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Abstract

This thesis involves processing randomly obtained seismic data. The main contributions
of this research are: the improvement in reconstructing the evenly spaced seismic signal
from randomly sampled data; the significant reduction in the sampling frequency
(Nyquist frequency or below). To achieve these objectives, we have made use of the
Shannon sampling theorem and compared both linear and higher-order random sampling
and reconstruction techniques. Both techniques can successfully recover the original
signal from the randomly obtained data at very high sampling frequencies. When the
average sampling frequency is only at Nyquist frequency or below, the linear technique
performs poorly on the signal recovery. Only the higher-order technique is a good choice
for reconstructing the original signal with average sampling rates at or below the Nyquist
rate.

The higher-order technique has been used successfully in the time domain. Likewise, this
technique can also be applied to the space domain. We incorporate this technique to
reduce the seismic data volume, the number of geophones being used in the field, and to
improve the degree of freedom in arranging geophones.

Thesis supervisor: Nafi Toksuz
Title: Professor of Geophysics at EAPS
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Chapter 1

Introduction

Seismic data obtained in the field are oversampled by geophones and therefore needed to

be downsampled at nonuniform (random) frequencies to reduce the data capacity. Also,

while the geophones are geographically needed to be arranged randomly, it's needed to

develop the techniques to process those randomly obtained seismic data. The goal of this

thesis is to develop techniques which reconstruct the original signal from the randomly

obtained time-domain or space-domain data. This chapter motivates this work and

describes the organization of the thesis. First the problem of processing randomly

obtained data is described. Then, the general approach taken to solve this problem is

introduced. Finally, an outline of the thesis is provided.

1.1 Problem Description

In many cases, seismic data is oversampled and requires a big capacity of disk storage. In

order to reduce the data volume without distorting the authentic information, we can

resample the data with random frequencies. Those random frequencies can be uniformly

distributed, Gaussian distributed, etc. The average of the random frequencies can also be



the Nyquist frequency or below. Theoretically, the sampled data cannot be completely

recovered if the lowest sampling frequency is below the Nyquist rate [7]. However, if the

average sampling frequency is chosen to be the Nyquist rate, the original signal can be

reconstructed very well from the randomly sampled data even though some sampling

frequencies are below the Nyquist rate. It's promising to develop reconstruction

techniques that recover the original signal from the random samples and make the error

between the original signal and the reconstructed signal small.

Moreover, the reconstruction techniques can be used to recover the randomly sampled

space-domain signal. In the field, geophones are usually arranged as evenly spaced as

possible. We can place geophones randomly or as needed if we can apply the

reconstruction techniques to process the randomly sampled space-domain data. The

number of geophones can also be reduced without losing significant information after

these reconstruction techniques are developed.

This thesis attempts to develop techniques which reconstruct the original signal from the

randomly obtained samples.

1.2 Proposed Solution

The techniques studied in this thesis are motivated by the fact that the randomly sampled

data can be satisfactorily reconstructed if the average sampling frequency is the Nyquist

rate or below. We consider the linear reconstruction technique and the higher-order

reconstruction technique in this thesis.

Conceptually, signal reconstruction requires that the lowest sampling frequency is at least

the Nyquist sampling rate to completely recover the original signal. This is the so called



Nyquist Sampling theorem. According to this theorem, if the sampling frequency is

smaller than the Nyquist rate, the Fourier spectrum of the sampled signal is going to

overlap (aliasing). It's impossible to recover the original signal from an overlapped

Fourier response.

However, in practice, if the Fourier spectrum of the original is small enough over a

certain frequency, we can specify that frequency is the highest signal frequency by

applying a low pass filter [14]. By doing so, we can still be capable of recovering the

original signal because the Fourier spectrum is not corrupted.

This thesis is an experimental study of the processing of the randomly obtained seismic

data. We study the efficiency and accuracy of both the linear and the higher-order

reconstruction techniques by theoretical analysis and computer simulation. We also study

both the time-domain and space-domain signal reconstruction by reconstructing the real

seismic data from the field.

1.3 Thesis Outline

The body of the thesis is divided into five chapters:

Chapter 2 covers the background information useful for the discussion of signal

reconstruction presented later in the thesis. The Shannon reconstruction formula is the

classical formula in signal processing. All the signal reconstruction techniques are

developed based on this formula.



Chapter 3 presents a detailed description of both the linear reconstruction technique and

the higher-order reconstruction technique. Procedures to perform reconstruction are also

described.

Chapter 4 presents the computer simulations of both the linear and the higher-order

reconstruction techniques. The average sampling frequencies are chosen to be as low as

the Nyquist rate and three times as high as the Nyquist rate. The simulations show that

the higher-order reconstruction technique is a better method to recover the original

signals from the random samples with the average sampling frequency at the Nyquist rate

or below.

Chapter 5 presents an experimental study of the effectiveness of the higher-order

reconstruction technique. The original signal was resampled with low average sampling

rate to reduce the requirement for data storage.

Chapter 6 concludes the thesis with a summary and directions for future work. The

techniques and experiments that are presented in the thesis have left many open issues. It

is hoped that this work will stimulate further investigations which may address these

issues.



Chapter 2

Background

The reconstruction of original signal from a uniformly sampled data set is quite well

known: the Shannon reconstruction formula [4] is given by,

s(t) =, s(kT)Sinc(t - kT) (1)

where T is the sampling period. In random sampling, t of equation (1) is not an integer

multiple of the average sampling rate. The reconstruction formula in this case is derived

by defining a deviation of the sampling point from the sampling time corresponding to

the average sampling interval. Thus it is no longer an impulse response of one ideal low-

pass filter; the filter response function is a modulated one. This is represented in equation

(2).

s(t) = X s(tkSinc(t - tk)) (2)

where tk is the random k-th sampling instant. However, reconstruction from a random

sampling set is not possible for any arbitrary deviation from the average sampling set.

According to the Nyquist sampling theorem [5], the lowest sampling frequency should at



least double the highest frequency of the sampled signal to avoid aliasing. The Nyquist

frequency, therefore, means the sampling frequency which is exactly twice as big as the

highest signal frequency. In the other words, any sampling frequency below the Nyquist

frequency will not be able to recover the original signal completely. In this thesis, we are

trying to reconstruct (approximate) the original signal from the data randomly sampled

with the Nyquist frequency or below.



Chapter 3

Reconstruction Techniques

The signal can be reconstructed from randomly sampled data by using the Shannon

reconstruction formula given by equation (2), and the sampling instants are known.

However, a better and robust reconstruction procedure can be obtained by using many

reconstruction approaches. Some reconstruction methods were discussed by Wunsch [22]

and Goff and Jordan [23] under different data conditions. In this thesis, we only

introduce and focus on two techniques: the linear reconstruction method and the higher-

order reconstruction method.

3.1 The Linear Reconstruction Method

The linear reconstruction method is based upon the fluency model [1]. The fluency model

clarifies the relationship between continuous-time and discrete-time systems by utilizing

a group of piecewise polynomial functions called fluency digital/analog functions

(common sampling function). By selecting a fluency sampling function of an appropriate

class according to the characteristics of the signals in question, we can interpolate and

accurately approximate continuous-time signals from sampled data. In order to discuss



the linear reconstruction technique, we have to discuss the fluency model and fluency

sampling function first.

3.1.1 The Fluency Model and the Fluency Sampling Function

In the fluency model, signals are categorized in terms of signal space. A signal space, 'S,

is defined to be a space composed of piecewise polynomial functions of degree (m-1)

with a parameter of (m-2) times continuous differentiability. It has been proven that a

signal space of (m-1)th order piecewise polynomial becomes equivalent to those of

staircase functions when m = 1, and to Fourier exponential functions when m goes to

infinity [1]. The fluency model, describes the relationship between these signals

belonging to 'S and discrete-time signals, by introducing a group of functions called

fluency sampling functions.

Fluency digital/analog conversion functions (common sampling function) are piecewise

polynomial functions with degree of (m-1) and a parameter of (m-2) times continuous

differentiability. Figure 1-3 show class m=2, m=3, and m=oo sampling functions,

respectively.

Any signal belonging to 'S can be expressed in terms of linear combinations of discrete-

time signal and class m fluency sampling function. From the view of fluency model,

staircase signals of signal space 'S , can be represented by a linear combination of step

functions (class m=1 sampling function). Likewise, Fourier exponential function space

class can be represented by Sinc.

There are several advantages in using the fluency model to describe signals. First, we are

able to deal with a variety of signals of different signal space. In real world, signals are
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time-varying, that is they continuously change their forms along with time. At some

point, a signal may be smooth and belong to 4S, whereas at another point, it may be

rugged and belong to 'S. With fluency sampling functions, we are able to correlate these

time-varying signals by changing their classes, while with the conventional Fourier

model, we need to assume that signals are only composed of polynomials that belong to

S.

Second, fluency functions provide us with the means of piecewise polynomial

approximation, without the need for heavy calculation. Conventionally, approximation by

piecewise polynomial methods are done by solving coefficients for B-spline basis.

However, this requires solving linear equations. With fluency sampling functions, sample

values only need to be convoluted.

Third, amplitude of fluency sampling functions of lower classes (3<=m<oo) attenuate

exponentially. Thus, truncation is possible with small approximation error. This is useful

for implementation, for it is obviously not realistic to deal with functions having infinite

support. The truncation error will be discussed further in the following subsection.

3.1.2 The Fluency Function

In this section, we will discuss briefly the mathematics of fluency functions [8].

First let the sample points on the time axis be {tk}"__. where tk:= kh, k = 0, 1,2,...

Here, h is the sampling interval. Then define the sample value at a sample point tk to be

vk. Thus the relation between continuous-time signal s and discrete-time v is

s(tk)= vk, k =0,±1,2,... (3)



Under these conditions, the sampling basis for 'S is defined as the system of functions

{[S] k}k=-. that satisfies

s(t) = I Vk-[ sTk(t), VS em s
k=-oo

(4)

The equation for the sampling basis is derived as

[s]T~k(t) = m /(l-k)Q]o1(t)
1=-00

k = 0,±1,±2,... (5)

The function, {J p,}__, is called the B-spline basis of degree (m-1) with a parameter

that is (m-2) times continuously differentiable. They are shift-invariant, symmetric

functions.

The coefficients {m g(p)}.c_ are derived as

(6)m#(p)= h'Yh mB(f)ej 2 fphdf
- 2hf

and

fB(f)= (7)

b (90 (qhe je-j2,cfqh
q=-[(m-)/2

where Fal denotes the greatest integer not exceeding ax.

3.1.3 Truncation Error of Fluency Sampling Functions



When vk, k=0,+1,+2,... are the sample values for xc k(R), the least squares

approximation soE S for xe L2 (R) is represented by

so =1Vk [ s]9o(t - kh). (8)

_02
x belongs to L(R) when jx(t)| dt < +oo.

The truncation error E between the proposed approximation s0 and the least squares

approximation so for x e (R) is defined as follows:

2 050 -s r _o(t) - so(t)| dt]
E - - - 1 - (9)

x(t)|2dt]

When the sampling interval is normalized to 1, it is known that for m=3 class, truncation

at ±5 will keep the truncation error within only -60dB. For, m=4, truncation at ±7, will

give the same precision [3]. E is expressed in the form of 20 log10 E(dB).

3.1.4 Random Sampling and Interpolation

As shown above, fluency sampling functions can be truncated with small amount of

approximation error. Thus, if fluency sampling functions are applied somehow to

randomly obtained discrete-time signals, original signals may be approximated with

accuracy without the need for solving linear equations. Here, we propose a method for

randomly sampling and interpolation based on fluency sampling functions. Although this



technique is valid for fluency functions of all classes, for simplicity, we explain by using

class m=3.

3.1.4.1 Random Sampling and Interpolation

To interpolate randomly sampled signals, sampling functions are convoluted with sample

values. However, when it comes to interpolating randomly sampled signals, simply

dilating the sampling functions so that they intersect the time axis at the place of sample

points will not give good interpolation. This is because information concerning the

lengths of intervals between randomly sampled data are not reflected. In other words,

upon interpolation, we would like the sample points that are further away in time to give

smaller influence compared with the points that are nearer. Hence, we make

approximations for each randomly sampled data, the values that they would take if they

were rearranged in randomly distributed interval. We call these approximated samples

pseudo samples.

3.1.4.2 Pseudo Samples

As mentioned before, fluency functions can be truncated without resulting in large

approximation error. If we truncate at ±5, class m=3 function will intersect the time axis

4 times at either side of the origin, which means only a total of 8 sample points will be

needed for interpolation (i.e. convolution). Accordingly, only 8 pseudo samples are

needed. These 8 pseudo samples, instead of the original randomly sampled data, are

convoluted with the sampling function.

In Figure 4, sO, sl, s2, s3, and s4 represent sampled signals at times tO, tl, t2, t3 and t4,

respectively. The figure shows how to obtain one of pseudo samples needed to interpolate



values between t2 and t3. The pseudo sample value, p, is obtained by a linear

approximation between s2 and s3 at time t2+d. The distance between tI and t2, called d,

is the base interval.

We have shown the method for obtaining one pseudo sample. The rest are calculated at

times t2+2*d, t2+3*d, t2+4*d, tl-d, tl-2*d, tl-3*d, and tl-4*d, using different pairs of

sampled signal. For example, to obtain pseudo samples at times t2+2*d, and tl-2*d,

linear approximations are done between s2 and s4, and between sO and s 1, respectively.

As it could be easily understood, the base interval changes according to the distance

between the intervals of sampled signals. The sampling function is dilated according to

the length of the base interval so that it will across the time axis at points where pseudo

samples exist.

3.1.4.3 Random Sampling

Given this method for random interpolation, points that best approximate the original

signal are extracted as feature points. It is known that midpoints of two adjacent

inflection points give the best approximations. This is because fluency sampling

functions are designed in such way that their points of inflection come half way in

between two adjacent sample points. The selection of signal's feature points, is

considered random sampling.

From the above description of the reconstruction method, we can see that linear

approximations are done to interpolate the randomly sampled data. Therefore this

technique is called the linear reconstruction method. The simulation and experiment

based on this method will be discussed further in the following sections. In order to



compare the reconstruction quality, let's introduce the other reconstruction technique

discussed in this thesis: the higher-order reconstruction method.

3.2 The Higher-order Reconstruction Method

Equation (1) and equation (2) show mathematically how to recover original signals from

randomly sampled data. In equation (2), since tk is the random k-th sampling instant,

reconstruction from a random sampling set is possible for any arbitrary deviation from

the average sampling set. The bounds on the nonuniformity, allowed from an average

sampling rate in a particular sampling set, has been established by various methods as

discussed in many papers [4]. The bounds utilized here are derived by the restrictions

introduced for a one-to-one mapping from the sampling set to the original signal and vice

versa. There are two bounds on the permissible nonuniformity based on the necessary and

sufficient condition of the mapping in the bandwidth corresponding to the average

sampling rate [4]. The two bounds are given by the following equations:

tk - kTT/7r (10)

N-1

Y,(tk - kT) !s; 3 T2 2 112
0

where T is the sampling interval. Now, the samples in particular sampling set can be

considered as samples taken at the average sampling rate, corresponding to that sampling

set. Each sampling section is reconstructed separately, therefore the stability of all the

sampling sets together with respect to a single average sampling rate does not arise.

However, the continuity of the consecutive sampling sections has to be maintained. To

fulfill this requirement the average sampling rates of the consecutive sampling sets must

satisfy condition of equation (10).



The criterion chosen to increase or decrease the sampling rate is the first derivative of the

signal. The sampling rate is increased as the normalized first derivative increases. To

implement this criterion, first derivative is approximated by a first difference or a bilinear

approximation. The signals sampled at the Nyquist rate has unity normalized first

difference, given by equation (12).

ds(k)= s(k) - s(k -1)
|s(k)|+|s(k -1) + 0.001

The denominator used in this equation is provided an offset to avoid numerical

instability. The first difference given by equation (12) is sensitive to random noise; a

three point averager given by equation (13) is operated on the signal before estimating the

first difference.

Sav (k) 0.5s(k -1) + s(k)+0.5s(k + 1) (13)
2

The discarding basis can be derived from the knowledge of the first derivative of the

signal. In this discrete sampling process the sampling is carried out at a sampling rate

corresponding to the maximum frequency expected in the signal and validation of each

sample is done by checking whether the first derivative is above a threshold level. If the

first derivative is below the threshold level the samples continue to be discarded unless it

meets the bounds of the sampling set. The threshold value is chosen according to the

oversampling requirement.

3.2.1 Reconstruction by Low-pass Filtering



The signal can be reconstructed from a randomly sampled data by using the Shannon

reconstruction formula given by equation (2), when the sampling instants are known.

However, a better and robust reconstruction procedure can be obtained by using a

practical Finite Impulse Response (FIR) low-pass filter [7].

3.2.1.1 Design of A Low Pass Filter Using Kaiser Window

The Kaiser window used here is given by

w(k) = I # 3(I - (k/N)2) 05 O (#) Ikj!; N (14)

= 0 -kl > N (15)

Where I is the zeroth-order modified Bessel function of the first kind

M 2

Io(x) =1 + [(x/2)m/m!] (16)
m=1

and P is the scaling factor. However, the impulse response of the low pass filter is time-

varying, depending on the number of samples discarded. In the case of sampling with

digital means with discarding basis, the base sampling rate is the highest corresponding to

the highest frequency; the discarding of samples reduces the sampling rate only at the

integer multiples of the base rate. Therefore, the requirement of a time varying impulse

response is met with the help of an interpolator. The well known formula of an

interpolator, having an integer factor L is given by [7],

y(m)= Xh(m - k)s(k/L) ifk is real (17)
k=-oo



y(m)= Xh(m - rL)s(r) (18)

3.2.2 Implementation

For practical implementation, the algorithm for selecting a valid sample is given below

following Ghosh and Dutta [4]:

I input the first sample

II initialize the average sampling rate equal to base rate

III initialize the bound according to the average sampling rate

IV. take a new sample and estimate the normalized first derivative with the help of

equation (12)

V. if the first derivative is below the threshold discard the sample

VI calculate the new sampling rate

VILcalculate the new bound according to the new average rate

VIIlcalculate the sum-of-deviation

IX. check whether sum-of-deviation agrees with the bound

X. if not close the section and compute the average rate

XL compute average of the average sampling rates corresponding to all the previous

average rate

XIlcompute the average rate of the new section according to the bound of equation (10)

XIILrepeat from step (III)

Actually, the sum-of-deviation bound can be obtained through a look-up table.

3.2.3 Reconstruction



For reconstructing the original signal the discarded samples are estimated by

interpolation, using the current sample which contains the number of discarded samples

and previous (N-1) samples, where N is the selected filter length. The filter has a cutoff

frequency n/L and gain L. In order to avoid aliasing the original signal has to be sampled

at least L times the Nyquist rate. In the sampling process implemented through discarding

basis this condition is satisfied automatically. As the number of zeros at different portions

of the sampled data is variable, the modified impulse response estimated accordingly is

given by,

hL(k) = L.(ir/L). 1.Sinc(kir/L) (19)

= Sinc(kr/L) (20)

Unlike the linear method, this reconstruction algorithm requires more than two random

samples to interpolate one even sample, and is therefore called higher-order

reconstruction method and the actual steps are given below:

I take the first sample

II input the next sample

IIL obtain the information of the number of discarded prior to the current sample

IV. choose the interpolation factor as equal to the number of discarded samples and

estimate the impulse response function

V. compute the interpolated samples according to equation (17)

By far, we have introduced two methods of reconstructing the original signal from the

randomly sampled data. In the following sections, we will show the computer simulations

and real seismic data processing.



Chapter 4

The Computer Simulation

In order to test both the linear reconstruction and higher-order reconstruction methods,

we construct a signal s(t) consisting of 10 frequencies:

10
s(t)= Isin(27rkft) (21)

k=1

where the base frequency f = 1000Hz. The highest frequency, therefore, is 10,000 Hz,

and the Nyquist frequency is 20,000 Hz. We will resample s(t) with randomly distributed

intervals. Two average sampling frequencies will be used in this thesis. One is the

Nyquist frequency, and the other is a sampling frequency which is three times as big as

the Nyquist frequency. The distribution of the random sampling frequencies is assumed

to be a uniform distribution in this paper. After resampling the original signal, both linear

and higher-order reconstruction techniques will be applied to recover the original signal

from the randomly obtained data.

4.1 The Linear Reconstruction Method



As we mentioned before, by selecting a fluency sampling function of an approximate

class according to the characteristics of the signals in question, we can interpolate and

accurately approximate continuous-time signals from the sampled data. By default, the

sampling function used in this paper is class m=3. This reconstruction technique can

recover the original signal very well when the averaging sampling frequency is high.

4.1.1 Linear Reconstruction with High Average Sampling Rate

The original signal given in equation (21) is shown is Figure 5(A). The Fourier spectrum

of the original signal is given in Figure 5(B). In Figure 5(B), we can see 10 distinct

frequencies from 1k to 10k Hz. The Nyquist frequency is 20k Hz. When the average

sampling frequency is 60k Hz, the uniformly distributed histogram of the sampling

frequencies is shown in Figure 6. We assume the sampling frequencies are uniformly

distributed from 40k to 80k.

The randomly sampled data are shown in Figure 7. We can see clearly from Figure 7 that

the sampling intervals are not evenly spaced. Random samples exactly match the original

signal.

When the linear reconstruction technique is applied, the evenly spaced samples are

obtained from the random samples. In Figure 8, the even samples fit the original signal

very well. After the even samples are obtained, the uniform interpolation can be readily

applied to reconstruct the original signal. Figure 9 shows that the recovered signal fits the

original signal with very small error. Apparently the linear reconstruction technique is a

very good method for recovering the original signal if the average sampling frequency is
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high enough. The question is: what if the average sampling rate is low? For example,

what if the average sampling rate is equal to or below the Nyquist sampling rate?

4.1.2 Linear Reconstruction with Low Average Sampling Rate

Let's reduce the average sampling rate to the Nyquist rate. By doing so, we can reduce

the capacity of data storage if the reconstruction is still successful.

Figure 10 shows that the random samples match the original signal well when the average

sampling frequency is exactly the Nyquist sampling frequency. However, since the

average sampling frequency is too low, the recovered evenly spaced samples are located

correctly with their amplitudes mismatched. Figure 11 & 12 show that the linear

reconstruction does a poor job when the average sampling frequency is the Nyquist

sampling rate.

4.2 The Higher-order Reconstruction Method

As it has been seen, the linear interpolation is not a good choice when the original signal

is sampled with a low average sampling rate. This is systematically determined by the

linear technique itself. As we know, the linear reconstruction is very easy to implement

and requires less calculation compared to the higher-order reconstruction technique. The

linear method can only give an approximation which linearly interpolates the original

sample between its two adjacent random samples. This reconstruction turns out to be

unsuccessful when the sampling intervals are too large, i.e. the sampling frequencies are

too low.
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4.2.1 Higher-order Method with High Average Sampling Rate

The higher-order technique, however, can do a better job than the linear one. Figure 13-

15 show that the higher-order reconstruction can reconstruct perfectly the original signal

from the randomly sampled data. Therefore, it will be more interesting for us to take a

look at the case when the average sampling frequency is only the Nyquist sampling rate.

4.2.2 Higher-order Method with Low Average Sampling Rate

Unlike the linear reconstruction technique, the higher-order reconstruction method can

recover the original signal from a low average sampling rate very well. Figure 16-17

show the similar graphs we discussed before. In Figure 18, we still see a very good

reconstruction of the original signal from the data sampled with the average Nyquist rate.

Due to the outstanding performance of the higher-order reconstruction technique, we will

only utilize the higher-order method in our tests with real seismic data.
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Chapter 5

The Results of Experiments with Real
Data

In chapter 4, we proved that the higher-order reconstruction technique is a better method

for recovering the original signal from the randomly sampled data than the linear

reconstruction technique. We will now apply this technique to real seismic data.

5.1 The Real Seismic Data

A set of real seismic data composed of 36 traces is shown in Figure 19. Each trace has

1750 samples. The sampling frequency is 500 Hz, which means the sampling interval

here is 2 ms. The 30th trace is chosen to be resampled randomly and then to be

reconstructed by applying the higher-order reconstruction technique.

The 1750 samples of the 30th trace are displayed in Figure 20. The total time period of

those samples is 3.5 seconds. By taking the Fourier transform, in Figure 21, we can see

that most energy falls into low frequency band (f < 50 Hz). When frequency is higher

than 50 Hz, the energy is almost negligible. Therefore, we can choose 50 Hz to be the
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highest frequency of the original signal and resample it with average sampling frequency

at Nyquist rate (100 Hz).

5.2 Resampling the Original Data

The histogram of the sampling frequencies is shown in Figure 22. The average sampling

frequency is 100 Hz. The sampling frequencies vary from 70 Hz to 130 Hz. Figure 23

shows that the resampled signal (random samples) matches the original signal very well.

We will reconstruct the original signal from the random samples by applying the higher-

order reconstruction method.

5.3 Reconstruction of the Original Signal

After applying the higher-order reconstruction method, the even samples can be obtained

from the random samples. Figure 24 shows that the recovered even samples match the

original signal very well. In Figure 25, after uniform interpolation, the even samples can

have a 2 ms sample interval. The recovered signal fits the original signal well.

From the experiment above, we further believe that the higher-order reconstruction

technique is a very good method to realistically recover the original signal from the

randomly obtained data. So far, we have applied the reconstruction technique to recover

signals in the time domain. We also can reconstruct the original space domain signal

from the random samples by applying the higher-order reconstruction method.

5.4 Reconstruction of the Space Domain Signal
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An approach similar to recovery of time-domain signals can be applied to unevenly

sampled space-domain signals. We can apply our time-domain techniques to process the

space-domain signals by treating the space variable in a similar way we treated the time

variable.

In Figure 19, we have 36 traces of real seismic data, and there are 1750 samples on each

trace. For each time instant, there are 36 samples varying in space between 36 different

traces. We pick the 1000th sample from each trace (that is t=2.0 sec in Figure 19) and

combine them to be a space-domain signal. The space interval of those samples is 122 ft.

In this paper, we simply normalize the space interval to be one. The original space signal

is shown in Figure 26.

After taking the Fourier transform, we can see the frequency spectrum of the space signal

in Figure 27. We resample the space signal by the random spatial frequencies with

average sampling frequency at one. The histogram of the random sampling frequencies is

shown in Figure 28. After resampling the original spatial signal, we have the randomly

obtained data shown in Figure 29. Figure 30 gives the reconstructed evenly spaced

samples after the reconstruction technique is applied. The finally reconstructed signal

after the uniform interpolation is shown in Figure 31. There is a very good match

between the original signal and the recovered signal.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we developed and compared two reconstruction techniques. Both the linear

and higher-order reconstruction techniques can recover the original signals very well

from the randomly obtained samples when the average sampling frequency is high

enough. However, when the average sampling frequency is only the Nyquist rate or

below, the linear reconstruction method behaves poorly. The higher-order technique, on

the contrary, can reconstruct the original signal very well even if the average sampling

frequency is only the Nyquist rate or below.

As far as the space-domain signal is concerned, the higher-order reconstruction technique

can also be applied to recover the original space signal from the random samples. This is

very helpful when we have to place the geophones randomly. The technique and

conclusions obtained here open the door for future research in the processing of randomly

sampled (in time or in space domain) seismic data.



6.2 Future Work

The experimental study and analysis presented in this thesis have shown the higher-order

reconstruction technique to be a promising way to recover the original signal from

randomly obtained samples. However, a number of issues were not addressed. Further

investigations into these issues may yield interesting results and insights into improved

reconstruction techniques. In this section, we give a few ideas of possible directions for

future work.

First, this study applied the reconstruction to seismic data randomly obtained with the

average sampling frequency at the Nyquist rate or below. However, since the random

sampling frequencies are assumed to be uniformly distributed from 0. 7 *fNyquist to

1.3 *fNyquist, we are not quite sure how well the higher-order reconstruction technique can

recover the original signal if random frequencies are Gaussian distributed. As we know,

if the sampling frequencies are normally distributed, there must be some frequencies

close to zero. Those low sampling frequencies will sample the original signal at a very

long time or space interval. The reconstruction of the original signal from the random

samples obtained by the normally distributed sampling frequencies will be even more

difficult.

Second, in order to reconstruct the original space signal from the randomly spaced

samples, there needs to be enough spatial samples. The seismic data we used in this thesis

contain only 36 samples. The reconstruction would be harder if even fewer randomly

placed goephones were used. More important however is when geophones are distributed

aerially, as is the case in 3-D seismic acquisition. For this we need to develop the method

for random sampling along both x and y coordinates.



Third, in this thesis all the computer simulations and real data experiments were done

using Matlab. As we know, in the seismic data processing field, Promax is a more

commonly used package. Therefore it's a better idea to develop a simulation and

experiment method using Promax. Matlab was chosen due to time constraints and my

familiarity with it.



Appendix: Explanation Regarding
Reconstruction Algorithms

A.1 Reconstruction Implementation

There are two reconstruction techniques introduced in this thesis. In chapter 3, more than

20 equations are used to elaborate how the two reconstruction methods work. Some

formulas are classical and commonly used in signal processing. One thing I have to point

out is: there are some differences between the actual algorithm I used in this thesis and

the theoretical methods discussed in chapter 3. The modifications were made according

to my familiarity with Matlab and the Sparc 5 Sun station. There are some technical ways

to improve the calculation efficiency. These modifications are not different methods than

those in chapter 3. Here I will restate the key points of the procedures described in

chapter 3.

As mentioned in chapter 3, the linear method reconstructs the original signal from

random samples by linearly interpolating random samples to be even samples. Any even

sample is obtained by the linear interpolation of its two adjacent random samples. The

related interpretation is shown in Figure 4. The higher-order reconstruction method,

however, reconstructs the original signal from random samples by applying Sinc function

convolution with several neighboring random points of the interpolated even sample. The



mechanism of the higher-order interpolation is shown in Figure A. 1. The step (V) of the

higher-order reconstruction on Page 25 shows the related operation. The equation

corresponding to the higher-order interpolation is given in equation 17-20. Since

performing the interpolation by Sinc is not quite efficient, in this thesis, we actually apply

the curve fitting (data fitting) technique to interpolate the even samples from random

samples. The data fitting technique is shown in Figure A.2. Basically, we can find a

polynomial which fits the given random samples very well and interpolate (calculate by

the polynomial) the even samples after that. We discovered that the quality of

reconstruction is very similar by applying Sinc convolution and data fitting method

separately. However, the method is faster using data fitting method rather than Sinc

convolution. In next section, we will compare the computation speed of reconstruction.

We make use of the data fitting method to evaluate the computation speed of higher-order

reconstruction.

A.2 Computation speed of Reconstruction

Second, as mentioned in chapter 3, the higher-order method can do a better job than the

linear method, but is less efficient for calculations. We verified this statement by

measuring the time elapsed when we apply the linear method and the higher-order

method separately to reconstructing the original signal from the same random samples. It

takes 13.9 seconds for the higher-order method to process 1750 real seismic data points,

but only takes 11.2 seconds for the linear-order method. We therefore believe that the

time difference will be even larger when we process an even larger volume of data. In

general, the linear method does the job faster however with poorer quality, and the

higher-order method is the opposite. Therefore, there is a tradeoff when you have a large

capacity of data and want to process them very fast. However, if the average sampling

frequency is higher than the Nyquist rate, the linear method can still do a good job in



reconstruction. Therefore, it is wise to choose the linear technique to deal with a large

number of data as in this case.

A.3 Random versus Even Samples

Finally, we want to compare the accuracy of reconstruction from random samples with

that from even samples. In chapter 5, we chose 50 Hz to be the highest frequency of the

real seismic data. The average sampling frequency was chosen to be the Nyquist rate

(100 Hz), and the real seismic data were sampled at 500 Hz. Therefore, downsampling

the original signal by 5 is equivalent to resampling the real data at the Nyquist rate.

Figure A.3-A.6 show that the reconstruction from uniform samples is also successful

when the higher-order reconstruction method is applied. By equation (9) in chapter 3, we

calculated the error E to be -12.45 dB for the random reconstruction and -11.30 dB for

the uniform reconstruction, respectively. Therefore, we can see that random

reconstruction can have almost the same accuracy as uniform reconstruction when the

sampling frequency and the average sampling frequency are the Nyquist rate.
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