1961 and I went to

University College in Cork to study Mathematics, Mathematical

Physics and sundry other topics of worth. I must have done

fairly well there too because they gave me a first class

honors degree in 1964. I went forecasting in Shannon Airport

in 1965 and it was there I met and courted Breda Cunningham.

We got married in 1967. That same year M.I.T. gave me a

Jonathan Whitney Fellowship and so in September we packed

our bags and came here. We've been here since.


