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ABSTRACT

The effects of the earth tide and the ocean tide on
the semi-diurnal lunar tide in the atmosphere have been
ignored in nearly all studies of this air tide. Elementary
arguments show that these boundary effects are not trivial.

Using linear theory we calculated the combined effect
of the lunar potential, the earth tide and the ocean tide
on a realistic model atmosphere. Love's theory was used
to represent the earth tide. Numerical calculation by
Bogdanov and Magarik (1967) and by Pekeris and Accad (1969)
were used to represent the ocean tide. Our results in-
dicate that the ocean tide has a significant and probably
a dominant effect on the lunar air tide. The ocean tide
of Pekeris and Accad yielded results that agreed better
with the observations.

We calculated the effect of a tide in a ''small" or
"point' ocean on the atmosphere and found that its effects
were global. Hence differences between the observations
and our calculations of the lunar air tide cannot easily
be reduced by simple manipulation of tihe forcing function,
the ocean tide, in the immediate vicinity of the places
where discrepancies occur.

The forcing functions of the problem were represented
as Fourier-Hough series, involving 232 Hough functions.
The expansions of these Hough functions in terms of
Associated Legendre Polynomials are presented in the

b



(93]

Appendix.

Computations of the semi-diurnal lunar tidal winds
at 98 km are yresented and compared with observations.
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Title: Professor of Meteorclogy
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Chapter I

1.1 Introduction

The study of the tides of the atmosphere is at least as
old as Laplace and has been pursued with varying intensity
since his time. There are several works available that give
comprehensive reviews of the whole field among which one
might mention Wilkes' book (1949) and the valuable review
article by Siebert (1961), and most recently the book by
Chapman and Lindzen (1970). We will be concerned here with
purely gravitational tides.

The present study was prompted by the results of a study
by Geller (1969, 1970). Geller was mainly concerned with the
effect of the seasonal variations of the vertical temperature
profile of the atmosphere on the phase of the lunar tide. He
considered only the direct forcing by the lunar tidal potential
and ignored vertical motions of the earth-atmosphere inter-
face. The amplitudes he found at the equator were typically
of the order of 3gf¢>(%ﬂb= lé‘bar =1 dyne/cmz). Moreover,
because of the fact that he considered only one mode of
oscillation, these amplitudes were independent of longitude.
A perusal of Fig. 1, taken from Haurwitz and Cowley (1970),
shows that the amplitudes near the equator are somewhat
greater‘than SQ/* and that the amplitudes do vary with

longitude. Our purpose in this investigation is to study the
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(1970).
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reasons for the discrepancy. Assuming, as we do, that
Geller's model is a reasonable representafion of the atmos-
phere the discrepancy suggests that there is some other
mechanism exciting the atmosphere at the lunar semi-diurnal
frequency. Since there is negligible heating at this fre-
quency, Geller, and other writers, have suggested that the
lunar semi-diurnal ocean tides and earth tides provide an
energy input to the atmosphere. If only the earth tide is
taken into account, it cén be shown that the amplitudes
Geller calculated should be multiplied by about 0.7, thus
increasing the discrepancy and making a study of the effect

"of the ocean tide even more interesting.

1.2 Interpretation of the Data

In the following discussion potentials are defined so
that £ =-V¢ where F is the force due to the potential. The

net potential at a point due to the moon is given by

— / 3 gy

- -512(5) T3 (ag)(eorw-y)
+ Scnza. Lo G (x42)
+ SontA L Seatf . Cooa(x+ )

where acceleration of gravity

[}

X &

mass of the moon

mass of the earth

an
i
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¢f = mean radius of the earth

D = distance between the centers of
the earth and the moon

i

3, height above the surface of the
earth

A, X

north polar distance and the
hour angle of the moon

Y, colatitude and longitude

D 5 A and & have complicated time variations; Doodson (1922)
has performed the most extensive harmonic development of the
lunar tidal potential. According to his computations the

largest component % of the lunar potential is given by

$ = - 09091 (2 6 Sl Cor(ren)
= - 0.90811 (23 ¢ IS P2 Coonlesny (12D)

where v -1
G = jé)joé, el sec

oz GV
and Ttp@ is the fully normalized Associated Legendre Poly-
nomial. 7% in this expression increases by A7 in 1 mean
lunar day and hence this potential is periodic of period
half a mean lunar day.
Throughout this thesis we shall mean by semi-diurnal
lunar frequency that frequency whose period is half a mean

lunar day. For the oceanic tide, this is called the H,"
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tide. [Geller (1969) ignored the numerical factor .90812 in
this last expression.]

It is the response of the atmosphere to periodic forces
at this frequency that we shall be discussing and this res-
ponse is usually spoken of as the semi-diurnal lunar tide.
Observations of the tide (often spoken of as determinations)
have been made at 104 stations over the globe. The tide as
seen in surface pressure is a phenomenon of very small amp-
litude and it is masked by much larger non-periodic events.
Hence, it is no easy task to separate the tide from the
‘noise. The method used to make most of the determinations
now available is due to Chapman and Miller (1940). Chapman
(Chapman and Lindzen (1970)) points out that this method is
"truly harmonic." By this he means that it follows the
practice of Doodson (1922) who perfected the method of har-
monic analysis for sea-tide analysis.

Thus, the determinations of the semi-diurnal lunar tide
in surface pressure are determinations of the regular vari-
ation of pressure with period half a lunar day. These deter;
minations are not affected by events arising from such
factors as variations in the moon's declination or distance
from the earth.

It is worthwhile to consider the physical interpretation
of the determinations of the lunar tide. Consider the

pressure as observed by a barometer fixed to the ground and
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moving vertically with it. Let p(§ 3) be the pressure at

Dbt
the barometer, R be the A
’ po(,\k“- ___,/J }
time derivative following the

barometer alnd/w—,‘oM~ be the vertical velocity at the boundary.

Then

(S

b

———

Lo BlErat 37A%) - 3G

€ poor At>o At

13

£, b(e+at, 3t43) — p(E, 3+43)
D> At

12}

In our model we will assume that the pressure field is com-

posed of a mean field #g(k) with a small perturbation b'

superimposed. Hence, to first order in the perturbations
@E' ob' 1
) - —
D E! T ot T e 6#90
Soos é
Again

d b, U b vV 2%
'JE:“’: %%*acoge“ok *w e T

N
W
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and to first order

2b e

w:fbtﬂ-/ur ,327.

But at the ground, i.e. at the lower boundary of the atmos-

phere
AT =

this being the kinematic boundary condition.

Thus, to first order in the perturbations

b

= O

<)

t

i
!
14 1
. 1
Aot H

lower boundary

and we see that the time derivative of the pressure as ob-

served by a barometer fixed to the earth-atmosphere interface

is, to first order, the same as the substantial derivative.
Before concluding this section we consider bricfly the

effect of tidal variations in gravity on barometric readings.

Let 6%. denote the density of mercury, Hé the height of

the column of mercury in a barometer, 3' the standard value

of gravity at a given place, 3, the actual value of gravity

at the place, hﬂm the pressure reported at a station, P

the true pressure at the station, SF the variation of p

due to the tide. Pobo is computed according to the formula

~
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while qub is given by
Let

- R TR
Then

o = L b = (0 L) g,

and, to first order,

Pbp. ® S1%4» + "%’f’w
Now

%Ub ~ /06/(4/6

S S ~ 4.05° cmael’
Thus ﬁ;

2= %ko ~ 0.04

% /VJ?

Hence, tidal variations in the force of gravity have negli-

gible effect on determinations of the tide in surface

pressure.

1.3 An Earlier Study

Some writers (Siebert 1961, Chapman, Pramanik and
Topping 1931) have referred very briefly to the fact that

motion of the earth and ocean could be a source of tidal



16
energy in the atmosphere. More recently Sawada (1965) made
an approximate calculation of the effect. He calculated the
effect of the semi-diurnal lunar tidal potential on an
atmosphere with a realistic temperature structure above an
ocean-covered globe. The ocean was of uniform depth and the
ocean and atmosphere were coupled by the kinematic and
dynamic boundary conditions ét their interface. Problems
such as this are most usefully discussed in terms of Hough
functions. An ocean covering the entire globe has free
oscillations of any given zonal wave number at the semi-
diurnal lunar frequency provided the depth of the ocean
takes on one of a discrete set of values. The latitudinal
structure of such a free mode is given in terms of the
appropriate Hough function. Only the latitudinally symm-
etric modes are relevaﬁt in Sawada's problem. There are
latitudinally symmetric free oscillations at this frequency
and of zonal wave number two provided the depth of the ocean
takes one of the values 7077m, 1849m, --- etc. The Hough
function appropriate to these oscillations would be denoted
by H§,§¥; --- etc.

The semi-diurnal lunar potential can be written as a sum
of these (symmetric) Hough functions nultiplied by certain
factors. Sawada considered separately the effect of the
first two terms of this sum on his model ocean-atmosphere

system. For the first term, that involving H:, he found
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that if the depth of the ocean were near 7077m the response
to this part of the forcing became infinite, as one would
expect. For depths away from this value the presence of the
ocean had little effect on the phase of the atmospheric
pressure oscillation but its presence did amplify the os-
cillation. The effect of the second term of the forcing
'function, that involving Hi, wds, in the presence of the
ocean, somewhat different. For depths away from the critical
depth of 1849m the ocean had little effect on the amplitude
of the oscillation but it's presence changed the phase of
the oscillation markedly.

These results were interesting but '"the effect of
limited oceans closely resembling those actually occurring
on the earth remains to be discussed.'" Sawada did not ex-
amine the resonance behavior of the model atmosphere he used.
This behavior depends on the value of the separation con-
stant P (cf.§4.1),4§%?' in Sawada's notation, and so we can-
not say whether the atmosphere he used was resonant near the

value of {L for which his model ocean was resonant.
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Chapter 11

2.1 Mathematical Theory

We will regard the lunar tidal motions as small pertur-
bations about a mean state (Dickinson 1969). The mean state
ﬁe choose is one in which the mean velocities are zero and
we assume the perturbations to be small enough that linear
theory is valid. The temperature in the mean state is
assumed to vary only with height, and electro-magnetic and
viscous effects are ignored. We will also assume that the
perturbations are hydrostatic, that the atmosphere is of
uniform composition, that '"standard gravity" is a constant,
and that the ellipticity of the earth is kinematically
negligible (Lamb, 1932 §214).

This model atmosphere differs from the mean state of
the real atmosphere in a number of ways, particularly in the
neglect of meridional temperature and velocity gradients.
The effect of meridional temperature gradients has been ex-
amined by Chiu (1953) and Siebert (1957), while Sawada (1966)
studied the effects of zonal winds with vertical shear.
Their approximate results would indicate that the effects
were generally small. (The full linear problem under these
conditions is rather intractable as the equations are non-

separable.)
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The linearised equations of motion are (cf. Chapman

and Lindzen, 1970)

¢

’2% iﬂg«/mGV'{*&&nO oA =0 a
Y]
'@X+2jl&m9u+ « 5%_ =0 b
N g0 W
vGo9]+ W, * 0

Q> i) c
Ao L o " (2.1.1)

rb’r+w[ +7<7—'_7 <0 d

|
»¢ -
sy ~ R =0 ©

where W = aGob R, V -06 , A = longitude, B = latitude,

6. = mean radius of the earth, P = pressure, Fw = 1013.25mb,
mean sea level pressure, Z = -n {D/POO, W = ‘%% 5 (? = %3,:
= standard geopotential, §§== lunar potential, ¢'= @%—ﬁ; )
i;= TLEQ , the temperature of the undisturbed atmosphere,

T = perturbation temperature,)(==R/CP s R = gas constant
for air, Cp = specific heat of air at constant pressure.

We have ignored all heating effects. Since ‘2§§<<g,we have

also made the approximation
v P o

as indeed has already been assumed in the standard develop-

ment leading to (1.2.1). The lower boundary condition is

Wi T [ze(‘p“@ ~g/w‘];"

A Z =0 (2.1.11)
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is the vertical velocity of the lower boundary

If we assume solutions of the form

H(e,z,x,t)} Red" :‘wif'(e,z)feQJ%

(2.1.2)
and if we write;/u = Sun@ the equations become
io Uy '-SlJl/uVL + &( )7, CPL = 0 a
~ s 2R
to Vg + 23 puly + Q’ﬁ%kl iy -0 b
12 g W
R_(L%“—‘)l”ui + '5 Ve (1) + 2z W =0 c
(2.1.3)
AT, =
CoTy + WQ(Jii‘KTj =0 d
2 4. _
~§% = R e
' .-.——‘———- ( WY '
WQ:Z:O - Kf{tf(q)l QS'Q) -3/@}: £

Solving the horizontal momentum equations for U4 s Vg

; and
substituting these expressions in the continuity equation we
get

I _}o’ ( | L
b - el - et

a
oM

(2.1.4)
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and

La“f'(qQ} 4~(i5h9 { \J{} =0 (2.1.5)

where F is the so-called Hougﬁ operator:

} L R By S o S A 1
F = b et Falt et (2:1-6)
where
—
Y

is the non-dimensional frequency.

Eliminating Ty from the hydrostatic and thermodynamic
relations we get a second relation between ¢l and M&

viz.
RLK¥+WL(“%+M’T’) = D (2.1.7)

As discussed in §2.3 the operator F has.eigenfunctions, known

as Hough functlons, denoted by H! wiM) . Thus

F(H&(ﬁ) = —)3£ Hﬁ{/u) (2.1.8)

where Fﬁ\ is the eigenvalue associated with Higa). The
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Hg\gyg are orthogonal and are presumed complete. Let us now

develop W, Ql s by and sy  as series of Hough functions:

Q0
' - oy HY a
. éi e H! b
We (m,2) = n:”jkdw(zJ u (M

' (2.1.9)

$ s #ﬁ ( ¢ c

L(/U‘/Z) = oy o0 2) H“LM)
5 urt(z) W d
= 2
/‘Ar‘v(. (/“Iz') n:!_m/o\r"‘ ) V‘(/‘&)
and let us substitute these series in our equations. From
(2.1.5) we have
I @xa) /»wl
S e WL TS
¢t e T (-l (2.1.20)
and this, together with (2.1.7) implies
LR - B
L R w N o dT ¢
ZzWa T et (iﬂjy(dziqu)wn =0. (z.1.11)
The lower boundary condition takes the form
RS !
¢ L PO e e 1N Bt J

w“;z:oz m__lur{ CO‘}CS*"( ,—ﬁ'_‘~‘~’\j“> ,%v\} j/wf‘ ; (2.1.12)

Z=0
If we make the substitution

Wiz = £ Yi(Z) (2.1.13)
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then (2.1.11) reduces to

0
SFZL\/: +[Z'7 4-[5£5] vi Lo (2.1.14)

Here S = 5(2) represents the static stability of the atmos-

phere:
S = ,-g'—-—-—— éE +xQ] = j:i\l:
T @oaeyl dz PR

where N is the Brunt-VHisHlH frequency and i = Rﬁ73

The lower boundary condition becomes

. 4 2,
i .f H - 'e - (./O— v\—‘— /UO'“
R = P

1
Z=0

=4

where -K& is the "equivalent depth" (Taylor, 1936):

N %_ gﬁ\

Within this theoretical framework the steps involved in

gt _ asey

calculating the effect of a forcing potential or of a known
vertical oscillation of the bottom boundary are as follows:
One first must calculate the appropriate Hough functions and
their eigenvalues in order to make the expansions (2.1.9).
Knowing S one then solves the vertical equation (2.1.14)
for each mode subject to the lower boundary condition

(2.1.15) and an upper boundary condition to be discussed
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shoftly (§2.2).

2.2 The Stability Profile

The profile for 8(79 , the stability function, (see
Fig. 2) used herein is the '"mean annual" profile prepared
by Geller (1969). Geller constructed this profile as follows.
The profile between 30 km and 100 km was calculated from
the temperature profile of the 1965 CIRA mean atmosphere.
The lower part of the profile was calculated by averaging
-temperatures collected in a five-year study by the Planetary
Circulations Project under Professor V. Starr at M.I.T.
These temperatures were first time-averaged for the five
years and then averaged with respect to area over the
Northern Hemisphere. Above 100 km the CIRA atmosphere was

approximated by a straight line

W

S

a

azZ +4
0.029828

]

4 =-0.41221

The upper boundary condition is that at high levels in
the atmosphere the solutions correspond to waves whose energy
is propagating away from the center of the earth, the so-

called~”radiation condition". Following Geller (1970) we
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T

FIG. 2.

Mean Temperature, T (---) and

Mean

Stability ,

S (—)

Profiles
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note that with

S=aZ+4

and

x = ~Gays [ plazes) - 7 ]

The solutions of

A=y " |
’dvi'n. "L'[;g(a-Zﬁ"’é) "—ZL-JY'—‘-O
are the Airy functions A¢( x) , and Be(x) . For X <o

and bd >>0 these behave as
§
Ao ~ 5 E Snalre T)
——-L—""‘)
Be(x) ~ w5 ix*# Cm(f+%)

where S = = ||

At large negative X (large positive Z ), then,

(
ey —— SENMIA
B +¢ ko ~ 8 e 2eLlf S *%} (2.2.2)
o€
The time dependence of these solutions is éfa. and hence

in this region the solutions are proportional to
~MPC{%M%+6‘C},
The phase \V is
po= LT ro b
To keep Y constant as £ increases Ix| must decrease.

Hence the phase velocity is in the direction of increasing
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X or, equivalently, decreasing Z . Thus the phase velocity
of the waves (2.2.2) is downwards and by standard theorems
the group velocity of the wave is directed upwards.
Alternatively, we may use Wilkes' (1949) conclusion

that the radiation condition is equivalent to

S (YF %) >0 (2.2.3)

In terms of our X this is

$n (V* 48 <o
For Y = K[BL(X) + CAo0] K real, we find

S0y o\‘/) = KW (Ao, Be(w) = -

so that the combination (2.2.2) is indeed the proper solution
in the thermosphere. Our model thermosphere begins at
Z = ZGP = 148
and at this level we require the solution in the lower
region and its first derivative to be continuous to a
solution of the form
K[ By + he0)]
and its first derivative where K is a constant.
Following Geller still the two conditions on the
function and its derivative may be rewritten, so as to

eliminate K , in the form

~

J ¢
iz KL W= ab R+ SV, 2Gp “(2.2.4
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‘21'21;'1,;

where

ol = - (a 13{“)% [ Be(xl)RE(xd) +A ) /‘L‘t;(?é) ]

SO + B ()

“<

< - (opt)s [ AL Be) ~ Be(t) A

4 2
AcOA) + BY L)

=

with

Q |
e el ez 0

Given a knowledge of Sj mﬂ s éi the equation (2.1.14) can
be solved, subject to the boundary conditions (2.1.15),
(2.2.4), using exactly the same method used by Geller. The
equétions were written out in their real and imaginary parts
“and cast into finite difference form, giving a set of simul-
taneous linear equations. These were solved using an IBM-
supplied routine GELB which is suitable for solving band-
structured matrices. The interval AZ was 0.1 , corres-
ponding roughly to A3=0.& km. The reader is referred to

Geller (1969) for further details.

2.3 Hough Functions

Hough functions are defined as solutions of the eigen-
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value problem

i -t Q_[_LE S R —-’—{:—- 4 :f—— .F%"Ai.k g
Cl/u(g_m__/uq. (‘)yu) P‘wa "‘/\AL JL }2_7“1_)\’ qu (?.3.1)

for m efl-1, 1] where { is an integer and the boundary
conditions are -that Y be finite at £/ .
This equation was first treated by Laplace (1775, 1776)

and it is known as Laplace's tidal equation. Margules (1893)
and Hough (1897, 1898) presented solutions of the equation
and Hough (1898) presented asymptotic solutions valid for

B small and positive. Longuet-Higgins (1968) has extended
the analysis to all values of B while Flattery (1967),
using Hough's methods, presents some computations of the
Hough functions for different values of f and /

We are interested in solutions for the semi-diurnal
lunar frequency i.e. for
} = 0. 93499

and for 4 a positive or negative integer. Longuet-Higgins
showed that for fixed { and |§|<1 the problem has two
families of eigenfunctions; for one family the eigenvalues
have an accumulation point at +¢ and for the other family
the accumulation point is at-«. For the second family he
derived relatively simple asymptotic expressions in the
limit [f]- 1 . 1In this limit the eigenfunctions assumed

a boundary layer character, being of appreciable size only
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near one of the poles and decaying exponentially towards
the equator beyond a certain turning point co-latitude,
2% . This turning co-latitude in the Northern Hemisphere

is given by (cf. his equation 11.6)

1 k4w
K‘ + )Ll 4 = O (2.3.1)
1 R
where 3 = Q—ﬁ)”ly
V} = co-latitude in the Northern Hemisphere

R = & { 14 + (avin)}
2m = lf~dl
{ = zonal wave number
= any positive integer

B = eigenvalue in question

The asymptotic relationship between the frequency and the

eigenvalue is then

} - | - le({;)(il/u) -fO(;sl@) (2.5.2)

Taking the value for _F appropriate to the lunar semi-
diurnal tide it is easy to show that no matter which mode
(i.e. value of V ) is chosen

Ve <177

Beyond this latitude the eigensolutions decay as

,e-Ji (" ﬁ)%' 7}1‘
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Since - § is small it is clear from (2.3.2) that GFJi
is large (>80 . By latitude 60N these functions have
decayed to insignificance. Exactly similar arguments apply
to the Southern Hemisphere.
Since the calculations of the ocean tide that we used
did not extend much beyond 60N or 60S it was decided on the
grounds of the arguments just presented, to ignore the modes
having negative eigenvalues. These modes are insignificant
in this problem because the non-dimensional frequency is so
close to unity. For lower frequencies, however, such as the
~diurnal tide, they become very important (cf; Lindzen 1967).
Sets of Hough functions were calculated for twenty nine
wave numbers £
-l4 < L <14

For each zonal wave number eight Hough functions were cal-
culated, the four gravest symmetric and the four gravest
anti-symmetric modes. The only exception was the case of

A=o0 . In this case there is a certain degeneracy in that
the gravest symmetric mode is a constant and has eigenvalue

RB=o . This mode was therefore excluded and the next four
lowest symmetric modes were‘computed. The numerical method
used was that of Flattery (1967). It-is a slight modifi-
cation of Hough's original method, in which the eigenvalues
are found as the zeros of certain continued fractions. The

Hough functions are expressed as sums of Associated legendre
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Polynomials and a knowledge of the eigenvalue enables one
to compute the coefficients in these sums. The eigenvalues

and coefficients are presented in the Appendix.
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Chapter III

3.1 Motivation

As mentioned in the introduction this study was prompted
by Geller's (1970) work where he found that the maximum
surface response to the lunar tidal forcing to be about
SQ/ub while the observed tide has a maximum amplitude of
90/ub . It seemed clear that some additional forcing must
be acting. There is negligible heating at the lunar semi-
diurnal frequency so the next matter to be investigated is
the tidal oscillation of the lower boundary of the atmos-
phefe. If we look at the lower boundary condition (2.1.15)
and put /Afo = C a'gi where Si is the amplitude of

-1
the vertical excursion then we see that if ff\ ~ éhqﬂ

~20 cm the effect of the vertical oscillation of the lower
surface is just as important as the effect of the forcing
potential. The oscillation of the lower boundary of the
atmosphere has two components, one due to the earth tide

over land and the other due to the combined effect of the

earth and ocean tides over the ocean.

3.2 Equilibrium Tide

A concept much used in discussions of tides is the notion

of an equilibrium tide.
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Suppose a thin ocean completely covered the globe, and
suppose a gravitating body like the moon or sun remained
in the same position relative to the earth and exerted a
potential on the earth. Then the surface of the water would
adopt a position where it coincided with an equipotential
of the combined potential fields of the earth and the
heavenly body. Elementary theory then shows that if 3 is
the deviation of the free surface from its position in the

absence of any perturbation then

$ = - zf/% (3.2.3)
where § is the potential of the disturbing body.
Suppose the lunar ocean tide were an equilibrium tide
in the sense that the surface deviation is given by (3.2.3).
From our lower boundary condition (2.1.15) we then have
b
o . ¢ 3.
and thus
. =4 ¢
(oo @, + g, =0
The forcing term in our problem now vanishes and the only

solution for Vf\(j&) is the trivial one

¢
Valz) 2o
At Z=0 we have
2 Wl
Yalz) = 222

and so if the deviation of surface height were given by

(3.2.31 then a barometer moving up and down with the ocean
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surface would observe no tidal pressure change. The same
argument would apply to the earth's surface in the absence
of an ocean if the earth tide were an equilibrium tide. We
therefore conclude that (within the framework of the standard
linear analysis) the observed atmospheric lunar tidal os-
cillation depends on the extent to which the air-ocean and

air-land interfacesdeviate from an equilibrium tide.

3.3 Earth Tides

Until recently relatively little was known about the
world wide distribution of the earth tide. Data have been
accumulated rapidly during the last twenty years or so and
now a fair deal is known about the phenomenon.

The free modes of oscillation of the earth have
frequencies of the order of about an hour at most (Press,
1962). Hence, one would expect that static theory would be
a good approximation in the study of the phenomenon. Love
(1911) developed a theory based on this approximation.
According to this theory, if §§ is the disturbing potential
then the potential EE\ at the surface of the earth due to
the deformation caused by § is given by %, =k § where

k is a constant; and the elevation § of the surface of
the earth caused by these two potentials acting together is

given by

.43
$77 %

S

where 4, is another constant.
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Various observable effects of the earth tide, such as the
variation of the local vertical with respect to the earth's
axis, can be described within this theory by simple com-
bination of 12, J.  and two other numbers; these numbers
are known collectively as Love's numbers. Melchior (1966)
gives an up to date discussion of the field.

It appears from observations that Love's theory gives
a good approximation to the phenomenon. The observed phase
lags of the earth tides are never more than 10 minutes;
their theoretical phase lag should be zero. The dis-
,tribﬁtion of the amplitude is less well behaved but nonethe-
less is such that Love's theory still provides a very useful
framework in which to organize the results. The Love
numbers can also be calculated from observations of the
Chandler wobble and of changes in the rate of the earth's
rotation. Considering these various sources of information
Melchior gives the following values for k. and K as the
most satisfactory to date

ko= 0-290
A= 059

Let us now suppose that there are no oceans on the earth and
that the earth tide responds according to Love's theory.
Then we see that our lower boundary condition assumes the

form

d vi i
*ﬁf‘*(%

-

T vt
_ ji) \/f\ _ 15—'(“‘1‘{) §“.{:LO"3{\ é‘"/ﬂ :
3+ ‘
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= (o (ko) BN
%Q\{“ '~ -0

Thus we see that our forcing term is reduced to about 70%

of what it was when the earth was assumed rigid. We carried
out this computation, using four Hough functions to Te-
present the forcing potential ( see Appendix for the ex-
pansion of 'Pt as a sum of Hough functions); (Geller used
only one term of this expansion for his forcing; and also
ignored the numerical coefficient .90812 in equation (1.2.1)
.for the tidal potential.) The amplitude of the response was
of course independent of longitude. Fig. 3 shows the
latitudinal variation of the amplitude. (The minor "wiggles"
at the equator may be due to the truncated representation

of 'Fi by only 4 Hough functions, and the details at very
high latitudes may be changed slightly if the functions

with negative [ had been included.) The amplitude near
the equator is ~ 28 ub . Had we considered the earth rigid
this amplitude would be -~ 4Q/J,. These amplitudes are the
amplitudes that a barometer fixed to the moving surface of
the earth would see. This reduction of the amplitude when
one takes the earth tides into account makes it even more

interesting to take the ocean tides into consideration.
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3.4 Ocean Tides

The phenomena of ocean tides and earth tides are
closely inter-related (Kuo et al., 1970, Hendershott and
Munk 1970) and ultimately they must be treated as two aspects
of the same problem. This task has not been undertaken as
.yet. All published calculations of tides in the open ocean
have regarded the ocean bottom as fixed relative to the
center of the earth.

Even with the simplification of ignoring the effect
of the earth tides the problem of calculating the tides in
the open ocean is arduous. The first attempts to deduce
the character of the tides in the open oceans were based on
deductions from coastal tide-gauge data. Until quite
recently, with the development of sensitive pressure
sensors which can be placed on the ocean floor, no obser-
vations had been made of the tides in the deep ocean. Tide
guage data is not a very reliable guide to the behavior of
the tide in adjacent regions of the ocean because a multi-
plicity of local effects complicate the water motions near
coasts. Despite this difficulty some authors have prepared
co-tidal charts for various ocean basins, based on coastal
data and the theory of flow in various idealised ocean
basins. The classic paper is that of Dietrich (1944) who

presented co-tidal charts for two diurnal tides as well



40

as for the lunar and solar semi-diurnal tides. However,
no attempt was made to deduce the amplitudes of these tides
on a global basis.

The accumulation of observations of the tides in the
deep ocean will be slow and expensive. Meanwhile research
on the problem is advancing rapidly on a third front, namely
solving the tidal equations'for realistic geometries using
electronic computers. A good survey of the work done in this
field is presented by Hendershott and Munk (1970). At the
time our work was undertaken, two separate calculations of
the semi-diurnal lunar tide in the world ocean were available
to us, one due to Pekeris and Accad (1969) (denoted by P § A),
Fig. 4, and the other due to Bogdanov and Magarik (1967)
(denoted by B § M), Fig. 5.

Boganov and Magarik solved Laplace's tidal equations
in a model of the world-ocean basin with the boundary con-
dition that the amplitude at coasts and islands take on
specified values; these values being taken from tide-guage
data. Pekeris and Accad solved the tidal equations in a
more detailed representation of the world-ocean basin than
B § M, using the boundary condition of zero normal velocity
at coasts.

Neither of these solutions are altogether satisfactory.
The treatment of dissipative processes is very simplified

in P G.A and there is no dissipation'in the model of B § M.
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In P § A the results are very sensitive to apparently small
changes in the shape of the boundaries. We may quote
Hendershott and\Munk (1970): "The results suggest that one
or more normal modes of the world ocean lie close to the
driving frequency. This means that numerical models of the
global tides are much more sensitive to details of dis-
cretization---than one would have expected."

It was felt that if one were to take account of the
ocean tides in this study one should also take the earth
tide into account. It is a very difficult problem to
correctly take both effects into account so the following
crude approximation was adopted. Over land it was assumed
that the vertical displacement f at the bottom of the

atmosphere was given by the Love theory ‘earth tide,§g :

guma = ¥

Over the ocean f was given by

Soenn = S v %
~where go represents the ocean tide solutions by B § M or
P § A.
Finally, for completeness, the effect of the additional
potential due to the ocean tide itself was taken into account.

Suppose g is the surface elevation of the ocean. Let

: 0 @ ! L Lda (e
. g:R@{ZZ Cr Pri)e "2 (3.4.1)

o) r‘-N’
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Then the potential ng due to this deformation is given by

2 2 ¢ 3 8 R LN
B2 2,0 aam TN

where ¢ is the density of the water and ¢, is essentially

the mean density of the earth (Hough 1898).

3.5 Treatment of the Data

The expansions of the Hough functions in terms of
Associated Legendre Polynomials that are presented in the
Appendix were prepared using the method of Hough (1897, 1898)
as presented by Flattery (1967). Standard methods of
evaluating the Associated Legendre Polynomials were used in
conjunction with these expansions to evaluate the Hoﬁgh
functions (and their derivatives) at intervals of ten degrees
in latitude. We now had to calculate the expansions (2.1.9),
the Fourier-Hough expansions, for the ocean tidal elevation
calculated by P § A and B § M.

B §Mand P § A calculated the sea surface height in
the form

¢ = a(e,2) loo(o€ - €(b,2))
and they presented their results as maps of(i and € . From
these maps we read values of 4 and € at intervals of fen

degrees in latitude and longitude. We denote such a point

-~

value of g (o &) by

§Wn’\ = g(@w‘ ) )V\)
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where -
€, = %"Tém 0 <m <18
—_ niIr
= 04£n<

gmn was written in the form

Wl s
§W\r\ = R'e A“’\!\ _e""‘
where

_ie,,
AW\/\ pot C(w\;\ ~€ n

For each latitude circle (i.e. for eachwm) a complex Fourier
analysis of A, was performed, the Fourier coefficients
being denoted by .t,., - A second quantity
S
$wan
was calculated for each point by summing the Fourier series.

Thus
Con = RLEE 3 Al P 5 <18
A=eg
These sums were calculated for three values of S 4 §=6,9,14
A correlation coefficient T between % and KF? was cal-
culated as follows

<§ % fw\n gP C°T"6VV\>

mn

= L
[<Z 5500 <E 5 (T emen]

r.-

where < ‘> indicates an average over one period. The

values of T are shown in Table 3.5.1.
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S P § A B &M
6 .8968 .9074
9 ' .9513 . 9516
14 .9844 .9835

Table 3.5.1 Correlation coefficients betweenf
and iF for three values of S.

The latitudinal behavior of the coefficiénts Tl
(4fixed) now had to be expréssed by expansions in sums of
Hough functions. Since the Hough functions are real, the
real and imaginary parts of (Cgw could be handled separately.
For each £ we had a set of nineteen numbers, QlAuw\ N gwuclm
to be represented in a least squares sense by a sum of.eight
Hough functions. This number, eight, wés chosen as a com-
promise between the desire for accuracy and the cost of
calculating the expansions in the Appendix. This problem
in the method of least squares is well known, (Hildebrand
1956). To solve it one must solve the so-called normal
equations. Two IBM supplied routines APFS and APLL (IBM
11968) were used to set up and solve these equations, using
the values of the Hough functions already calculated as
data. The solutions yielded the coefficients ,éi in the

expression

247
o~ = AL H )

m r=14|
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The Fourier-Hough expansions were then summed for each point

F‘
to yield a new quantity ¥ given by*
q o y

-~ 7 5 . 12{+7
FH Qﬁ Lot cLan ¢ {
R & > L Hplum (3.5.1
EM\ (s T % ) )
A correlation cbefficient betwgen ‘§ and .§F“ was cal-

culated according to a formula similar to that given above.

The results are shown in Table 3.5.2

P A B M
A & &
6 .8503 .8538
9 - .9011 .8908
14 L9301 .9146

Table 3.5.2 Correlation.coefficients between
f and SF“ for three values of <%

It was felt that taking 14 wavenumbers was sufficient
since with such a representation one accounted for over 80C%

of the variance of the functions being fitted. Expressions

* Hotw is a constant (= Jé) and the term in He ()
represents a purely radial oscillation of the lower boundary
of the atmosphere. Such an oscillation is physically im-
possible and so this term must be excluded. In order to use
eight Hough functions for each sum on v the limits on this
sum in the case A=0 were &t} to L1+
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of the form (3.5.1) withS = 14 were used in all further

calculations involving the ocean tidal elevation.

The amplitude and phase of zrh‘ for P § A and B § M

are plotted in Figs. 6 and 7 respectively. (Note that in
these figures the solid lines are lines of equal amplitude
and the dashed lines are lines of equal phase.) The co-
efficients/ﬁoﬁ. in the expansion of the vertical velocity
at the lower boundary are then given by

,/ufﬁ = Ctr_/éi
The expansion of the lunar tidal potential as a Fourier-
Hough series was straightforward since only wave number two
.was involved and an expression for ?t_ as a sum of Hough
functions had already been calculated.

The gravitational potential due to the displacement of
the ocean waters was relatively small, being in magnitude
about 10% of the lunar potential. This "ocean tide"
potential was computed in straightforward fashion. The
Associated Legendre Polynomials were evaluated at intervals
of ten degrees in latitude and a truncated Fourier-Legendre

series of the form

14 1 N .
RU = =7 el #umy o7 4876

L= -1y Tl

for the ocean tide was generated in exactly the same way as

the Fourier-Hough series already discussed. The calculation
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of the potential in the form¥*

1 3 L g€
g g e Trp €04 (3.5.2)
analogous to (3.4.2) was then a simple matter. The ex-
pansions for the Associated Legendre Polynomials in terms

of Hough functions (cf. Appendix) were then used to trans-
.form the Fourier-Legendre series into a Fourier-Hough series.
For a given ! the largest Values_of'Ciwere those for which
e v < Wea . The expressions for the Associated

Legendre Polynomials are fairly accurate for T <{ks. For

I >ll+4 the expressions underestimate the variance of the
Legendre functions by a not insignificant amount. However,

this was not thought a serious error since these coefficients

N -

were relatively small to begin with and the factor A+

in the expression (3.5.2) further reduces them relative to
the coefficients for [{lsr<|4+2.

When the expressions for the ocean tidal height and
the potential due to this displacement were calculated we
were then in a position to solve the vertical equation

‘ (2.1.14) with the boundary conditions (2.1.15) and (2.2.4)

#VPwis a constant (2% and the term in W%LM) in this
series represents a purely radial oscillation of the lower
boundary of the atmosphere. Such an oscillation is physically
impossible; it is precluded by the effective incompressib-
ility of the earth and the oceans, and so this term must be
excluded (¢f. footnote to (3.5.1)).
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for each mode of interest. With -/4 £{4l4 and 8 co-
efficients for each value of £ this meant that the‘Vertical
equation had to be solved 232 times.

Once Yi was known as a function of Z it was a simple
matter to compute the value of W/ (and hence @), U Vv at
any point, using the expressions for these quantities pre-
sented in Chapter II. We discuss the results of these

computations in the next chapter.
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Chapter IV

4.1 The Resonance Curve of the Model Atmosphere

Before considering the response of our model atmosphere
to the forcing functions described in previous chapters it
is important to investigate its resonance behavibr. Once
the forcing function A= co S’E\i *‘J/‘"‘f\ | is fixed
the solution of the vertical equation depends only on the
atmospheric stability function S and the separation con-
"stant ﬁ . The atmosphere is said to have a free mode if
there is a value of B for which there is a non-zero
solution of the vertical equation when the forcing term is
zero or equivalently if there is a value of 8 for which
the solution to the vertical equation is infinite when the
forcing term is finite. For such a value of B the atmos-
phere is said to be resonant.

For an arbitrary value of the forcing function A’ the
ratio

A
was computed, at intervals of 0.1 in ﬂ for 0 5,’5533‘. The
amplitude and phase of M are shown in Fig. 8. For B<&¢g
the value of the phase was between ~-0.00(° and 0° but

this cannot be shown on a log-graph. This curve is called
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a resonance curve.
There are two peaks in the resonance curve. The major
peak occurs at B=& & corresponding to an equivalent depth
of 10.006 km. This may be compared with Taylors (1929)
calculation based on the waves generated by the Krakatoa
explosion, that the atmosphere had a.free mode with an
equivalent depth of 10.3 km. We note too that at this
value of B a 180° shift occurs in the value of the phase
of M . There is a second maximum in the resonance curve at
B = 13.42 corresponding to an equivalent depth of 6.56 km¥*.
This second maximum is not a true resonance but it is
associated with some changes in the phase. This feature of
the resonance curve may be compared with a similar feature
in a resonance curve presented by Jacchia and Kopal (1952).
They were seeking to construct an atmospheric temperature
profile which met the requirements of the resonance theory
of the solar tides (Pekeris 1937) and was consistent with
what was then known about the vertical temperature structure
of the atmosphere. The profile they settled on had two
maxima in its resonance curve. The larger maximum occurred
at B = 8.47 (equivalent depth 10.388 km) and appeared to be
a true resonance. The smaller maximum occurred at @ = .05

(equivalent depth 7.93 km). At this maximum the value of [M]

* M was computed at intervals of 0.001 in B for

12¢ B <14
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was 81. We have no information on the phase of theirM™

and so we cannot say if this was a true resonance. The
profile which Jacchia and Kopal were led to had an un-
realistically high temperature of about 350° near 50 km,
and they found that the location and_magnitude of the lesser
maximum on the resonance curve were very sensitive to small
changes in temperature near 50 km. It seems reasonable

to suppose then that the peak which Jacchia and Kopal found
near R =10y is simply an unrealistic modification of the
secondary peak on Fig. 8.

For B >3< * the factorM decreases slowly,as P in-
creases,to a value of ~|2 at R ~looo . The phase does
not change significantly in this region.

Also shown in Fig. 8 are the seventeen values of }3
in the range O¢ B <3S and the corresponding mode numbers
~for which the equation was solved in our computations of
the response to oceanic forcing. For all but four of these
we have |M] <2 ; the largest value of IM]| s
about 6. It is clear therefore that we were not exciting

any resonant modes of the atmosphere.

* M was computed at intervals of 2.0 in B for

3§ ¢ p ¢ tooo
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4.2 Influence of a Small Ocean

As a further exploration of the behavior of the model
atmosphere the following experiment was performed.

It was supposed that the entire surface of the globe
was immovable land with the exception of a small square
ocean ten degrees of latitude and longitude on a side
(i.e. one point in the latitude-longitude grid mesh of
section 3.5). The surface of the ocean was supposed to
execute a vertical oscillation of amplitude one meter at
the lunar semi-diurnal frequency. This may be thought of
.then as an approximation to a point source of 47 . We
calculated the ampiitude and phase of the resulting
oscillation as it would be seen by a barometer fixed to
the ground. For the '"oceanic'" region we applied the
correction discussed at the beginning of the next section.
All effects of the lunar potential and the earth tide were
ignored. The result of the calculation is shown in Fig. 9,
for an ocean centered on 40°N and 0°E whose "tide" had zero
phase lag relative to local lunar time.

The effect of this localized forcing is felt globally.
In the calculations presentea below there are differences
between the calculated and the observed pressure oscill-
ations. The conclusion to be drawn from Fig. 9 is that

these differences cannot easily be reduced by simple
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manipulation of the forcing function, (the imperfectly
known ocean tide) in the immediate vicinity of the places

where discrepancies occur.

4.3 Calculated response when the ocean tide is taken
into account.

The results of the calculations described at the end
of .§3.5 are shown in Figs. 10 and 11 for the ocean fides
of B § M and P § A respectively. The result of solving
(2.1.14) was to give an expression for ¢«J) = Délt’ . As
discussed in section 1.2, this would be the pressure as
seen by a barometer fixed to the moving ocean or land
surface. Now the "oceanic'" barometers for the lunar tidal
observations are fixed to islands, which we shall assume
to move vertically with the Love earth fide. In order to
compare the theoretical results with observations in an
oceanic area, we must therefore compute the pressure change
as seen by a barometer which moves up and down with the
earth tide. This requires a correction over the ocean.

Now

) (D -

coiz—o - ’%%'#g((/JE f/MG)
where v is the vertical velocity due to the earth tide
and % is the vertical velocity due to the ocean tide.
The quantity we wish to compute,

22 g g
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is given by

e = :
R R R [

This quantity :%E -g(.AJg is plotted in Figs. 10 and 11
for the two cases in which Jp corresponds respectively

to the B & M and P § A dgta. As discussed’earlier, in both
cases the forces perturbing thé atmosphere were

1) The force due to the lunar tidal potential

2) The force due to the potential caused by the earth
tide

3) The effect of the vertical oscillation of the lower
boundary of the atmosphere due to the earth tide

4) The effect of the vertical oscillation of the lower
boundary of the atmosphere due to the ocean tide

5) The effect of the potential due to the ocean tide

It turned out that the introduction of the forcing due
to the ocean tide had quite marked effects on the atmcs-
phere. For convenience the data on which Fig. 1 is based
are entered on Figs. 10 and 11 in the form .{/¢  where V4
gives the amplitude and € the phase,when the oscillation
is written in the form ,

£ Con(0E +6€)
€ being in degrees. When we speék of the tidal crest moving
in a given direction we mean that the phase € decreases
in that direction. This convention is opposite to the
oceanic convention‘used on Figs. 4, 5, 6, and 7. The data

was prepared from the tabulations of Haurwitz and Cowley (1970).

-
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We consider first the response when B § M was used.

The comparison is best made on a regional basis.

Melanesia and Micronesia The computations yield an amphi-

drome in this region. The com-
puted amplitudes are small by a factor of two. The com-
puted phases appear to be of the right size and the direction
of motion of the computed tidal crest agrees with the ob-

servations in the region 10S - 15N.

Eastern Asia and Indonesia The observed amplitude maximum

over Indonesia is not found in
the computations; rather a maximum occurs over Korea with
a local minimum over Indonesia. The computed tidal crest
moves north-eastward, not westward, so that while the com-
puted and observed phases agree near southern Japan, they

disagree over the rest of the region.
Australia The éomputed amplitudes are of the right order of
magnitude but here too the computed tidal crest

moves towards the northeast rather than towards the west.

India The computed amplitudes are too small again by a

factor of two, roughly. The computed phases differ

from thc observed phases by 180°. The computed tidal crest
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moves towards the northeast; the motion of the observed

tidal crest has an easterly component also.

Africa East of 15E The calculated amplitudes disagree very

much with the observed amplitudes, being
too small by a factor of 3 or more. The computed phases
‘typically lead the observed phases by 30°; the computed
tidal crest moves northwest while the observed tidal crest

moves westward.

West Africa The calculated amplitudes appear to be of the
right order of magnitude. The calculated

phases lag behind the observed phases by about 60°. The

computed and observed tidal crests both move towards the

southwest.

Europe The calculated amplitudes are too high, in some
cases by a factor of two. However, the computed
amplitudes do decrease towards the north. The computed
phase was very nearly uniform at o~ 3459 over most of
Europe west of 30E. Thus the computed tidal crest moves
towards the southeast over northwestern Europe, towardg
the southwest over southern Europe and North Africa and
towards the northeast over Russia. The observed tidal

crest moves towards the northwest over northern Europe and
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towdrds the southwest over southern Europe.

~

North America The computed amplitudes disagree markedly

with the observations in western North
America. The observations show a noticeable increase in
amplitude from west to east across the continent while the
computations show the amplitude increasing from east to west.
The observed tidal crest moves westward while the computed

crest moves north-westward over the United States.

Latin America The égreement between the computed and ob-

served amplitudes is good except in the
neighborhood of the River Plate; this region will be dis-
cussed further shortly. The computed phases agree fairly
well with the observed phases and the computed tidal crest

moves more or less due west.

Isolated Island Stations:

Bermuda The computed amplitude is too small by a factor of

two. The computed phase lags the observed phase by
about 60°.
Azores The computed amplitudes are about right. The com-
puted phases lead the observed phase by about 50°.

St. Helena The computed amplitude is small by a factor of

two. The computed phase lags the observed phase
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by * 60°.
Honolulu The computed amplitude is too large by a factor

of two. The computed phase leads the observed

phase by 70°,

. We turn now to consider the response when P § A is used

as the ocean tide forcing.

Melanesia and Micronesia The computed amplitudes are too

small by a factor of two. The com-
puted phases agree fairly well with the observed phases and

the direction of motion of the computed crest is westward.

Eastern Asia and Indonesia The computed amplitudes agree

quite well with the observed
amplitudes in this region. The computations show a maximum
in amplitude, of about 8Q/ué in the China sea and the com-
puted amplitude declines towards the north at about the same
rate as does the observed amplitude. In northern Japan the
computed phases lead the observed phases by about 60° but
over the rest of the region the agreement between the two
is much better and consequently the directions of motion

of the computed and observed tidal crests agree well.



Fig. 11.
ocean tide due to P & A. Amplitudes (—~—) iq/wvé . Phases [---) in degrees. The

convention for the phase € 1is .  Script letters & are observed
+ (o"f:‘-(-é)
amplitudes and phases.

Tidal response in surface pressure to forcing by lunar potential, earth tide and

99
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Australia The computed amplitudes do not agree well with
the observations, particularly near Tasmania.

The computed phases seldom differ from the observed pﬂases

by more than ~ 30° and the computed motion of the tidal

crest has a large westerly component.

India The computed amplitudes agree fairly well with the
observations as do the computed phases. The computed
motion of the tidal crest is towards the southwest while the

observed crest appears to have an eastward motion.

Africa East of 15E There is controversy about some of the

determinations of the lunar tide in this
region. Haurwitz and Cowley (1967) point out that some of
the amplitudes determined in earlier studies turned out to
be erroneously large. It may be that the true, amplitudes
in the region of Tanzania'are nearer 60/ﬁ~6 than QQ/wé .
In any event our computations yielded a maximum amplitude
of 9q/ub at 40°E 10°S. The computed amplitudes were too
high by a factor of two in southern Africa. In the region
where observations are available the computed phases were

typically 100° thus leading the observed phases by ~ 40°,

The Middle East The existence of the amphidrome indicated

by the computations does not agree with the
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available observations.

West Africa The calculated amplitudes agree well with two

of the three available observations but do not
agree well with the large amplitude reported for Lagos.
The computed phases do not agree well with the observations,
for the computed tidal crest moves north-westward while the

observed tidal crest waves moves south-westward.

Europe The computed amplitudes are tco high by a factor of
two or three. The compufed phases do not agree with

the observed phases because the computed tidal crest moves

northwards while the observed tidal crest moves mainly west-

ward.

North America As with the computations using B § M the

present computations yield a pattern in which
the amplitude declines from west to east across the con-
tinent. The computed tidal crest moves towards the south-

east rather than towards the west.

Latin America The computed amplitudes in the northern part

of the continent agree fairly well with the

observations. However, the computed tidal crest moves east-
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ward while the observed tidal crest moves westward. The
calculations yield an amphidrome near the east coast of

the continent in the vicinity of the River Plate. Haﬁrwitz
and Cowley (1967) point out that the determinations for
Montevideo and Buenos Aires yield amplitudes that are con-
siderably lower than those for other'stations at the same
latitude or further south. ‘The computed amplitudes agree
quite well with the observations in the southern part of
Latin America. The calculated phases agree fairly well

with the observations also.

Isolated Island Stations:

The Azores The comments on the computations for Europe also

apply here.
Bermuda The computed amplitude is a little low in compérison
with the observed amplitude; the computed phase
lags the observed phase by 140°.

St. Helena The existence of the amphidrome predicted by

the computations in the vicinity of St. Helena
is contradicted by the large observed amplitude at St.
Helena.
Honolulu The computed amplitude is a little low but there
is fair agreement between the computed and ob-

served phases.
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We might summarise these results as follows.
Forcing df our model atmosphere with the lunar potential
and the solid earth tides produces a response which is
uniform in longitude and has a maximum amplitude of -2§/ub
at the equator. The lines of equal phase run almost due
north-south, the only amphidromes being at the poles. The
introduction of an additional forcing due to ocean tides
changes the picture considerably. The longitudinal uniformity
of the amplitude of the response is destroyed and the pattern
of equal-phase lines becomes more complex. Certain features
of the calculated response seem to be directly related to
similar features in the forcing. For example, over the
central and southern Atlantic there is a distinct resem-
blence between the patterns of ocean tidal amplitude and
atmospheric air tide amplitude when P § A was used. On
the other hand, over land there is no such simple explan-
ation for the results of the computation.

The results using P § A gave fairly good agreement
with the observations over Asia, East Africa, and South
America and poor agreement over Europe and North America.
The agreement between the results using B & M and the ob-
servations was not as good.

In order to further illustrate the difference that the

introduction of the ocean tide makes to these calculations
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two scatter diagrams, Figs. 12 and 13, were prepared. For
each station listed by Haurwitz and Cowley (1970) we N
plotted the pressure amplitude determined from observations
against the pressure amplitude for that station predicted

by one of two computations. Each figure has the observed
amplitude as ab;cissa. Fig. 12 has as ordinate the pre-
dicted amplitude when only the lunar potential and the earth
tides are taken into account (i.e. the amplitudes predicted
in Fig. 3). Fig. 13 has as its ordinate the amplitude pre-
dicted when in addition to these effects the ocean tide due
to P § A is taken into account (i.e. the amplitudes pre-
dicted in Fig. 11). Points falling on the diagonal are
perfect predictions. It is clear from a comparison of these
two figues that the ocean tide is an important and possibly

the most important influence on the lunar air tide.

4.4 Tidal Winds

The subject of lunar tides in the ionosphere is a sub-
ject of some interest (Matsushita 1967). We computed the
tidal winds at Z=124-8, i.e. at a height of ~ 98 km
in our model when the forcing consisted.of the lunar
potential, the earth tide (potential'and surface movement)
and the ocean tide and its potential according to P § A.
The computations were made at ten-degrece intervals in lati-

tude and longitude. The results are presented in the form
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ocean tide forcing.
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of tidal ellipses in Fig. 14. The line that is flagged at
each of these points indicates (1) the sense of rotation
of the wind vector (the wind rotates in the sense in which
the tip of the flag points) and (2) the wind direction when
the mean moon is in upper or lower transit at Greenwich
i.e. the phase of the wind oscillation. For example,
consider the wind at 40N, 30W near the Azores. At upper
or lower transit of the mean moon at Greenwich the wind at
this location is towards 30.24° west of south. Some 1.6
mean lunar hours before this transit at Greenwich the wind
had attained its maximum speed of 5 m/sec while blowing
towards 12.5° south of west. Some 4.4 mean lunar hours
after this transit at Greenwich the wind at 40N, 30W will
again attain its maximum speed while blowing towards 12.5?
north of east. The tidal ellipses were computed by first
icomputing

U = ue +VZ},
at the point in the form
w = Al (E+a) L
+B Coo(67E+8) -

We then calculated A‘,]SU k) (8% so that the velocity

)
could be written

W= R lo(rergy L
+ B Sin(ot+g) I
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Tidal wind velocities, represented.as tidal ellipsesyatZ= 14.8 (~98 km), when the
atmosphere is forced by the lunar potential, the earth tide and the ocean tide due to P & A.
Flagged line at each pecint indicates the sense of reotation of the wind vector and the direction
towards which the wind is blowing at lunar transit at Greenwich.

GL
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where

L'_ L = Cn 0
_l:'_(;,_ = Sn b

The appropriate formula for the transformation are

-t 2AB Go(x-B)
etﬁc;«\ A""‘EL

l LA bnyg Sim B ~ BloR $in 26
¢ = B Beiip 826 - 2R Senx Sond

bod + Sinfoe-4) S g
oy

Sin (=g
k Sinm B

Most observations of motions ip the region 80-110 km
fall into two classes. The first class consists of radar
observations of meteor trails. It is generally accepted
that the velocities computed by this method represent motions
of the neutral atmosphere. The second class consists of
"drift" observations by the radio fading technique. It is
not known whether the Velocifies derived from these latter
observations pertain to the neutral atmosphere or to the
charged species (Rawer, 1968). Even if these velocities do

pertain to the neutral atmosphere there is some doubt as to
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the height at which the velccities are being measured.

Greenhow and Neufeld (1961) from meteor wind obser-
Vafions at Jodrell Bank derived an upper bound of 2 m/sec
on the semi-diurnal lunar tidal velocity. Mlller (1966)
made an extensive study of tides in meteor wind data from
Sheffield, England but did not report any determinations at
the semi-diurnal lunar period. ‘MU11er (1968, 1970) reports
an experiment he carried out to compare velocities measured
by the two methods. He found evidence that the velocities
measured by the radio fading method do represent motions
of the neutral atmosphere at levels somewhat higher than
the levels where meteor trails are measured. In his ex-
periment he found that meteor-wind observations gave winds
that pertained to an average height of 95 km while the |
average E-region reflection height was 103 km. Our cal-
culations were made for an intermediate level, 98 km.

Using drift observations Phillips (see Briggs and
Spencer, 1954) determined lunar tidal winds at Cambridge,
England, Chapman (1953) did a similar calculation for
Montreal, and Ramana and Rao (1962) did one for Waltair,
India. Table 4.4.1 shows a comparison between these deter-
minations and our computations for the points indicated.

t
E is local lunar time.



Cambridge u
52.2N,0.1E v
Montreal u
" 45.4N,73.8W \
Waltair u
17.7N,83.3E v
Table 4.4.1

Observed
16 Sen (2681

4 SXM(iE+3°) v
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I Sen(@b+3°) v
ja Sim(at'+ai®) u
§ Sem (aé‘woj v

]
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Tidal velocities
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At: Co-
Computed ordinates

0.4 SCal2E-170° 50N, OE

il

i

10.3 Sim(2E-208%)

3.0 S~ (26-32°) 50N, 70W

i

1-0 S (2t -43%)
4-8%(25+2§DD 20N, 80E

1

1}

4.0 Sam (2E+2887)

determined from E-region

drifts and computed tidal velocities at 98 km. Unit
is 1 m/sec.

The drift velocities tend to be somewhat larger than

the computed velocities, which is what one would expect,

given the height difference between the levels to which the

velocities pertain.

Some determinations of tidal winds at the surface have

been made (Chapman and Lindzen, 1970).

A comparison of the

observed winds and the computed winds is shown in Table

4.4.2. Velocities at 220 were computed using P § A as the

ocean tidal forcing.

the form

iL &“(16*A4

where & is the local lunar time.

The determinations are presented in



79

At co-
Observed Computed ordinates
U v U \
e‘l— )'1.. o -e'g, ).1,0 .e-b 'XL 0 éb )\} 0
Upsala "0.75 1797 0.6 24 0.1 333" 0.4 269 60N 20E

Greensboro,

NC 1.8 80° 1.3 11° 0.6 30° 0.6 249° 40N 280E
Hong Kong 2.2 69° 1.0 278° 0.3 253° 0.6 6° 20N 110E
San Juan, o o 0 o

P.R. . 0.6 253° 1.4 87 0.8 329° 0.5 204° 20N 290E

Aguadilla 1.5 100° 1.5 65° 0.8 329" 0.5 204° 20N 290E

Balboa, o o . °
Panama 0.6 195° 1.2 29 1.2 41° 0.6 162° 10N 280E
Mauritius 1.0 220° 1.2 356° 1.2 355° 0.8 288° 20S 60E

Table 4.4.2 Comparison of observed surface tidal winds
and winds computed at the coordinates shown. Unit is
lem/sec.

There is no agreement between the computed and observed
phases. The computed wind speeds generally underestimate

observed wind speed.

4.5 Summary and Conclusions

The results of the previous chapters show that the lunar
air tide is significantly influenced by both oceanic tides
and solid earth tides. Our computations exhibited some

measure of agreement with the observations, but the agreement
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was by no means perfect.

However, given the uncertainties of our knowledge of
the ocean tide it is encouraging that the agreement was as
good as it was.

It would appear that a good deal of work remains to be
done before one could say that the semi-diurnal lunar air
‘tide is fully understood. On the observational side there
have been a total of 104 determinations of the tide in sur-
face pressure. Many large gaps in our knowiedge of the
distribution of tidal parameters remain. For instance,
there are no determinations available over most of Asia.

As regards the ocean tide bhardly any observations of the tide
in the deep ocean have been made. | .
It was disappointing that over North America, where

the air tide 1is well known, agreement between theory and
observation was so poor. It was interesting nonetheless
that P § A and B § M produced similar distributions of
amplitude in this region. This raises the question of the
effect of topography on the lunar tide. Wallace and
Hartranft (1969) show that topography markédly affects the
solar diurnal tide in the troposphereiand lower stratos-
phere. However, it is not clear to what extent the effect
is mechanical rather than thermal.

The model we used neglected dissipation. Geller (1969)

studied the effect of infra-red cooling to space and found

-
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that our knowledge of the physical processes involved,
particularly those involving ozone, was poor and uncertain.
Because of this uncertainty it was thought best, at this
time, not to pursue the matter in the present study.

In summary, it is felt that this study has achieved
its primary purpose of showing that solid earth tides and
ocean tides particularly must have a considerable effect

on the semi-diurnal lunar air tide.
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Appendix

Hough functions were computed following the method of
Hough as presented by Flattery (1967). This method yields
expressions for the Hough functions as sums of (completely

normalized) Associated Legendre Polynomials, thus
W) = = G Peow ALl
=gy

The H&Q@ are normalized so that

! +
R Ty du =1 s
-I -
or equivalently
'3 ' A3
Z CDo=
=14 ‘
It follows that
Pt T
R TR LI OO A
and
o0 : ‘ A
Q.
St =1 =
n=[4| !

For any given Hough function coefficients were calculated
successively until the stage was reached where the addition

of the square of the last coefficient when added to the sum
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of squares of the previous coefficients changed this sum by
less than one part of 1&0 . No further coefficients were
determined and the coefficients were normalized so that the
sum of their squares was 1.

To illustrate the use of the tables, suppose we want
-1 )

-4
to find Crhai , the coefficient of ?JILA) in the ex-
pansion of H:;*L/{) . In 'the table of expansion co-

efficients for anti-symmetric Hough functions of zonal wave
number -4 we.find the column headed **G‘4nﬂ) . This
column lists the C;?,r . In that row of the column
labeled P(-t14,21) we find the value of C;;;‘ to be
O.101877

The degree to which the Associated Legendre Polynomials
are r