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Abstract

Nanostructured fibrous materials have been made more readily available in large part
owing to recent advances in electrospinning, which is a technique for the production of
nanofibers with diameters down to the range of a few nanometers. The nonwoven
structure has unique features, including interconnected pores and a very large surface to
volume ratio, which enable such nonwoven materials to have many applications. The
properties of the fibers and nonwoven fabrics produced, as well as the means for
characterizing these, have remained bottlenecks in the development of the technology,
both for scale-up purposes and for quality control and reproducibility during fabrication.
The aim of this thesis is to model and identify the size dependent properties of polymeric
nanofibers, to evaluate the interactions between two fibers and to construct a framework
to model the nonwoven mats.

First, molecular dynamics (MD) simulations are used to investigate the properties of
polymeric nanofibers. The fibers consist of chains that mimic the prototypical polymer
polyethylene that have diameters in the range 1.9-23.0 nm. We analyzed these nanofibers
for signatures of emergent behavior in their structural, thermal and mechanical properties
as a function of diameter. The mass density at the center of all fibers is constant and
comparable to that of the bulk polymer. The surface layer thickness ranges from 0.78 to
1.39 nm for all fibers and increases slightly with fiber size. The calculated interfacial
excess energy is 0.022 J/m2 for all of the nanofibers simulated. The chains at the surface
are more confined compared to the chains at the center of the nanofiber; the latter acquire
unperturbed dimensions in sufficiently large nanofibers. Consistent with experiments and
simulations of amorphous polymer films of nanoscale thickness, the glass transition
temperature of these amorphous nanofibers decreases with decreasing fiber diameter, and
is independent of molecular weight over the range considered. We find that, for a given
temperature, the Young's elastic modulus E decreases with fiber radius and can be as
much as 52% lower than that of the corresponding bulk material. Poisson's ratio v of the
polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1
with decreasing fiber radius. Our findings also indicate that a small but finite stress exists
on the simulated nanofibers prior to elongation, attributable to surface tension. When
strained uniaxially up to a tensile strain of s=0.2 over the range of strain rates and
temperatures considered, the nanofibers exhibit a yield stress ay between 40 and 72 MPa,



which is not strongly dependent on fiber radius; this yield stress is approximately half
that of the same polyethylene simulated in the amorphous bulk.

Another focus of this thesis was to study the interfiber interactions between these
nanofibers. For this purpose, we employ similar MD simulations and energy
minimization, or molecular statics (MS). MD simulations show that fibers aligned
parallel and within 9 nm of one another experience a significant force of attraction. These
fibers tend to coalesce on a very short time scale, even below Tg. In contrast, our MS
simulations suggest an interfiber interaction that transitions from an attractive to a
repulsive force at a separation distance of 6 nm. The results of either simulation approach
can be used to obtain a quantitative, closed-form relation describing fiber-fiber
interactions. However, the predicted form of interaction is quite different for the two
approaches. This difference can be understood in terms of differences in molecular
mobility within and between fibers, and whether such mobility is appreciable or not. The
results of these simulations are used to interpret experimental observations for
electrospun polymer nanofiber mats. These findings highlight the role of temperature and
kinetically accessible timescales in predicting interface-dominated interactions at
polymer fiber surfaces, and prompt further experiments and simulations to confirm these
effects in the properties of nonwoven mats comprising such fibers.

Finally, we use a novel Monte Carlo (MC) technique which can incorporate since
nanofiber properties and interfiber interaction. In this model, the nonwoven network is
composed of several fibers that are represented by linked, cylindrical segments. Fiber
flexibility is obtained by varying the material and geometrical properties of the segments
in stretching, bending and twisting. We are able to create networks with different fiber
orientations and with volume fractions of 5-25%, comparable to those of real electrospun
nonwovens.
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CHAPTER 1: SCOPE AND OVERVIEW

1.1. Scope

Electrospinning is a promising approach for development and commercialization of

nanofibers and nonwoven fabrics comprising such nanofibers. Because of the combined

characteristics of small fiber diameter (50-500 nm), large surface area (10-100 m 2g), and

interfibrillar distances that are small relative to fiber diameter, these materials have been

advocated for use in filtration media [1], tissue engineering [2], biomedical applications

[3], composites [4], and other industrial applications [5]. Of fundamental necessity for

many of these applications is an understanding of the determinants not only of fiber

diameter, but also of the junctions between the fibers constituting the interconnected pore

structure and the fiber-fiber interactions. Challenges in facile and repeatable

measurement and characterization of the properties of the fibers and nonwoven fabrics

have presented bottlenecks to the efficient development of the technology.

The aims of this project are to develop the necessary modeling tools to quantify and

describe the structural, thermal and mechanical properties of polymer nanofibers and to

investigate the interactions between these fiber pairs. These models developed herein

provide a means to evaluate the fiber properties as a function of fiber diameter and

thereby help us understand the origin of transition from the regime of bulk-like behavior

to that of nanomaterial behavior. They also allow estimation and prediction of properties

that may be impractical to measure experimentally due to the limitations of instrument

capabilities or availability of material samples.

We also aim at laying the groundwork for the modeling of nonwoven mats which

incorporates single nanofiber properties and interfiber interactions. This groundwork

allows us to establish a quantitative connection between nanoscale properties and

nonwoven mat properties and permit parametric studies for specification of materials

criteria for selected design objectives. With these capabilities, the research scientist and

engineer would be better equipped to exploit opportunities in this developing field.



1.2. Overview

Chapter 2 is a general overview of electrospinning and electrospun materials. This

chapter begins with the historical development of the electrospinning technology, and

gives background information of the electrospinning process. This section also includes

the experimental and modeling studies of polymer nanofibers and nonwoven materials.

Finally, Chapter 2 introduces the motivation for the detailed computational and modeling

studies of these systems.

Chapter 3 focuses on the results of molecular dynamics simulations to model and

characterize polyethylene nanofibers. In this chapter, these nanofibers are analyzed for

signatures of emergent behavior in their structural and thermal properties as a function of

fiber radius. The effect of the free surface on structural properties, such as molecular

orientation and conformations, is demonstrated. Glass transition temperature depression

with decreasing fiber diameter is investigated, and a layer model is derived to explain this

physical phenomenon.

Chapter 4 focuses on the mechanical properties of the single, free standing amorphous

polyethylene nanofibers. In this chapter, elastic and plastic deformations of these

nanofibers as a function of fiber diameter and temperature are explored. A layer model

that explains the trends observed in the simulation data is introduced. The length scales

from two layer models are compared and physical insight to this comparison is given in

terms of cooperatively rearranging regions and dynamics of polymers.

Chapter 5 introduces the derivation of an interfiber interaction potential using two

different methods: molecular dynamics and molecular statics simulations. The results

from each method are discussed in terms of the physical phenomena and corresponding

experimental conditions under which these results are valid.

Chapter 6 focuses on constructing a preliminary framework to model the nonwoven mats.

A novel Monte Carlo method which can incorporate nanoscale properties (i.e., individual



nanofiber properties and interfiber interactions) is presented. The important

dimensionless parameters of the model are identified and an example parametric analysis

is given to explore the model. Fiber orientation distributions from image analysis of real

electrospun mats and model generated nonwoven mats are also given and compared in

this chapter.

Finally, Chapter 7 includes a summary of conclusions, an outlook on the implications of

this research, and identification of future research opportunities.
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CHAPTER 2: BACKGROUND

2.1 Electrospinning: Introduction and historic development

Zhou et al. recently reviewed several methods for forming nanofibers, including

bicomponent spinning, melt-blowing, flash spinning and electrospinning [1]. Of these,

electrospinning has been shown to be the most robust, and has been used to process a

wide range of different chemistries. Compared to bottom-up methods, this top-down

approach to nanofiber formation offers the greatest promise for large scale production

[2], and has been actively researched by numerous research groups.

Electrospinning is a novel and efficient fabrication process that can be utilized to

assemble fibrous polymer mats composed of fiber diameters ranging from several

microns down to fibers of diameter lower than 100 nm. Although the term

"electrospinning", derive from "electrostatic spinning", was used relatively recently, its

fundamental idea dates back more than 100 years earlier. Electrospinning first appeared

in the patent literature in 1902 [3].

In 1960s, fundamental studies on the jet forming process were initiated by Taylor [4]. In

1969, Taylor studied the shape of the polymer droplet produced at the tip of the needle

when an electric field is applied and showed that it is a cone and the jets are ejected from

the vertices of the cone [4]. This conical shape of the jet was later referred to by other

researchers as the "Taylor cone". In 1971, Baumgarten reported the electrospinning of

acrylic microfibers of diameters ranging from 500 to 1100 nm [5]. Baumgarten

determined the spinnability limits of a polyacrylonitrile/dimethylformamide (PAN/DMF)

solution, and observed a specific dependence of fiber diameter on the viscosity of the

solution. He showed that the diameter of the jet reached a minimum value after an initial

increase in the applied field and then became larger with increasing electric fields.

Larrondo and Mandley produced polyethylene and polypropylene fibers from the melt,

which were found to be relatively larger in diameter than solvent-spun fiber [6-7]. In

1987, Hayati et al. studied the effects of electric field, experimental conditions, and the



factors affecting the fiber stability and atomization [8]. They concluded that liquid

conductivity plays a major role in the electrostatic disruption of liquid surfaces.

Relatively stable jets were produced with semi conducting and insulating liquids, such as

paraffinic oil. After a decade or so, research on nanofibers gained momentum due to the

work of Doshi and Reneker [9]. Doshi and Reneker studied the characteristics of

polyethylene oxide (PEO) nanofibers by varying the solution concentration and applied

electric potential [9]. Jet diameters were measured as a function of distance from the apex

of the cone, and they observed that the jet diameter decreases with the increase in the

distance.

In recent years, the electrospinning process has regained more attention. This renewed

research activity can be attributed in part to a surging interest in nanotechnology, as

ultrafine fibers or fibrous structures of various polymers can be easily fabricated with this

process. To date, approximately one hundred different polymers have been successfully

spun into ultrafine fibers using this technique. Although electrospinning process has

shown potential promising and has existed in the literature for quite a few decades, its

understanding is still very limited. The properties of the fibers and nonwoven fabrics

produced, as well as the means for characterizing these, have remained bottlenecks in the

development of the technology, both for scale-up purposes and for quality control and

reproducibility during fabrication.

2.2. Electrospinning: Fundamental aspects

A schematic diagram to interpret electrospinning of polymer nanofibers is shown in

Figure 2.1. There are basically three components required to fulfill the process: a high

voltage power supply, a spinneret (a metallic needle) and a collector (a grounded

conductor). The spinneret is connected to a syringe pump; the solution can be fed through

the spinneret at a constant and controllable rate. When a high voltage is applied, the

pendant drop of polymer solution at the nozzle of the spinneret will become highly

electrified. As a result, the drop will experience two major types of electrostatic forces:

the electrostatic repulsion between the surface charges and the Coulombic force exerted



by the external electric field. Under the action of theses electrostatic interactions, the

liquid drop will be distorted into a conical object, commonly known as the Taylor cone.

Once the strength of the field surpassed a threshold value, the electrostatic forces can

overcome the surface tension of the polymer solution and thus force the ejection of a

liquid jet from the nozzle. This electrified jet then undergoes a stretching and whipping

process, leading to the formation of a long and thin jet. As the liquid jet is continuously

elongated and the solvent is evaporated, its diameter can be reduced from hundreds of

micrometers to as small as tens of nanometers. Attracted by the grounded collector placed

under the spinneret, the charged fiber is often deposited as a randomly oriented,

nonwoven mat. Through appropriate modifications of the spinnerette, electric field, or

collector, final products ranging from uniform nonwoven mats, to patterned membranes,

to yarns, to well-aligned arrays of fibers have been demonstrated. Significantly, the

process has been used in the production of submicron fibers for filters, composites, fuel

cells, nanowires, catalyst supports, drug delivery devices, tissue scaffolds, and other

applications.

Syringe pump

Charged plate
Spmnneret Power

supply-

Grounded collector

Figure 2.1 Diagram of electrospinning apparatus. Spinneret and collector electrodes
provide applied electric field. The product is collected on the grounded collector, which
may be stationary or moving.



2.3. Properties of single nanofibers

2.3.1. Experimental studies

By convention, a nanomaterial will exhibit at least one dimension that is reduced in

length to < 100 nm, where 1 nm=10 9 m. Any emergent properties of the nanomaterial

may then originate from three features: the reduced linear dimension L ("confinement-

dominated materials"), the high surface area S ("surface-dominated materials") and,

eventually a reduced dimension from d=3 (bulk material) to d=2,1,0 in thin films,

nanofibers and nanoparticles, respectively ("dimensionality effects").

Effects of confinement on material behavior at the nanometer size scale have been a

subject of considerable interest for years [10-13]. By confining polymer molecules to

dimensions that are comparable to the different length scales characterizing the

molecules, the motion of the molecules can be significantly different than in bulk. For

example, the effect of confinement on the segmental motion of polymers has been studied

using a variety of experimental geometries: interfaces in semicrystalline polymers [10],

polymer solutions in porous glasses [11], polymers intercalated into the 2 nm gaps of

layered compounds [12], polymer spheres with diameters of tens of nanometers [13], and

thin polymer films. It has been shown that segmental mobility can be enhanced in very

thin polymer films though the motion of entire chains is unchanged from that in bulk. In

particular, the results obtained for freely standing polymer membranes are unique and

remarkable, with very large reductions in the apparent glass transition temperature Tg and

no corresponding enhancement of whole-chain motion for very thin films. Although there

is no experimental data for a single polymer nanofiber, the DSC studies on the

electrospun nonwoven poly(L-lactic acid) (PLLA) membrane showed that PLLA fibers

have lower crystallinity, Tg and melting temperature Tm than semicrystalline PLLA resins

[14]. Zong et al. attributed the decrease in Tg to the large surface to volume ratio of

nanofibers, with air as the plasticizer. The Tg and Tm of the electrospun polyethylene

terephthalate (PET) and polyethylene naphthalate (PEN) were measured to be

significantly lower than the bulk material, which were attributed to the increase in the

segmental mobility [15]. Poly(ethylene oxide) (PEO) fibers have shown a lower melting



temperature and heat of fusion than PEO powder, which is attributed to poor crystallinity

of the electrospun fibers [16].

Experimental studies on the mechanical characterization of nanofibers have become an

increasingly reported effort in recent years. Various attempts have been made to quantify

the elastic properties of isolated polymer fibers of diameter d < 1 pm via direct

experimental measurements [17-28]. Figure 2.2 shows Young's elastic modulus E vs.

fiber diameter, which is plotted by-using the data given in these studies [17-28].
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Figure 2.2 Young's modulus E vs. fiber diameter that summarizes the studies mentioned
in the text [17-28]. The circles represent measurement of E for a single fiber diameter. The
rectangles represent E measured at different fiber diameters.

Mechanical characterization techniques that have been developed to test individual

polymer fibers include uniaxial tensile loading [18], as well as bending and indentation of

individual fibers using atomic force microscopy (AFM) cantilevered probes to impose

deformation [19]. For example, the effects of processing conditions on mechanical

properties of electrospun poly(L-lactide) (PLLA) nanofibers with diameters of 610 nm

and 890 nm were investigated via tensile testing [18]. Higher rotation rate of the



collection roller correlated with higher tensile Young's elastic modulus E and strength of

the nanofibers, which was attributed to the ordered structure developed during the

collection process. [18] Bellan et al. measured the Young's moduli of polyethylene oxide

(PEO) fibers with diameters 80 nm < d < 450 nm using an atomic force microscopy

(AFM) cantilevered probe to deflect the suspended fibers, and reported E in significant

excess of that reported for bulk PEO [19]. The authors attributed this enhanced stiffness

to the molecular orientation of PEO chains within the fibers [19]. Tensile testing of

polycaprolactone (PCL) nanofibers with diameters 1.03 pm < d < 1.70 pm to the point of

mechanical failure showed that fibers of smaller diameter exhibited higher fracture

strength but lower ductility [21]. Mechanical properties of single electrospun nanofibers

composed of PCL and poly(caprolactone-co-ethlyethylene phosphate) (PCLEEP) were

also measured under uniaxial tension, indicating an increase in both stiffness and strength

as the fiber diameter decreased from 5 pm to -250 nm [22]. Chew et al. also found that E

of these PCL nanofibers were at least twice that of PCL thin films of comparable

thickness [22]. Recently, Wong et al. reported an abrupt increase in tensile strength and

stiffness of these PCL fibers below fiber diameter of 1.4 pim, and attributed this to

improved crystallinity and molecular orientation in fibers of smaller diameter [23].

Young's moduli of electrospun nylon-6 nanofibers were found to increase from 20 GPa

to 80 GPa as the fiber diameter decreased from 120 nm to 70 nm [24]. In separate tensile

studies on electrospun nylon-6,6 nanofibers, E was reported to increase threefold for

fibers with diameters <500 nm [27]. No significant increase in degree of crystallinity or

chain orientation accompanied this increase in E [27]. Using scaling arguments, these

authors reasoned that this size-dependent stiffening effect was due to the confinement of

a supramolecular structure, consisting of molecules with correlated orientation,

comparable to the nanofiber diameter. Finally, the shear elastic modulus G of glassy

electrospun polystyrene (PS) fibers of 410 nm < d < 4 pm was estimated using an AFM

probe via shear modulation force spectroscopy of the fiber surface, and also reported to

increase with decreasing fiber diameter [28]. This trend was attributed to molecular chain

alignment frozen in during the electrospinning process. When functionalized clay was

added to these PS nanofibers, G of the fibers was further increased, although the

stiffening mechanism remains unclear [28]. Importantly, although these reports generally



indicate increasing elastic modulus and strength with decreasing fiber diameter, all of

these fibers (with the exception of the PS fibers of Ref. 28) are also semicrystalline.

Mechanical properties of metallic and ceramic nanofibers have also been the subject of

many studies [29-40]. Lee et. al. [29] have developed a modified three-point bending

method for testing the mechanical properties of TiO 2 nanofibers for biomedical implants

[29]. Khalil et al. [30] fabricated a nanocomposite using electrospun hydroxyapatite and

nickel oxide. It was shown that the sintering behavior, toughness, and hardness of the

resulting composites were significantly enhanced by the inclusion of NiO nanofibers

[30]. Ostermayer et al. [31] have reported the V50 behavior of the first nylon-6 clay

composite electrospun fibers using a fragment simulating a projectile. Lee et al. [32] have

compared the elastic modulus of anatase nanofibers with carbon nanotube-nanofiber

composites. A modified three-point bending test was carried out as described before

using an AFM. The mean elastic modulus was found to be 75.6 and 156.9 GPa for the

anatase and carbon nanotube-anatase nanocomposite, respectively [32]. Mechanical

properties of conventional silica fibers of diameter < 1Im have been measured resonant

frequency measurements [34, 35] and using direct measurement of force during

controlled displacement of a compliant cantilevered probe within a scanning probe

microscope [36]. Same method has been used to measure the stiffness and strength of

carbon nanotubes, nanorods, as well as nanowires made of silicon carbide [37], gold [38],

silver [39] and manganese oxide [40] among others.

An alternative way to characterize mechanical properties of the nanofiber is molecular

scale simulations. This approach has the potential to provide quantitatively accurate

results on the nanoscale. Most results of molecular simulations on nanoscale matters have

been focused on nanotubes, metal nanowires, or nanoparticles [41]. To our knowledge,

computational studies and predictions of the mechanical properties of polymer nanofibers

fabricated from electrospinning have not been reported previous to this thesis work.

Molecular scale simulations can also help to elucidate several different mechanical

phenomena that may govern the emergent properties of electrospun fibers. Yarin et al.

[42] reported failure modes of electrospun polymer nanofibers of diameters 80 nm < d <

400 nm and lengths greater than several centimeters. They observed multiple necking



formations at a high rate of stretching of the nanofibers. The results clearly distinguish

nanofibers from macroscopic polymer specimens, for which multiple necking is seldom

reported as a failure mode. The authors attributed this difference to the fact that

macroscopic specimens cannot accommodate more than a single neck, while nanofibers

can but did not provide a physical explanation [42].

Geometric properties of nanofibers such as fiber diameter, diameter distribution, and

fiber morphology (i.e., cross-section shape and surface roughness) can be characterized

using scanning electron microscope (SEM), field emission scanning electron microscopy

(FESEM), transmission electron microscopy (TEM) and atomic force microscopy

(AFM). [43-46] AFM imaging can be used to characterize the roughness of fibers. The

roughness value is the arithmetic average of the deviations of height from the central

horizontal plane given in terms of millivolts of measured current [43]. Another approach

for geometrical characterization of nanofibers can be to make use of conventional

molecular scale simulation methods such as molecular dynamics and Monte Carlo. When

these methods are applied to atomistically detailed models of the materials, such tools

provide a rigorous approach to study fiber properties on the length scale of molecular

dimensions. The advantage of molecular simulations over experiments is that variation in

polymer structure on the scale of 1-10 nm (comparable to intermolecular interaction

distances) can be efficiently simulated. In contrast, it is very difficult to acquire such

accuracy with current experimental methods at this length scale.

The configuration of macromolecules in a nanofiber can be characterized by optical

birefringence [50-62], wide-angle X-ray diffraction (WAXD) and small-angle X-ray

scattering (SAXC) [39]. Fong and Reneker [53] studied the birefringence of the styrene-

butadiene-styrene (SBS) triblock copolymer nanofibers with diameters around 100 nm

under an optical microscope. The occurrence of birefringence reflects the molecular

orientation. Jaeger et al. [47] visualized chain packing in electrospun PEO by AFM.

These authors found that at the molecular level, the electrospun PEO fibers possessed a

highly ordered surface layer. Molecular dynamics simulations can also provide detailed

information about the configuration of macromolecules in a nanofiber, as the simulation



output can be parameterized in terms of order parameter, chain shape (e.g. acylindricity,

asphericity) and other relevant metrics.

2.3.2. Modeling and simulation studies

Due to the extremely small diameter and other problems that are mentioned above,

experimental characterization of the structural, thermal and mechanical properties of a

single nanofiber is difficult with the current techniques. So, molecular scale simulations

provide an alternative means to understand the macroscopic properties of a nanofiber.

Molecular scale simulation of a system is aimed to determine macroscopic properties

using a microscopic model which has been constructed to describe the main interactions

between the particles which comprise the system. Such an approach has been widely used

in polymer science and engineering to rationalize the molecular structure, function and

interaction of the polymer material. As such simulations are based on atoms and

molecules, many of the thermodynamic, structural and transport properties of the material

can be quantified via well designed simulations.

Two of the most commonly used molecular simulation techniques include the purely

stochastic Monte Carlo (MC) method, which randomly samples the configurational space

and which generally leads to static properties and the deterministic molecular dynamics

(MD) method, which produces trajectories in the configurational space and leads to both

static and dynamic properties.

In a molecular dynamics simulation, the configurational space is sampled by

simultaneous integration of the Newton's second law for all the atoms i of the system:

dS; (t)
m i 2 = F (t), i = 1,...N (2.1)Sdt2

where m, is the mass of atom i, r (t) is its position at time t, and F (t) is the total force

exerted on the atom i by the other N-I atoms and external forces at time t. For each atom



i, the force F is calculated at time t as the negative gradient of the intermolecular

potential function, i.e.,

dU (rr 2 ,----, ri))(2.2)F (t)=- =2 -VU (rrP -- .
dr

The time step used in numerical integration is the order of 1 fs (1 fs = 1 femtosecond =

10-1 s). The results of the calculation are the trajectories of the N atoms obtained at a set

of n tk values with 4 = tkl + At .

Molecular dynamics has been used widely for understanding the chemical and physical

properties of various polymers on various length and time scales. Several levels of detail

are possible while still maintaining the chemical identity of the chain. The first, an

explicit atom (EA) model, treats all atoms including hydrogen as interaction sites (Figure

2.3). The second, a united atom (UA) model, reduces computation time by grouping each

carbon with its bonded hydrogen atoms to form a united atom (Figure 2.3). The third, a

coarse-grained (CG) model, reduces computation time even further by grouping a few

united atoms, monomers, or even the whole chain as a single CG bead. There are some

instances where EA modeling is required, for example, in the calculation of properties

such as the vibrational density of states, methyl group rotation, and elastic constants of

crystalline polymers. The UA representation is widely used because it is computationally

efficient while providing results in reasonable agreement with available experimental

data. For the same reason, CG models are becoming more common.

Various simulation techniques have been applied to investigate the confinement of

polymeric systems in one or two dimensions. First, lattice Monte Carlo (MC) simulations

of a melt-vacuum interface were performed by Madden using a film adsorbed on a solid

surface [54] The film was shown to have a central region with bulk-like characteristics,

sandwiched between two interfacial regions. The structural features at the interface were

found not to scale with molecular weight.
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Figure 2.3 (a) Schematic representation of the explicit atom model for polyethylene. (b)
Schematic representation of the united atom model for polyethylene. The hydrogen atoms
are grouped with the carbon to form a united atom.

Using off-lattice atomistic simulation, Mansfield et al. identified regions of thickness 1.0

nm at the surfaces of a thin film of atactic polypropylene of thickness 6.1 nm, in which

local structural features were different from the bulk [55]. Again, no dependence of

structural properties on the molecular weight (MW) was found in the interfacial region,

for the MW range 1068-3246 g/mol. Short time scale dynamics of the atactic

polypropylene-vacuum interface were then studied using molecular dynamics (MD)

simulations [56]. While the structural features were in agreement with molecular

mechanics results [55], enhancements in the mean-squared displacement of the atoms

relative to the chain center of mass were observed in the surface region, compared to the

bulk polymer. Harris et al. [57] observed chain end segregation and flattening of chains at

the liquid-vacuum interface in MD simulations of thin films comprising short-chain

alkanes, and off-lattice MC simulations of thin films showed that chains exhibit

predominantly bulk-like characteristics at the film center and are more collapsed at the

vacuum surface [58]. MD simulations of thin films of poly-(1,4-cis-butadiene) showed

that the sharp onset of orientation of the backbone bonds corresponds with the drop in

mass density from its bulk value [59]. A thicker surface layer was found in MD

simulations of amorphous polyethylene (PE) than in thin films of poly-(1, 4-cis-

butadiene), which was attributed to the stiffer nature of the PE chains [48]. A dynamic

MC simulation method on a high coordination lattice was subsequently introduced by



Mattice et al. [61], and used to determine equilibrium and dynamic properties of

amorphous PE thin films [62, 63]. It was observed that the segregation of chain ends

contributed to increased mobility at the free surface of PE thin films [64]. The decrease in

radius of gyration of chains was more significant for free-standing PE thin films as the

molecular weight increased [65].

While there have been numerous studies of nanometer-thick films by simulation, to our

knowledge, only two studies of polymer nanofibers have been reported prior to this thesis

research [66, 67]. Both of these reports employed the coarse-grained MC method on a

high coordination lattice that was used previously for thin films [61-63] and nanoparticles

[68]. Two PE nanofibers with diameters 5.6 and 7.6 nm were simulated [66] on a high

coordination lattice, with interactions between occupied lattice sites designed to account

for both short and long range interactions. It was found that the density profiles of these

nanofibers could be fitted to a hyperbolic tangent profile, and there was significant

segregation of end beads to the surface. Molecules were found to orient preferentially

parallel to the surface, with the largest principal axis parallel to the surface. Diffusion

coefficients of 5.6 x 10-6 nm2/Monte Carlo step in the narrower nanofiber and 4.4 x 10-6

nm 2/Monte Carlo step for the thicker nanofiber were calculated for 1-D diffusion parallel

to the fiber axis [67]. The mobility of the chains at the surface of the PE nanofiber was

found to be greater than that of the chains at the center of the nanofiber. The overall chain

mobility was found to increase as the fiber size decreased. Similar trends were observed

for the free-standing thin films [63], implying that the curvature present in the fibers does

not have a significant effect on the diffusion characteristics of the chain segments. The

increased mobility in both the nanofibers and in the free-standing thin films was

attributed to a region of lower mass density at the surface.



2.4. Modeling and characterization of the nonwoven mat

2.4.1. Experimental studies

Nanostructured fibrous materials have been made more readily available in large part

owing to recent advances in electrospinning. The nonwoven structure has unique

features, including interconnected pores and a very large surface-to-volume ratio, which

enable nanofibrous scaffolds to have many biomedical and industrial applications. The

chemical composition of the electrospun nonwoven network can be adjusted through the

use of different polymers, polymer blends and nanocomposites made of organic or

inorganic materials. In addition to the control of material composition, the processing

flexibility in changing physical parameters and structures, such as fiber diameter,

porosity, texture, and pattern formation, offers the capability to design electrospun

scaffolds that can meet the demands of numerous practical applications. Here, the term

nonwoven will be used interchangeably with the more explicit term "nonwoven material

comprising fibers".

Geometrical properties of nonwoven mat such as fiber orientation can be characterized

using SEM, TEM, FESEM and mercury porosimetry [46, 47]. Another geometric

parameter is porosity. The porosity and pore size of nanofiber membranes are important

for applications of filtration, tissue template, protective clothing and other potential

applications [45, 69, 70]. The pore size measurement can be conducted by, for example, a

capillary flow porometer [45, 69]. Schreuder-Gibson et. al. compared the pore sizes of

membranes electrospun from Nylon 6,6, FBI (polybenzimidazole), and two

polyurethanes, Estane@ and Pellethane@. They found that Nylon 6,6 could be

electrospun into a very fine membrane with extremely small pore throat sizes (with a

mean flow pore diameter of 0.12 pm) which were much smaller than the average fiber

diameters. FBI also exhibited pore sizes (0.20 pm) smaller than the electrospun fiber

sizes. However Estane@ and Pellethane@ exhibited mean pore sizes which were

significantly higher, with average flow pore diameters of 0.76 and 2.6 pm, respectively

[69].



Surface chemical properties of nonwoven mats can be determined by X-ray photoelectron

spectroscopy (XPS), water contact angle measurement, and FTIR-ATR analyses.

Desimone and co-workers [71] measured the atomic percentage of fluorine in

poly(methyl methacrylate) (PMMA)- tetrahydroperfluorooctyl acrylate (TAN) blend. It

was shown that the atomic percentage of fluorine in the surface region of the electrospun

fibers was about double the atomic percentage in a bulk polymer. Surface chemical

properties of a nanofiber can also be evaluated by its hydrophilicity, which can be

measured by the water contact angle analysis of the nanofiber membrane surface. Ma

et.al. [72] has reported contact angle measurements on block copolymer poly(styrene-b-

dimethylsiloxane) fibers with diameters in the range 150-400 nm. The measurements

showed that the nonwoven fibrous mats are superhydrophobic, with a contact angle of

163 .

Air and water transport properties of electrospun fibrous mats have been measured using

an apparatus called dynamic moisture vapor permeation cell (DMPC) [73]. This device

has been designed to measure both the moisture vapor transport and the air permeability

(convective gas flow) of continuous films, fabrics, coated textiles and open foams and

battings. Schreuder-Gibson and Gibson compared electrospun nanofibrous nonwoven of

a thermoplastic polyurethane with corresponding meltblown nonwovens. Average pore

size of the electrospun nonwovens was 4-100 times smaller than that of the meltblown

nonwovens, resulting in an increase in air flow resistance by as much as 156 times.

However, no significant difference has been found for the "breathability", or moisture

vapor diffusion resistances of the two nonwovens. [74]. Crosslinking the fibers of the

electrospun membrane significantly decreases liquid transport through the membrane.

Electrical transport properties of electrospun nanofibers were investigated by some

researchers [75, 76]. Norris et al. measured the conductivity of electrospun nonwoven

ultra-fine fiber mat of polyaniline doped with camphorsulfonic acid blended with PEO.

As the nonwoven mat was highly porous and the "fill factor" of the fibers were less than

that of a cast film, the measured conductivity seemed to be lower than that of the bulk



[75]. Wang et al. measured the conductivities of polyacrylonitrile (PAN) nanofibers

before and after carbonization, using a digital electrometer with two neighboring contacts

of 4 mm distance. The electrospinning was conducted carefully and briefly so that there

was only one continuous fiber deposited across the two neighboring contacts. The PAN

fiber (before carbonization) exhibited resistance which was beyond the upper limit of the

electrometer, whereas the graphitization of the PAN nanofiber led to a sharp increase in

conductivity [76].

The tensile properties of nanofibers and membranes can be evaluated with fiber

membranes, bundles, aligned fibers, and single filaments. Because of the ease of sample

preparation, fiber membranes have been mainly used as the samples for tensile tests.

Although many tensile tests with fiber membranes have been presented so far in the

literature, the validity of tensile tests with membranes for studying the tensile properties

of electrospun fibers has not been made clear through explicit validation. The following

polymer nonwoven mats have been analyzed under tensile loading: poly(D,L-lactide-co-

glycolide) (PLGA) [44], poly(epsilon-caprolactone) (PCL) [77], poly(vinyl chloride)

(PVC) [78], silk [79], blends of collagen and PEO [80], and blends of PLGA and

poly(lactide-co-ethylene glycol) block copolymers. [81]. Aligned nonwoven mats have

also been tested under tensile loading with PLA and were found to have different

properties in different directions [82].

2.4.2. Modeling and simulation studies

Abdel-Ghani and Davies [83] proposed a model to simulate the nonwoven fabric

geometry by assuming that the nonwoven fabric can be decomposed into layers, one

above another (Figure 2.4b). Each layer was considered as a random network of fibers

(Figure 2.4a). The areas formed between intersecting or overlapping fibers in a particular

layer constituted the pores in the media. A Monte Carlo method was used to produce

random line networks to represent a layer. Methods of describing the line network were

reviewed in their work. A variation in diameters of fibers was considered in the

simulation to represent practical fiber materials. There are several other studies that used



a nonwoven generation technique similar to that of Abdel-Ghani et al. [84-91]. These

studies mainly aimed to characterize the permeability of nonwoven media. Termonia et

al. [92] proposed a model in which a fibrous sheet is viewed as a pile of overlapping

layers. Each layer was represented by a network of ribbon-like fiber strands connected on

a two-dimensional x-y square lattice. Such an approach neglected the possibility of

interweaving of the fibers among layers. The permeability of the sheet to diffusional flow

was studied by a Monte Carlo process. In that process, the sheet was put in contact with a

large external bath of small particles which diffuse through the structure by hopping

between nearest-neighbor lattice sites [92].

(a)

Figure 2.4 (a) Top-down perspective of a 2-D single layer of that consists of random
network of fibers. (b) The nonwoven fabric can be decomposed into such layers (as shown
in part a). Here, the thickness of each layer is equal to fiber diameter. (Black lines on top
represent the random network of fibers)

Other previous approaches to modeling porous and fibrous media have focused

exclusively on the pore interconnectivity (for porous media used, e.g., in catalysis or

sorption studies) or the fiber arrangement (for fibrous media used, e.g., in mechanical

studies). Typical of the former is the Dual Site Bond Model (DSBM) of Mayagoitia et al.

[93-96], in which the porous material is represented as an idealized network of

interconnected "sites" (the pore bodies) and "bonds" (throats and channels). The sites and

bonds have their own size distributions. In general, size correlation arises owing to a

natural constraint of entity size, which states: the size of each bond must be smaller than,

or at most equal to, the size of the two sites that it connects. This statement is referred to

as the Construction Principle. Monte Carlo methods have been used to generate



stochastic networks of such sites and bonds and to demonstrate changes in properties

with porous network topology [97]. While distributions in both size and connectivity of

sites and bonds are considered, the pore network does not appear to mimic accurately the

shape anisotropy and pore network of connectivity of fibrous materials. A variant, the

Corrugated Pore Structure model [98-99] was used to simulate capillary condensation-

evaporation hysteresis. In this model, the pore structure was envisaged to be composed of

a statistically large number N of independent (nonintersected) corrugated pores. A

corrugated pore was assumed to be made of a series of interconnected cylindrical

elements (pore segments) of equal length with randomly distributed diameters of

mesopore size. A function, which was called "pore segment number intrinsic probability

density function" was defined according to which pore segment diameter were randomly

distributed. Given the type of the pore geometry, the respective pore volume and surface

area distributions can be calculated. Each corrugated pore was assumed to be open at

both ends and physically entered at some point on the external surface of an imaginary

porous particle and exited at another point while along its course through the particle.

By contrast, fibrous networks are more commonly modeled as arrangements of rigid

geometric objects, with attention paid to the contacts or interaction between these objects.

In networks of rigid rods, the fiber length, width, linear density, porosity and areal

density are characteristic of the network [100]. The "connected spheres" model proposed

by Yamamoto et al. [101-103] to study dynamic simulation of rigid and flexible fibers in

a flow field offers a step in the direction of non-rigid, interacting fibers. Fibers were

represented as spheres that were lined up and bonded to each neighbor. Each pair of

bonded spheres could stretch, bend and twist, by changing bond distance, bond angle, and

torsion angle between spheres, respectively. The strength of bonding, or flexibility of the

fiber model, was defined by three parameters of stretching, bending and twisting

constants. By altering these parameters, the property of the fiber model could be changed

to be rigid or flexible. The motion of a fiber was determined by solving the translational

and rotational equations of motion for individual spheres under the hydrodynamic force

and torque exerting on it. Another particle-level simulation method, that was similar to

Yamamoto et al., was proposed by Ross and Klingenberg [104, 105]. This model was



employed to study the dynamics of suspensions of rigid and flexible fibers. Fibers were

modeled as chains of prolate spheroids connected through ball and socket joints. The

motion of a fiber was determined by solving the translational and rotational equations of

motion for each spheroid. Different than Yamamoto, their model eliminated the need for

iterative constraints to maintain fiber connectivity. Melrose and Ning [106] developed a

numerical method for simulating mechanical behavior of flexible fibers. A circular

crossed fiber was represented by a number of cylindrical segments linked by a spring

dash-pot system. Computer simulations have been conducted to verify the model with

elastic theory and agreements have been found between the simulation results and the

theory for beam deflection under static loads, vibrating cantilevers, and dynamics of

helical shaped fibers.

The mechanical performance of nonwoven mats is of interest in applications such as

semi-permeable membranes, filters, protective clothing, and tissue engineering. For

instance, the nanofiber scaffold template should be designed to be structurally

biocompatible with the host tissue. This will be possible when the structure-property

relationship of the scaffolds has been clearly understood. There are also challenges in

incorporating the mechanical characterization into the modeling of the nonwoven mat.

These include the determination of fiber orientation distributions in the nonwoven mats,

the measurement of the coefficient of friction of the nanofibers, and the specification of

the condition under which the fiber slippage occurs. Simulation of the mechanical

properties of common textile nonwoven fabrics have been carried out mainly using finite

element approach [107-112]. Dzenis and Wu [113] proposed a micromechanics model for

the elasticity of planar fiber networks. The fiber network was created by random

deposition of linearly elastic straight rods within a region. The rods were bonded rigidly

at contacts. Under external in-plane loading, the fiber network deformation consisted of

fiber bending, elongation and contraction. An effective constitutive relation for fiber

network was developed by averaging the strain energy dissipated by all possible fiber

deformations in all directions. Numerical calculations were performed to analyze the

effects of fiber aspect ratio and fiber concentration on the effective stiffness of the planar

random fiber network. Termonia et al. [114] used a discrete lattice model to study the



factors controlling the bending stiffness of nonwoven fabrics and found that nonwovens

with a three-dimensional fiber orientation distribution have a much lower bending

stiffness than those with a planar distribution.
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CHAPTER 3: MOLECULAR DYNAMICS SIMULATIONS OF SIZE-
DEPENDENT STRUCTURAL AND THERMAL PROPERTIES OF POLYMER
NANOFIBERS

Parts of the following study were published in 2007. [44]

3.1 Introduction

Various simulation techniques have been applied to investigate the confinement of

polymeric systems in one or two dimensions. First, lattice Monte Carlo (MC) simulations

of a melt-vacuum interface were performed by Madden using a film adsorbed on a solid

surface [1]. The film was shown to have a central region with bulk-like characteristics,

sandwiched between two interfacial regions. The structural features at the interface were

found not to scale with molecular weight. Using off-lattice atomistic simulation,

Mansfield et al. identified regions of thickness 1.0 nm at the surfaces of a thin film of

atactic polypropylene of thickness 6.1 nm, in which local structural features were

different from the bulk [2]. Again, no dependence of structural properties on the

molecular weight (MW) was found in the interfacial region, for the MW range 1068-3246

g/mol. Short time scale dynamics of the atactic polypropylene-vacuum interface were

then studied using molecular dynamics (MD) simulation [3]. While the structural features

were in agreement with molecular mechanics results [2], enhancements in the mean-

squared displacement of the atoms relative to the chain center of mass were observed in

the surface region, compared to the bulk polymer. Harris [4] observed chain end

segregation and flattening of chains at the liquid-vacuum interface in MD simulations of

thin films comprising short-chain alkanes, and off-lattice MC simulations of thin films

showed that chains exhibit predominantly bulk-like characteristics at the film center and

are more collapsed at the vacuum surface [5]. MD simulations of thin films of poly-(1,4-

cis-butadiene) showed that the sharp onset of orientation of the backbone bonds

corresponds with the drop in mass density from its bulk value [6]. A thicker surface layer

was found in MD simulations of amorphous polyethylene (PE) than in thin films of poly-

(1,4-cis-butadiene), which was attributed to the stiffer nature of the PE chains [7]. A

dynamic MC simulation method on a high coordination lattice was subsequently

introduced by Mattice and co-workers [8] and used to determine equilibrium and

dynamic properties of amorphous PE thin films [9, 10]. It was observed that the



segregation of chain ends contributed to increased mobility at the free surface of PE thin

films [11]. The decrease in radius of gyration of chains was more significant for free-

standing PE thin films as the molecular weight increased [12].

While there have been numerous studies of nanometer-thick films by simulation, to our

knowledge, only two studies of polymer nanofibers have been reported to date [13-14].

Both of these employed the coarse-grained MC method on a high coordination lattice that

was used previously for thin films [8-10] and nanoparticles [15]. Two PE nanofibers with

diameters 5.6 and 7.6 nm were simulated [13] on a high coordination lattice, with

interactions between occupied lattice sites designed to account for both short and long

range interactions. It was found that the density profiles of these nanofibers could be

fitted to a hyperbolic tangent profile, and there was significant segregation of end beads

to the surface. Molecules were found to orient preferentially parallel to the surface, with

the largest principal axis parallel to the surface. Diffusion coefficients of 5.6 x 10-6

nm2/Monte Carlo step in the narrower nanofiber and 4.4 x 10-6 nm 2/Monte Carlo step for

the thicker nanofiber were calculated for 1 -D diffusion parallel to the fiber axis [14]. The

mobility of the chains at the surface of the PE nanofiber was found to be greater than that

of the chains at the center of the nanofiber. The overall chain mobility was found to

increase as the fiber size decreased. Similar trends were observed for the free-standing

thin films [10], implying that the curvature present in the fibers does not have a

significant effect on the diffusion characteristics of the chain segments. The increased

mobility in both the nanofibers and in the free-standing thin films was attributed to a

region of lower mass density at the surface.

All of the above studies suggest that when polymers are confined in one or two

dimensions, structural properties and dynamics show significant changes compared to

those in bulk. These differences have implications for the properties of such materials

confined on the nanometer length scale. For example, the glass transition temperature

(Tg) of amorphous polymer thin films has been observed either to increase or decrease

with decreasing film thickness [16-28], phenomena that have attracted great interest in

recent years as part of a larger effort to understand the nature of the glass transition itself.



In this chapter, the effects of confinement and curvature on the structural and thermal

properties of polyethylene nanofibers are investigated. Our aim is to evaluate these

properties as a function of fiber diameter. In this way, we expect to develop a

fundamental understanding of the extent and origin of fiber properties that emerge with

decreasing diameter.

3.2 Simulation Methodology

3.2.1 Model

Molecular dynamics (MD) simulations of prototypical polyethylene (PE) nanofibers were

performed using a large scale atomic/molecular massively parallel simulator (LAMMPS)

[29]. LAMMPS is a classical MD code that efficiently model compliant materials such as

polymers using a variety of force fields and boundary conditions. LAMMPS runs

efficiently on single-processor machines but is designed for parallel computers, including

Beowulf-style clusters. In the most general sense, LAMMPS integrates Newton's

equations of motion for collections of atoms, molecules, or macroscopic particles that

interact via short- or long-range forces with a variety of initial and/or boundary

conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of

nearby particles. The lists are optimized for systems with particles that are repulsive at

short distances, so that the local density of particles never becomes too large. On parallel

machines, LAMMPS uses spatial-decomposition techniques to partition the simulation

domain into small 3d sub-domains, one of which is assigned to each processor.

Processors communicate and store "ghost" atom information for atoms that border their

sub-domain.

In this work, a united atom force model for PE described originally by Paul et al. [30] and

modified subsequently by Bolton et al. [31] and In't Veld et al. [32] was used. Since we

implemented a united atom force field, the prototypical PE nanofibers were composed of

methyl and methylene groups only, wherein the hydrogen atoms are lumped together

with the carbon atoms. This force field has been shown to give an accurate description of



PE melts, as well as reasonable crystallization and melting transitions for n-alkenes [33-

34]. The force field potential can be represented as follows:

<D = kb (1-o)2 +k (0-60)2+Z k, 1-cosi#]+4e (3.1)

In the equation above, the first term is the harmonic bond stretching potential where kb =

1464.4 kJ/mol A and lo=1.53 A is the equilibrium C-C bond length. The second term is

the harmonic bond angle bending potential where ka=251.04 J/mol deg2 is the angle

bending parameter and 60=109.5* is the equilibrium C-C-C bond angle. The third term is

the bond torsion potential, which accounts for all intramolecular interactions between

atoms separated by three bonds. The parameters for this term are: ki= 6.77 kJ/mol; k2= -

3.627 kJ/mol; k3= 13.556 kJ/mol. The last term is the Lennard-Jones (LI) potential, which

is used to compute the nonbonded interactions between all united atom pairs that are on

different chains or that are separated by four or more bonds on the same chain. The

nonbonded potential parameters are: E(CH 2- CH 2) = 0.391 kJ/mol; s(CH 3- CH 3) = 0.948

kJ/mol, s(CH 2- CH 3) = 0.606 kJ/mol; a = 4.01 A (for all united atom types). The

nonbonded interactions were truncated at a distance of 1 nm and were calculated between

all united atom pairs that were located on two different molecular chains or that were

separated by four or more bonds on the same chain.

In these MD simulations, the prototypical chain-like molecule consists of 50 to 300

carbon atoms (C50-C300). The simulation box length in the fiber axis direction, Lz, was

chosen just short enough to suppress the growth of Rayleigh instabilities on the time scale

of the simulation, typically Lz < 2 7tRfiber, where Rfiber is the expected fiber radius. The

initial bulk density for all systems was 0.75 g/cm3 at 495 K. A time step of 1 fs was used.

The simulations were run for durations 5 to 25 ns to characterize the relaxation times for

different polymer chain lengths and to obtain equilibrated structures at the end of each

stage of simulation (bulk and fiber). The total size of the systems varied between 200 and

150,000 carbons.



3.2.2 Simulation procedure

The nanofiber was constructed by the following method. First a simulation of desired size

N (number of united atom groups) and cubic volume (V=LxLyLz) was created, with

periodic boundary conditions employed in all three Cartesian directions, such that the

density was 0.75 g/cm 3. This system, which corresponds to the "bulk state", was

simulated using LAMMPS. After equilibration in the bulk state, the box dimensions Lx

and Ly were increased simultaneously by a factor of 3 to 4, such that the molecules no

longer interacted with their images in these expanded directions. The system then

interacts with its images only in one dimension; under these conditions, a cylindrically

symmetric free surface spontaneously formed upon further equilibration, resulting in a

section of a nanofiber. If the nanofiber is considered to be a cylinder, the z-direction

along which the simulation box is still periodic, becomes the "fiber axis" or the "axial"

direction of the fiber. The other two orthogonal directions, x and y, or any linear

combination of these, become "radial" directions, which were confirmed to be

indistinguishable during simulation. Figure 3.1 shows two perspectives of a typical

nanofiber generated in this way. The fiber nomenclature reflects the number and length of

chains within this representative volume element, or box: 20xC50 indicates 20 chains,

each comprising 50 carbon atoms.

For the investigation of static properties, every system was simulated in an NVT

ensemble at 495 K, which is well above the melting temperature of PE.



(a) (b)

Figure 3.1 20xC50 polyethylene nanofiber at 495 K. The representative volume element
includes 20 chains, each comprising 50 carbon-carbon atoms. (a) Inclined to fiber longitudinal
axis; five periodic images in the axial direction are included for clarity. (b) Fiber cross-
section. The fiber diameter is 3.54 nm.

3.3 Results

3.3.1 Radial density profile

The density profile is important in defining the surface and bulk regions of the fiber. For

this analysis, the fiber was divided into cylindrically symmetric bins, or shells, starting

from the center of the fiber. The number of atoms that fall into each shell was counted

and normalized by the shell volume. This procedure was carried out for each snapshot

and the ensemble averaged number density profile was calculated. This value was then

converted to mass density of the fiber. The results for several systems are shown in

Figure 3.2. As Figure 3.2 shows, the density within the core of the fiber spontaneously

assumes the bulk density of the polymer. The increased fluctuation in density near r=0 is

a consequence of poorer statistical sampling for bins of small radius and not significant.

The mass density profiles for systems with the same total number of carbons are nearly

identical, indicating that this result is insensitive to chain length.

The fiber diameter was determined using the Gibbs dividing surface method (GDS). The

common definition of the Gibbs dividing surface was adopted, wherein the integral of the

mass density profile equals the integral of the step function that takes the values of bulk



mass density or vacuum on either side of the GDS; this amounts to the conservation of

mass. Hence, the interface mass density

2;c (r)- p"e (r I rGDS ) rdr = 0 (3.2)
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Figure 3.2 Density profiles extending from the fiber center provide a means to determine
effective fiber diameter via the Gibbs dividing surface method. Here, fiber diameter can
be varied via the number or molecular weight of the individual PE chains.

vanishes for this particular definition of the dividing surface, whose location is rGDS. For

the fibers simulated in this work, the diameters 2 rGDS obtained by this method range from

2.02 nm to 22.95 nm. These values were averaged over the entire simulation; analyses of

diameter vs time did not reveal any low frequency "breathing" modes. The "90-10

interfacial thickness", which can be defined as the distance over which the mass density

of the fiber decreases from 90% to 10% of the corresponding bulk value, is between 0.78

and 1.39 nm for all fibers studied at 495 K, and increases slightly with increasing fiber

diameter. Table 1 summarizes these properties for various systems at 495 K.



Ntotal System Dflber(nm) Lz (nm)
200 4 x C50 2.02 1.8
300 2 x C150 2.38 2.1
300 3 x C100 2.38 2.1
400 4 x C100 2.52 2.3
500 10 x C50 2.79 2.4
600 12 x C50 2.96 2.6
600 6 x C100 2.9 2.6
600 4 x C150 2.92 2.6
600 3 x C200 2.91 2.6
600 2 x C300 2.92 2.6
900 18 x C50 3.52 3.1
900 9 x C100 3.44 3.1
900 6 x C150 3.41 3.1
1000 20 x C50 3.54 3.2
1500 15 x C100 4.11 3.6
1500 10 x C150 4.1 3.6
2000 40 x C50 4.63 4
3000 60 x C50 5.23 4.5
3000 30 x C100 5.2 4.5
3000 20 x C150 5.22 4.5
3000 15 x C200 5.18 4.5
4500 90 x C50 6.1 4.9
4500 30 x C150 6.15 4.9
5000 50 x C100 6.2 5.4
15000 150 x C100 8.9 7.9
50000 500 x C100 13.53 11.4
100000 1000 x C100 17.05 14.6
150000 1000 x C150 22.95 16.7

Table 3.1 Simulation system details and diameter values for simulated PE nanofibers at
495 K. (Ntotal: Total number of atoms, Dfiber: Fiber diameter, Lz: Length of the simulation
box along z direction).

3.3.2 Energy density profile and Interfacial energy

The interfacial excess energy of the fibers can affect wetting and inter-fiber interactions.

The enthalpic contribution to this quantity can be determined from the potential energy

density, which is calculated by considering all interactions (bond stretching, angle

bending, torsion, Lennard Jones) and apportioning the energy for each interaction equally

among the particles involved. Figure 3.3 shows the energy density profiles for several

systems. In order to define interfacial energy, the true energy profile is replaced by a step



function, where the step is located at the position rGDs determined previously from the

mass density profile. In general, the energy and mass density profiles do not coincide,

and there is an excess energy at the interface that can be calculated as follows:

E. = E , - Efi, ]/[2rGDSL] (3.3)

where Eint is the interfacial excess energy and Efiber is the energy of the fiber in the

macroscopic limit, as defined below. L is an arbitrary length of the fiber. Efiber and Eto0ta

are calculated from the following formulas:

Ettat = 27LJ E (r)rdr (3.4)
0

Efiber =Ecore;,,rS L (3.5)

where Ecore is the energy density spontaneously adopted at the center or core of the fiber.

Ecore obtains a value of 580 J/cm 3 for fibers with Rfiber> 2.0 nm, equal to the bulk energy

density determined from bulk simulations. For fibers with Rfiber < 2.Onm, Ecore increases

by 10% (580 J/cm 3 to 640 J/cm3) as fiber radius decreases. The increase of Ecore is mainly

due to the loss of attractive LI interactions in fibers with Rfiber < 2.0 nm. Figure 3.4 shows

Ecore as a function of fiber radius.

The excess interfacial energy was calculated to be - 0.022±0.002 J/m2 and does not

depend on the fiber radius. This value is similar to 0.02 J/m 2 (at 400 K) previously

estimated by Mattice et al. for a thin film of PE, using their 2NND lattice model [35] and

to 0.0254 J/m 2 (at 473 K) reported from experiments [36]. The temperature dependence

of surface tension for PE melts is weak and has been determined empirically to be -0.057

* 10-3 J/m 2/K [36], implying a surface tension of 0.02414 J/m 2 at 495 K, which agrees

within the margin of simulation uncertainty. However, the simulated values are internal

energies, rather than free energies.
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3.3.3 Center of mass distribution and segregation of chain ends

The spatial distribution of chain centers of mass, shown in Figure 3.5, characterizes the

structure at the level of entire chain. The center of mass profiles of the chains are

expressed as the number of chains per volume of bin. For the same total system size (i.e.,

Ntotai), as the molecular weight decreases, number of center of mass of the chains per
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volume increases. For the systems given in Figure 3.5, chain centers of mass are located

mostly towards the middle of the fiber (i.e., 1.3 nm from the center of the fiber) and the

position of the chains are independent of the number of chains in the system.

Figure 3.6 gives the relative density profile of the end (k=0 or k=99) and middle carbon

atoms (k=50) across a fiber of Rfiber = 8.9 nm. The relative density profile was calculated

by normalizing the end and middle bead densities by the total bead density in that bin, so

that the segregation at the surface can be observed clearly. This segregation is typical in

the sense that the end beads become more abundant closer to the vacuum. The behavior

of the end beads distribution is determined mainly by entropic effects, contrary to the

enrichment of centers of mass in the interface layer which is dependent on the energetic

situation. This finding is in accordance with earlier results for the case of thin film [9,10]

and nanofiber simulations [13].
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Figure 3.5 The center of mass distribution as a function of radial displacement from the
fiber axis.
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3.3.4 Molecular conformations

Results from density and interfacial energy calculations show that surface properties can

differ significantly from the properties at the center of the fiber. This may be attributed to

perturbed conformations that the molecules take at the surface, under the influence of

curvature and/or confinement. For this reason, the global equilibrium radius of gyration

(Rg) values of chains within the fibers were calculated from the following formula:

Nehain Nsvegment 2

N ((3.6)
chain j=1 i=1

Figure 3.7 shows radius of gyration values normalized by bulk radius of gyration

(Rg/Rg,bulk) for each molecular weight as a function of fiber radius, also normalized by the

corresponding bulk radius of gyration (Rfiber/Rg,bulk). In this way, the primary effect of

chain length is removed. Rg,bulk is calculated from the conformations of chains

equilibrated in the melt phase. The deviation of Rg/Rg,buik from unity as Rfiber/Rg,bulk

decreases is a signature of the effects of confinement on chain conformation.
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increases, the chains eventually acquire their Rg,bui values. It appears that chains confined

within fibers having diameter less than 2 (for C50) to 4 (for C100) times the bulk radius

of gyration are perturbed from their bulk state.

The Rg of the chains as a function of the distance from the fiber center (Figure 3.8) was

also calculated. These results suggest that the confinement of the chains penetrates from

the free surface, over a distance ~ Rg from the GDS towards the fiber center.

3.3.5 Local Orientation

Local orientation tendencies of chords (from carbon atom i to carbon atom i+2) across the

fiber is examined in Figure 3.9. The chord order parameter is defined as

Sicat = 1(3 (cos2 9)-1) (3.7)

where 6 is the angle formed between a chord and the fiber axis. < > is indicative of an

ensemble average within the cylindrical bin. The chord order parameter Socal would

assume a value of -0.5, 0.0 or 1.0 respectively, for chords characterized by perfectly

perpendicular, random and parallel orientation with respect to the fiber axis.

In Figure 3.9, the order parameter of the chords is plotted as a function of radial

displacement from the fiber center. The line labeled "all" represents the orientation of all

the chords. The other two lines are calculated for chords at the ends and middle of the

chains. With reference to the fiber axis, there is no preference for the chord orientation in

the bulk region of the fiber as indicated by Siocal = 0 for random orientation. Toward the

surface, the middle chords seem to prefer parallel orientation, whereas the end beads tend

to stick out to the vacuum by normal orientation to the surface. These two opposite

effects are averaged in the orientation of all chords.
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3.3.6 Glass transition temperature

3.3.6.1 Method

For the investigation of the glass transition temperature Tg of the fiber, the bulk structure

was first cooled to 100K in the NPT ensemble, with an effective cooling rate of 1.97x1010

K/s, and the configurations at a series of temperatures were saved. Previous simulation

studies [37] have shown that comparable cooling rates provide an estimate of the glass

transition temperature that is -30 K higher than the accepted experimental value;

however, this offset should not significantly affect any trends in Tg. These configurations

were then used as the initial configurations of the nanofiber at each temperature and the

nanofibers were re-equilibrated in the NVT ensemble at each temperature. Only the axial

dimension of the fiber is affected by the choice of ensemble; in all cases, the fiber radius

is free to expand or contract, regardless of box size.
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Figure 3.10 (a) Density at the center of the fiber as a function of temperature (b) Rfiber as a
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3.3.6.2 Tg as a function of fiber size and layer model

To determine the Tg of nanofibers, a method that is commonly used in both experiments

and simulations was employed. The mass density, which is related directly to the fiber

radius, was monitored as a function of temperature. Since the liquid and the glassy states

have different thermal expansion coefficients, Rfiber (7) changes slope upon crossing Tg.

The Tg is determined as the intersection point of linear extrapolations from the liquid and

glass sides; an illustration of this procedure is shown in Figure 3.10.

Figure 3.11 shows the Tg as a function of the fiber radius. As shown clearly in Figure

3.11, the Tg of the nanofibers are depressed with decreasing radius. The thickness-

dependent depression in Tg has been demonstrated experimentally and computationally

[16, 28] for a range of amorphous polymer thin films. Here, a similar behavior is

observed for polymer nanofibers.
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Figure 3.11 Tg as a function of Rfiber (at T = Tg) for nanofiber shows the depression of Tg
with decreasing fiber radius. Solid lines are least squares regression to data.

To provide a physical interpretation for the depression of Tg in these nanofibers, a layer

model similar to that proposed by Forrest and Mattson for low molecular weight free-

standing thin films [27] can be used. The model can be applied to other geometries such

as cylinder, sphere and ellipsoid. (See Appendix) This volume-averaged Tg formulation

assumes a region near the free surface with enhanced mobility and depressed Tg (Tg,surf<

Tg,bulk). For simplicity, Tg,suf is assumed to be constant throughout the surface layer,

although mobility may in fact vary within this layer. The thickness of this surface region

is thought to be the same as the temperature-dependent length scale of cooperative

motion for the glass transition dynamics, (T). Assuming a single Tg equal to the bulk

value for the fiber core, the average Tg value of the free-standing fiber is written as

follows:

T, =T,,kug bulk g'su) (3.8)

The factor of 2 in the linear term arises due to the 2-dimensional nature of confinement in

case of the nanofibers. (See Appendix) A relation that accounts for the increase in the

cooperativity length scale (T) with decreasing temperature is given by:



f(T)=(T,,f)+a(Tf -T) (

where o7 and yare empirical constants. A natural choice for Tref was shown to be Tg,buiw,

since the data can only be used to describe 4(T) for T < Tg,bulk [15]. The value Tg,bulk = 280

K is used, reported previously for the simulated bulk amorphous polyethylene (C768)

using the same force field [37].

Using equations 3.8 and 3.9 to obtain a least squares best fit to the simulation results in

Figure 3.11, the following variables were calculated Tg,suf =150±7 K, (Tg,buik) = 0.35±0.2

nm, o-=0.4±0.1 and y=0.5±0.2 for the nanofibers. The solid lines in Figure 3.11 represent

the best fit Tg data using these constants.
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Figure 3.12 Cooperativity length scale 4(T) as a function of temperature
nanofibers.

for the

Figure 3.12 shows 4(T) calculated from these parameters. The layer theory predicts a

cooperativity length for nanofibers, which is (Tg,buik) - 0.4 nm. This value is consistent

with estimates for the size of the Cooperatively Rearranging Region (CRR) by Solunov

TT -

100 120

(3.9)

I



[38] for bulk polyethylene. Based on Solunov's estimate of 3.16 CH2 units in the CRR

and a bulk density of 0.75 g/cm 3, an independent estimate for 4 (Tbulk) = ?fV; =0.46 nm

can be obtained.

Experiments in amorphous thin films indicate that the depression of Tg is not a strong

function of molecular weight for polymers of low to moderate molecular weight. The

effect of molecular weight on the depression of Tg for PE nanofibers was also considered.

Figure 3.13 shows Tg as a function of fiber radius for three different molecular weights,

700 g/mol (C50), 1400g/mol (C100) and 2100g/mol (C150). Clearly, a significant

dependence of the Tg on the molecular weight of the polymer for the molecular weights

within the simulated range is not observed. This observation also justifies application of

the layer model to the simulation results, since this model was developed specifically to

explain experimental data for thin films in the range of low molecular weights where Tg

depression is observed to be molecular weight-independent.
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3.3.6.3 Comparison with experiments

To our knowledge, no studies on the experimental measurement of Tg on the free-

standing amorphous polymer nanofibers have been reported in the literature. However,

several groups investigated the Tg behavior of amorphous polymer thin films [16-28].

The first systematic study of the dependence of the Tg on film thickness in thin polymer

films was performed by Keddie et al. using ellipsometry [17]. A series of polystyrene

(PS) films of thicknesses between 10 nm and 200 nm were prepared on silicon wafers

and reductions in Tg for films with thickness less than 40 nm were measured. Results

obtained for PS films on a variety of substrates using numerous experimental techniques

such as ellipsometry [17, 18], dielectric spectroscopy [19, 20], X-ray reflectivity [21],

local thermal analysis [22] and probe fluorescence intensity measurements [23, 24] show

a consistent decrease in Tg with decreasing film thickness, which is in agreement with our

simulation results.

Numerous simulation studies have been conducted to reveal the underlying mechanism of

the glass transition in spatially confined polymers. Torres et al. have demonstrated in MD

simulations that the diffusivity of polymer segments is highly heterogeneous in polymer

thin films, and that it is strongly correlated with deviations of Tg from the bulk [39]. An

unentangled polymer melt confined between two repulsive walls was studied using MD

simulations, and the reduction in Tg upon decreasing film thickness was explained by the

faster chain dynamics due to the presence of the smooth walls [40-42]. Yoshimoto et al.

[43] employed nonequilibrium MD simulations using a coarse grained polymer model,

showing that mechanically soft layers are formed near the free surfaces of glassy thin

films and that Tg also decreased as the film thickness decreased, which is also in

agreement with our results.

3.4 Conclusions

We used MD methods to investigate the size-dependent properties of nanofibers for the

prototypical polymer, polyethylene. The diameter of the largest fiber was -23.0 nm,



which is comparable to diameters of nanofibers that can be prepared by electrospinning.

In general, our results show that the fibers exhibit bulk-like structure and physical

properties at the core of the fiber. Near the free surface, significant confinement of the

molecules extends approximately one Rg from the GDS towards the fiber core. The

interfacial excess energy is 0.022±0.002 J/m2 and is not dependent on fiber diameter. The

Tg of the amorphous PE nanofibers decreases by 50% as Rfiber decreases from 2.81 nm to

0.87 nm, and is not a function of molecular weight over the range considered.

Application of a volume averaged layer model for Tg shows that the cooperativity length

scale 4(T) compares well with previous estimates for polyethylene, but cannot explain the

greater Tg depression of nanofibers compared to free-standing thin films of comparable

thickness. This radius-dependent Tg depression can be attributed at least in part to the

increase in the core energy of very small nanofibers (Rfiber < 2.0 nm). These results show

that the physical properties of amorphous polymer nanofibers differ significantly from

bulk and their thin film counterparts.

Chapter 4 addresses the emergent elastic and plastic deformation behavior of polymer

nanofibers as a function of fiber diameter. This dependence (or lack thereof) is critical in

potential applications of electrospun nonwoven mats, for which functional performance

correlates strongly to mechanical stiffness of individual nanofibers.
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CHAPTER 4: MODELING AND MECHANICAL CHARACTERIZATION OF
ISOLATED POLYETHYLENE NANOFIBERS

Parts of the following study were published in 2009. [1]

4.1 Introduction

Mechanical properties of polymeric nanostructures are of critical importance in a wide

variety of technological applications. Such applied forces and resulting displacements

may result in permanent deformation and eventually mechanical failure of individual

nanofibers. The properties of the nonwoven materials are convoluted functions of the

inherent properties of these fibers, as well as the organization of and interactions among

fibers within the nonwoven material. Therefore, it is desirable to determine independently

the mechanical properties of single nanofibers.

In recent years, various attempts have been made to quantify the elastic properties of

isolated polymer fibers of diameter d < 1 pm via direct experimental measurements [7-

18]. Mechanical characterization techniques that have been developed to test individual

polymer fibers include uniaxial tensile loading, as well as bending and indentation of

individual fibers using atomic force microscopy (AFM) cantilevered probes to impose

deformation. The details of these studies as well as a summary of the findings from these

studies can be found in Chapter 2.3.1.

Although these experimental methods can provide information on the Young's elastic

modulus, E, yield strength, ay, and fracture strength, og of nanofibers, several challenges

exist that limit the precision and accuracy of these mechanical property measurements.

These challenges include the required force resolution, the difficulty of preparing,

isolating, and manipulating such small fibers without compromising them, and the dearth

of suitable modes of imaging or displacement measurements that do not damage the

fibers. Due to these difficulties, to the best of our knowledge, experimental data are not

available for the elastic or plastic properties of polymer nanofibers with diameters less

than 50 nm. Therefore, it is not yet clear if the stiffening and strengthening effects

described in Chapter 2 are peculiar to fibers in the range of diameters from -70-500 nm,



or if these trends would persist to even smaller length scales. Molecular scale

simulations can provide valuable insights to help predict and understand the mechanical

behavior of such small-scale structures, and to identify any emergent behavior that is a

consequence of their nanoscale dimensions.

Previous computational simulations of amorphous (glassy) polymeric, prismatic

cantilevered plates adhered to a substrate have shown that the overall bending modulus of

the plate remains comparable to bulk materials, until the width of the plates approaches a

critical value of 20a; where u is the diameter of the coarse-grained polymer segments [19,

20]. Below the critical plate width, the bending modulus decreases with decreasing width

and can be significantly smaller than that of the bulk polymer. Workum et al. [20]

showed that the material in the surface region comprises a significant fraction of the

entire width of the plate, so that deviations from bulk behavior can be significant.

Nonequilibrium molecular dynamics simulations using a coarse grained polymer model

showed that compliant layers form near the free surfaces of glassy thin films [21]. These

authors also calculated that the ratio of the surface layer thickness increased to more than

half of the entire film thickness as the temperature approached the Tg of the bulk polymer

[21]. Although two studies of the structural and physical properties of simulated, glassy

polymer nanofibers have been reported to date, mechanical properties of such fibers have

not been calculated [22, 23]. However, experimental studies of amorphous polymer thin

films suggest that the stiffnesses of polystyrene (PS) or poly(methylmethacrylate)

(PMMA) thin films of thickness <40 nm on poly(dimethylsiloxane) (PDMS) substrates,

as inferred from elastic buckling of the adhered films, are significantly less than those of

bulk counterparts [24, 25]. This behavior was explained by applying a composite model

that consisted of a compliant surface layer of reduced elastic modulus and a bulk-like

region at the film center [25]. Wafer curvature experiments have also indicated that the

biaxial elastic modulus of PS thin films of 10 nm thickness is an order of magnitude

smaller than that of the corresponding, bulk PS [26].

Experiments and simulations therefore suggest that mechanical properties of polymer

nanostructures (i.e., free-standing or adherent thin films of nanoscale thickness and fibers



of nanoscale diameter) can deviate significantly from that of the bulk polymer

counterparts, but with very different trends. Whereas the properties of adherent thin films

depend strongly on the substrate to which the film is adhered, free-standing films and

fibers might be expected to behave more similarly. Given these discrepancies, the

fundamental questions addressed in this chapter are (1) whether the elastic and plastic

properties of simulated, amorphous polymer nanofibers are indeed different from those of

the bulk material or thin film counterparts; and (2) if these properties in fact differ from

bulk predictions, how this deviation depends on the fiber dimensions for fiber radii < 10

nm. The discussion in this chapter includes the effect of surface tension on the axial

force-elongation response of nanofibers at low strain, elastic properties as a function of

fiber radius Rfiber and temperature, and the characterization of oy and post-yield behavior

as functions of nanofiber radius and temperature.

4.2 Method

Free standing PE nanofibers were prepared in a two-step molecular dynamics (MD)

scheme as explained in more detail in Section 3.2.1. To determine the mechanical

properties of solid PE nanofibers, bulk structures were cooled down from 495 K to 100 K

with an effective cooling rate of 1.97x1010 K/s. We used an NPT ensemble with a

constant, isotropic pressure of P=10 5 Pa during cooling. We saved configurations at three

different temperatures (100 K, 150 K and 200 K) for determination of bulk mechanical

properties, and subsequently used these configurations to construct nanofibers. In this

second step, the simulation box dimensions were increased simultaneously in two

directions (i.e., x and y) without rescaling coordinates, such that the system no longer

interacted with its images in these directions. The box dimension was unchanged in the

third direction (i.e., z). Upon subsequent relaxation in the NVT ensemble for 10 ns at the

desired temperature, the system reduced its total energy by forming a cylindrically

symmetric free surface concentric with the z-axis of the box. The resulting nanofiber was

fully amorphous and periodic along the z-direction. The bulk configurations at 100 K,

150 K and 200 K were also equilibrated in the NPT ensemble with the usual periodic

boundary conditions in x, y, and z, before deformation to determine the bulk mechanical

properties.



Deformation of fibers was simulated by controlling the displacement of the z dimension

of the simulation box to induce uniaxial deformation parallel to the fiber axis; the free

surfaces of the fibers were unconstrained. Deformation of the bulk configurations was

simulated by rescaling one dimension of the simulation cell, while allowing the other two

orthogonal dimensions to fluctuate in response to the barostat, as described in detail in

Capaldi et. al. [27]. The resulting strain rate for all temperatures ranged from 2.5x 108 S-1

to 1010 s-1. For the fibers, results are presented initially in the form of applied force versus

strain, since converting force to stress requires an assumption regarding the cross-

sectional area of the fibers. As argued previously [28], defining the cross-sectional area

requires a subjective decision, the effect of which becomes significant when the material

dimensions are reduced to a length scale comparable to the size of the atoms themselves

(-1 nm); different methods for defining the diameter of a fiber can thus lead to significant

differences in the value of stress obtained. Samples were deformed in both compression

and tension up to a strain e = ±0.05, which is in the linear elastic deformation range at

temperatures of 100 K and 150 K, as confirmed by the linearity of the computed force-

strain response over this range. In the case of 200 K simulations, the force-strain response

was linear only up to a strain e =0.02. To improve the signal-to-noise ratio in the

computed virial equation for forces acting on the fiber (for small systems), four different

initial configurations were simulated under identical conditions, and the resulting force-

strain curves were averaged. Where necessary to compute stress, the Gibbs dividing

surface (GDS) was invoked to define the diameter of the fibers, as described previously

in Section 3.3.1. Young's elastic modulus was calculated from the slope of the stress-

strain response in the linear elastic regime. The plastic deformation behavior of both bulk

and nanofibers was also studied by continuing deformation up to a total strain £ = 0.2 at

100 K and 150 K with a constant strain rate of 109 s-1. In order to analyze if the fibers

were plastically deformed at the end of this simulation (after the system was uniaxially

elongated to a total strain e = 0.2 along the fiber axis), an NPT ensemble MD simulation

was carried out. In this simulation, the box dimension along the fiber axis was allowed to

fluctuate in response to the barostat. Permanent deformation of the fibers, which was

observed at the end of this simulation, was recognized as the signature of plastic



deformation. For each simulation, data for force versus strain during plastic deformation

were averaged over a strain interval of 0.002. The axial force on the fiber at yield was

calculated from the intersection of two lines, the first being fit to the force-strain curve in

the low strain, elastic deformation region and the second being fit to the force-strain

curve in the plastic deformation region; yield stress was thus computed as the force at

yield (intersection of these piecewise linear fits) normalized by the GDS-defined cross-

sectional area of the fiber.

4.3 Results

4.3.1 Effect of surface tension on stress

Table 4.1 summarizes the simulated systems to calculate mechanical properties.

Table 4.1 Chain length and radius values, determined via the GDS method, for simulated
PE nanofibers at 100 K and 150 K.

Ntotai L@ 100 K(nm) Rfi, @100 K(nm) L@ 150 K(nm) Rfi, @150 K(nm)
15xC100 3.39 1.848 3.40 1.875
30xC100 4.27 2.312 4.29 2.371
30xC150 4.88 2.762 4.90 2.794
150xC100 7.29 4.1 7.33 4.148
500xC1O0 10.92 6.15 10.98 6.2
100OxC100 13.75 7.71 13.79 7.75
1500xC150 15.75 8.84 15.80 8.94

Figure 4.1 shows the force-strain response of a nanofiber that was deformed uniaxially at

100 K. A closer inspection of this figure reveals that the force does not decrease to zero at

zero applied strain. This is a feature of the nanofibers that is also suggested by continuum

mechanics to be a consequence of surface tension [29]. Simulations of bulk systems (i.e.,

periodic boundary conditions in x, y, and z with no free surfaces) confirm that the force-

strain responses indeed passes through the origin in this case.



To investigate the finite force that is observed in the force-strain response, we calculated

the instantaneous force tensor for equilibrated nanofibers (i.e., no

elongation/compression) from the virial tensor W as

1 Nbond Nangl Ndihed Nao-I Natm Nato

f - L Wbond il + Z Wng.,i + Z Wihej, + Z I WI + Z Wkinetic(
Lfb,, , j= i=1 i1 j -i,, ,
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Figure 4.1 Force along the axial direction (fz) as a function of axial strain (Ezz) in the
elastic regime for a nanofiber with N/L= 2057.61 united atoms per nm of fiber length
(Rfiber = 4.1 nm by the GDS method) at 100 K.

where Lfiber is the length of the fiber. Equation 4.1 is the summation of all contributions

due to bond stretching, bond angle bending, bond torsion, Lennard-Jones interactions and

kinetic contributions. The explicit expressions of the virial contributions can be found

elsewhere [30, 31]. We calculated the force tensor in cylindrical coordinates, appropriate

to the geometry of the fibers. Figure 4.2 shows the radial forcef, as a function of distance

from the fiber center. For this analysis, the fiber was divided into concentric cylindrical

shells, starting from the fiber axis. The virial contributions were summed for the atoms

that belonged to the same cylindrical shell. To translate the results forff into radial stress

o-r, we define Rfiber according to the GDS method. The radial stress is given by



f
rr = r

Tfiber

The surface tension can be calculated by integrating the radial stress o-a as follows:

(4.2)

(4.3)y= f r-,dr
0

Figure 4.3 shows the magnitude of surface tension calculated from equation 4.3 as a

function of fiber radius. The error bars represent the standard deviation for the four

different configurations simulated.
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Figure 4.2 Radial force profile extending from the fiber core to the free surface enables
the calculation of radial stress. (Rfiber = 4.1 nm by the GDS method at 100 K.)

Here, we can also explore the validity of the continuum theory and Young-Laplace

equation for small diameter fibers [29]. This equation can be written as follows for a

cylinder:



-Z = r(4.4)
fber

where y is surface tension and Rfiber is the fiber radius. This relation suggests that there is

a finite stress on the nanofibers due to the contribution of surface tension, even in the

absence of elongation or applied force. The relative contribution of this finite stress term

naturally increases as the fiber radius decreases.
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Figure 4.3 Surface tension as a function of Rfiber, as calculated from the radial
component of the stress tensor at 100 K. Solid squares represent systems with chain
length C 100; open squares represent systems with chain length C150.

Since we calculated both ar, and uzz directly from the virial equation of atomistic

interactions as detailed above, we can calculate a second estimate of the surface tension y,

subject to the validity of equation 4.4. Estimates of y using equation 4.3 and equation 4.4

agree within 1 mN/m. These estimates from computational simulations also compare well

with an experimental estimate of 44.7 mN/m for amorphous polyethylene at 100 K,

obtained by extrapolation from the experimentally measured surface tension of a

polyethylene melt between 423 and 473 K [32]. These results confirm that the source of

the finite stress at zero elongation is the surface tension, and that the continuum theory is

capable of accounting for this phenomenon even at these very small length scales.



4.3.2 Elastic deformation and the layer model

From the slope of force versus strain (fzz-e response) in the elastic regime (Figure 4.1),

under uniaxial tension and compression parallel to the fiber long-axis, we compute the

quantity F, which has units of force and is related to the elastic modulus through the

cross-sectional area, F=EA.
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Figure 4.4 Dependence of F/(N/L) on fiber parameter NIL at three different temperatures:
100 K, 150 K and 200 K and at a strain rate of 2.5x10 8 s-1 . See text for details. Solid
symbols represent systems with chain length C100; open symbols represent systems with
chain length C150.

Figure 4.4 shows the quantity F/(N/L) as a function of NIL at 100, 150 and 200 K. N is

the number of atoms in the simulation and L is the length of the simulation box along the

z direction (the fiber axis) Thus, NIL is proportional to the linear density (mass per unit

length) of the fiber, which is conventionally expressed in units of tex in the fiber industry;

tex is the mass in g of 1 km of fiber. F/(N/L) is proportional to the specific modulus of the

fiber (E/p where p is the density of the fiber) and is conventionally expressed in units of

N/tex. The use of fiber industry units here avoids the need to introduce a definition for

fiber radius in order to characterize the fiber deformation behavior. All three

temperatures are below the glass transition of bulk PE (280±30 K [27]), and were chosen

to bracket the glass transition temperature estimated for the surface of these fibers (150

K). As can be seen from this figure, the specific modulus F/(N/L) decreases with



decreasing NIL for all temperatures considered. The specific moduli for fibers of various

sizes at 150 K are slightly lower than those at 100 K; between 150 K and 200 K, the

specific modulus drops significantly. This is an indication of the increased compliance of

the surface layer within this temperature range, which contributes noticeably in

nanofibers of diameter d < 40 nm.

In order to interpret these results for deformation of nanofibers in terms of deviation from

bulk-like behavior, it is necessary to compute the Young's modulus, E. For this purpose,

we re-introduce Rfiber, defined using the GDS method. Figure 4.5 shows E as a function

of Rfiber. By simulation, we determined the Young's modulus of the bulk PE Ebua to be

2360, 1838 and 900 MPa at 100, 150 and 200 K, respectively, under an applied strain rate

of 2.5x108 s-1. At a strain rate of 1x10 10 s-1, Euik was found to increase to 2758, 2490 and

1800 MPa at the same three temperatures, respectively. This strain rate dependence of E

for simulated bulk PE below the glass transition has been noted previously [33]. It is

likely that some relaxation mechanisms in the glassy state are suppressed at the higher

strain rate. Nevertheless, the main finding - that decreasing fiber size results in increasing

compliance - is relatively insensitive to strain rate, so we report further results only for

the lower simulated strain rate. For all three temperatures, the Young's moduli of the

fibers are lower than that of the corresponding bulk configurations.

To explain the dependence of Young's modulus on the fiber radius, we make use of

composite material theory. We assume that the core of the fiber consists of bulk-like

material with a Young's modulus equal to that of the bulk Ebuui, and a surface region that

is more compliant, with Esurf < Euik. Assuming uniform strain throughout the fiber (i.e.,

the Voigt limit for material composites), we have:

E = Eulkfbuk + Es,,f (4.5)
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Figure 4.5 E vs. Rfiber at 100K, 150 K and 200 K and at a strain rate of 2.5x108 s-1. The
data points represent simulation data; the solid lines show the best fit to the composite
model described in the text. Symbols are the same as in Figure 4.4. The reasonable fit of
the data at larger Rfiber indicates that the mechanical behavior is well-described by a
mechanically effective surface layer of constant thickness.

where E is the calculated elastic modulus of the fiber, fbuwi is the volume fraction of the

bulk-like core and f 1- fbkis the volume fraction of the surface layer. The core

volume fractionfbulk can be written as:

f -k R (4.6)
fiber

where is the thickness of the mechanically effective surface layer; this parameter

characterizes the length scale over which the elastic response of the fiber varies. { was

further assumed to depend only on temperature; for fibers of radius less than , we set

4=Rfiber.

We used best fits of equations 4.5 and 4.6 to our simulated results to determine values for

both and Esuf at each temperature, as shown in Figure 4.6. According to equations 4.5



and 4.6, the effective Young's modulus of the fibers should approach Esurf for fibers with

small radii, on the order of 5 or less, and should asymptotically approach to Ebuik for

fibers much larger than 4 . For the range of fiber radii simulated, the approach to Esurf

around Rfiber=# is accurately captured at 100 and 150 K, while the approach to Ebulk at

large Rfiber is observed at 200 K. Figure 4.6 indicates the dependence of on Rfiber at all

temperatures. From the fit to the two-layer composite model, we obtain values for Esuf of

1050, 890 and 30 MPa at temperatures of 100, 150 and 200 K, respectively. For , we

obtain values (at sufficiently large fiber radius Rfiber) of 3.4, 2.8 and 1.0 nm at

temperatures of 100, 150 and 200 K, respectively. In other words, both the modulus and

the thickness of the mechanically effective surface layer decrease as the temperature

increases from below to above the glass temperature of the surface layer.
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Figure 4.6. 2 vs. Rfiber at 100, 150 and 200 K suggests that the mechanically effective
surface layer thickness decreases with increasing temperature.

Enhanced surface mobility of glassy polymer thin films and nanostructures has been

demonstrated by several experiments [34, 35] and simulations [20, 36]. As the

dimensions of the nanostructures decrease, the surface to volume ratio increases, and thus

the amount of material at the surface becomes a more significant volume fraction of the

entire structure, and is reflected in the overall properties. The increased mobility at the

surface can cause significant stress relaxations in the mechanically effective surface layer



quantified by . According to our model (Figure 4.6), the distance over which these

relaxations occur can be as large as twice the radius of gyration of the chain (Rg,bulk:= 1.6

nm for C100) at 100K. The thickness of this layer decreases to 2.8 nm at 150K and 1.0

nm at 200K. For amorphous polymer thin films of PS or PMMA on PDMS substrates,

Stafford et al. [24] estimated a surface layer of thickness 2 nm with an elastic modulus

lower than that of the corresponding bulk polymer. Sharp et al. [37] suggested the

existence of a liquid-like surface layer with thickness of 3-4 nm, from studies of 10 nm-

and 20 nm-diameter gold spheres embedded into a PS surface. They also estimated the

thickness of this layer to be 5±1 nm from ellipsometry measurements [37]. These

estimates compare favorably with our results for 4 of simulated amorphous PE.

The decrease in the thickness of the mechanically effective surface layer with increasing

temperature is similar to the behavior that we noted previously for the cooperatively

rearranging region (CRR), which we used to explain trends in the glass transition

temperature as a function of PE nanofiber diameter. It is well established that structural

relaxation in amorphous polymers occurs through cooperative rearrangements that

involve larger domains of material as the temperature is reduced through the glass

transition [38]. Similar behavior can be expected for . However, the determined here

for the mechanically effective surface layer are larger than those of the CRR for thermal

relaxations, for which we previously calculated values of 1.0, 0.75 and 0.58 nm at 100,

150 and 200 K, respectively. To the best of our knowledge, there is no study in the

literature that compares the thickness of the mechanically effective surface layer with

that of the CRR. Our results show that cooperative mechanical displacement occurs over

a larger distance (4) than thermal rearrangements (CRR), requiring the involvement of

more repeat units. Although mechanical loads can be transmitted along an appreciable

fraction of the entire chain length, thermal relaxations take place over a smaller number

of repeat units, resulting in smaller surface layer thickness. Although the two-layer

composite model appears to be a reasonable approximation to explain deviations in Tg

and in E from bulk material, this model is nevertheless simplistic, and its estimates are

certainly approximate. More complex models may need to be devised in order to



rationalize quantitatively the complex physics underlying thermal and mechanical

properties of nanofibers with those of the bulk and thin films.

4.3.3 Poisson's ratio as a function of fiber diameter

The Poisson's ratio v of the PE nanofibers as a function of fiber size and temperature

was also calculated directly from the ratio of radial and axial strains. As Figure 4.7

shows, v decreases from 0.3 nm to 0.1 nm as Rfiber decreases from 8.8 nm to 1.8 nm. The

Poisson's ratio of large fibers is comparable to the Poisson's ratio of a typical glassy

polymer of -0.3. The small nanofibers exhibited Poisson's ratios similar to porous

composite materials such as cork (v-0) and concrete (v~0.2). The low Poisson's ratio and

reduced lateral contraction of the smallest glassy fibers may be partially attributable to

the increased volume fraction of the comparatively mobile, mechanically effective

surface layer in these nanoscale fibers.
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Figure 4.7. Poisson's ratio increases as the fiber radius increases at 100 K and 150 K.
Symbols are the same as in Fig. 4.4. Solid symbols represent systems with chain
length C 100; open symbols represent systems with chain length C150.



4.3.4 Plastic deformation as a function of fiber diameter

Plastic deformation (e.g., yielding and subsequent fracture) of the nanofibers may have

important consequences for the mechanical performance of the individual nanofibers, as

well as the nonwoven mats comprising such fibers. For this reason, we investigated the

large-strain behavior of several nanofibers under uniaxial tension to determine the yield

stress and its possible dependence on temperature and fiber diameter.
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Figure 4.8. Averaged axial force vs. axial strain response for plastic deformation of a fiber
(Rfiber= 4 .1 nm at 100K) at 100 K and 150 K at a strain rate of 109 s-1.

Figure 4.8 shows such a force-strain response, up to and beyond the onset of plastic

deformation. Although the signal-to-noise ratio of the force and strain data points is

inevitably low, the applied yield forcefy can be estimated. Yield force is then normalized

by the cross-sectional area to compute yield stress o-y. Figure 4.9 shows yield stress ay as

a function of fiber radius ranging 40-72 MPa, at 100 and 150 K and a strain rate of 109 s-

1. For a more direct comparison, we determined oy by simulation for an amorphous bulk

PE undergoing tensile deformation at a strain rate of 109 s~1, and obtained ay = 150 and

120 MPa at 100 and 150 K, respectively. This tensile yield stress is approximately 25%

lower than that reported by Capaldi et al. for simulated compressive yield strength, using

the same force field and comparable strain rates [27]. Vorselaars et al. have also reported



about 25% lower yield stress in tension than in compression for their simulations of a

bulk polystyrene glass [41]. Thus, the yield stress for these fibers ranges from one-third

to one-half that of the corresponding bulk values; this suggests that the surface layer

plays a significant role in facilitating plastic deformation. Finally, although our

simulations indicate that the average yield stress increases mildly with increasing fiber

radius and decreasing temperature, the error bars associated with identification of the

yield point in simulated force-strain responses, particularly for fibers of radii less than 4

nm, preclude identification of size-dependent trends in strength over this range of fiber

radii.
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Figure 4.9. Yield stress as a function of fiber radius at 100 K and 150 K determined at a
strain rate of 109 s-1.

4.3.5 Comparison with experiments

Young's moduli of amorphous PE nanofibers are found to decrease with decreasing fiber

radius, which is counter to experimental results available for semi-crystalline and

amorphous polymer fibers [7, 18]. However, the experimental fiber diameters for which

an increase in E with decreasing fiber diameter has been reported are much larger (e.g.,

700 nm for PCL [14]) than the simulated nanofibers (3.7 nm < d < 17.7 nm) presented in



this work. More importantly, to our knowledge, all the nanofibers that were tested

experimentally are semi-crystalline, with the notable exception of PS [18], while all our

simulated nanofibers are completely amorphous. In one study of PCL nanofibers,

crystallinity and molecular orientation were found to increase with decreasing fiber

diameter, based on wide angle x-ray scattering experiments and draw ratio calculations,

which was correlated in turn with the increase in stiffness of PCL nanofibers with

decreasing radius [14]. In contrast, Arinstein et al. reported that crystallinity and

orientation in nylon 6,6 nanofibers showed only a modest, monotonic increase [17] that

could not be correlated with the dramatic increase in Young's modulus observed with

decreasing fiber diameter; the authors concluded that confinement on a supramolecular

length scale must be responsible for this increase [17]. In the case of amorphous PS fibers

in the range 410 nm < d < 4 pm, the increase in shear elastic modulus was attributed to

molecular chain alignment arising from the extensional flow of the electrospinning

process itself [18]; as mentioned earlier, our simulated nanofibers do not exhibit any

significant molecular level orientation. Thus, while we cannot account for the roles of

crystallinity and molecular orientation in the experimental fiber studies, we can infer

from our results that the primary consequence of diameter reduction in the smallest fibers

(ca. 5-20 nm diameter) is a reduction of elastic modulus, Poisson's ratio and yield stress

of these fibers as compared to the bulk counterparts, all of which we attribute to an

intrinsically mobile surface layer. Significantly, our results for decreasing stiffness with

decreasing fiber diameter are consistent with simulations of nanoscale cantilevered free-

standing film [19] and adhered thin film simulations [21] as well as with experiments on

adhered thin films of amorphous glassy polymers [25, 26] of comparable (<50 nm)

physical dimensions.

Experimentally available measurements of yield strength for PE range between 9.6 MPa

and 33.0 MPa at room temperature [39]. However, these measurements are invariably for

semicrystalline PE, in which the yield is predominantly due to crystallographic slip along

the {100)<001> slip system [40], which is activated at lower stress rather than yield

within the amorphous component. Thus, our results are not necessarily inconsistent with

the experimental data.



4.4 Conclusions

In Chapter 4, the results of direct MD simulations of the uniaxial loading response for

amorphous PE nanofibers are presented. Elastic and plastic properties of individual fibers

as a function of fiber radius and temperature were calculated. For a given temperature,

the Young's elastic modulus E is found to decrease with fiber radius and can be as much

as 52% lower than that of the corresponding bulk material. Poisson's ratio v of the

polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1

with decreasing fiber radius. A small but finite stress exists on the simulated nanofibers

prior to elongation, attributable to surface tension. When strained uniaxially up to a strain

of e = 0.2 over the range of strain rates and temperatures considered, the nanofibers

exhibit a yield stress uy between 40 and 72 MPa, which is not strongly dependent on fiber

radius; this plastic property is as much as 80% lower than that of the same polyethylene

simulated in the amorphous bulk.

Physical and functional properties of nonwoven mats and other fiber-like materials

depend strongly on the properties of individual fibers as well as the interactions among

adjacent fibers. While Chapters 3 and 4 investigated the structural, thermal and

mechanical properties of individual nanofibers as a function of fiber diameter, Chapter 5

deals with the molecular dynamics studies of the interfiber interactions, in order to

develop a fiber-fiber interaction model that can be employed in nonwoven mat models.
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CHAPTER 5: DERIVATION OF AN INTERFIBER INTERACTION

POTENTIAL

5.1 Introduction

As electrospun nonwoven materials exhibit a particularly high number of fiber-fiber

junctions, this interfiber interaction is especially important in determining the

macroscopic mechanical properties of such mats. For example, it has been shown that

interfiber bonding can be enhanced by controlling the electrospinning process [6] or by

post-spinning treatments [7-10] and that this enhancement can improve macroscopic

tensile strength and failure strain considerably [8]. Choi et al. showed that the thermal

treatment of electrospun poly(etherimide) (PEI) fiber mats leads to interfiber bonding and

improved tensile strength [10]. Similarly, the presence of residual solvent in the

electrospun polymeric nanofibers may facilitate adhesion between nanofibers in contact

and thereby change the mechanical properties of the mat [11-13]. Kidoaki et al. showed

that the Young's modulus of segmented polyurethane (SPU) meshes increased with

increasing N,N-dimethylacrylamide (DMF) content, when electrospun from a mixed

solvent system of tetrahydrofuran (THF) and DMF [13]. These authors attributed the

increased mesh stiffness to a higher degree of interfiber bonding, reasoning that the

residual content of the slower-evaporating DMF may facilitate entanglement of chains

from different fibers at contact points.

One of the challenges in the macroscopic modeling of nonwoven materials is the accurate

representation of the fiber-fiber contact interactions. Since the 1950s, several models

have been developed, each based on various assumptions of fiber-fiber contact

configurations and deformation mechanisms [14-19]. For example, Pan et al. included the

effect of interfiber friction and sliding on the mechanical response of fiber assemblies and

modeled the compression hysteresis behavior of these assemblies. This model was found

to be in reasonable agreement with uniaxial compression experiments of textile treatment

wool [14]. Wang et al. showed that simple Euler-Bernoulli beam elements connected by

torsion springs at the fiber-fiber junctions can represent the mechanical properties of



fibrous networks successfully [17]. In one effective medium model, the fibers were

assumed to be rigidly bonded at each fiber-fiber crossing [18]; in this model, when the

network is deformed, the angles between crossing fibers remain constant, and elastic

strain is borne entirely in the fiber segments between the crossings. The application of

this theory to two-dimensional random fiber networks was found to agree well with

results from numerical simulations [18]. In another study, a planar fiber network was

represented by a micromechanical model in which the linearly elastic straight rods were

bonded rigidly at fiber-fiber contacts [19]. The authors compared the model predictions at

several fiber volume fractions with finite element analysis, and found the two to be in

good agreement. Chatterjee introduced an energy penalty for rupturing an existing fiber-

fiber contact, to calculate the tensile and shear elastic moduli of three dimensional fiber

networks [20]. He estimated the strains at the elastic limits under tensile and shear

deformation, but did not compare his results with experiments.

Although these models compared favorably against available experiments and/or

numerical simulations, the constraints on the fiber-fiber junction interactions were

assumed without confirmation by direct experimental measurements or finer-scale

simulations. Direct experimental measurements of fiber-fiber interactions are very

challenging, particularly for polymeric fibers of sub-micrometer diameter, due to the

difficulty of isolating and handling fiber-fiber couples and the uncertainties involved in

measuring forces and energies at this scale. Such experimental challenges are not unique

to electrospun fiber networks, but arise also in a broad range of systems, including

protein filament networks of cytoskeletons in connective tissues and biological cells. To

our knowledge, neither theoretical calculation of fiber-fiber interactions nor experimental

measurements of such interactions for electrospun materials have been reported

previously.

In this chapter, we report a simulation-based analysis of interfiber interactions among

nanoscale polymeric fibers, in order to develop fiber-fiber interaction model that can be

employed in network calculations.



5.2 Simulation Method

To create polymeric fibers of nanoscale diameter with atomistic detail, we employed MD

simulations using a large scale atomic/molecular massively parallel simulator

(LAMMPS) [21]. The united atom (UA) force field used in these simulations combines

the hydrogen atoms with the carbon to which they are attached into a single "bead"; this

model was parameterized by Paul et al. [22] for polyethylene (PE), and later modified by

Bolton et al. [23] and In't Veld et al [24]. This is the same force field that we have used

previously to characterize the structural, thermal [25] and mechanical [26] properties of

individual nanofibers. The details of the functional form and parameters can be found

elsewhere [25-26].

A single, free-standing nanofiber was prepared using a two step MD method as we have

described previously [25-26]. First, a cubic simulation box containing 30 chains of 100

UA beads (designated C100) was created (total number of monomers N = 3000) and

equilibrated in the NVT ensemble at 495 K, such that the polymer density was 0.75

g/cm 3. Then the simulation box was cooled to 100 K through a succession of NPT

ensembles with a constant, isotropic pressure of P=10 5 Pa. This temperature is lower than

both the glass transition temperature (Tg) of the same material (united atom C100) in the

bulk state, which has been estimated to be 280 K [27], and the Tg of the surface layer of a

single C1O nanofiber, which we have previously estimated to be 150 K [25]. Next, the

box dimensions were increased simultaneously in two perpendicular directions (i.e., x and

y), such that the molecules can no longer interact with their images in these directions.

Thus, the periodic boundary condition applied only in one direction, the z-direction,

which was then parallel by definition to the fiber axis. This simulation cell was then

equilibrated in an NVT ensemble at 100 K, resulting in spontaneous formation of a

cylindrically symmetric object, representing a repeating segment of an amorphous

nanofiber of infinite length. The radius of the nanofiber thus created was calculated to be

Rfiber = 2.3 nm, using the Gibbs dividing surface method [25]. For the purposes of this

study, only a single fiber radius was considered so that multiple simulation approaches

and parameters could be compared.



Two distinct approaches, MD and MS (also called "energy minimization"), were then

considered to construct interfiber interaction energy functionals U[s] over a range of

separation distances, s. For both simulation approaches, the total potential energy of the

system was calculated by addition of bond, angle, torsional and Lennard-Jones energies

between united atoms. Note that here we reserve U for interaction energy and E for total

potential energy.

To characterize interfiber interactions via MD, we constructed a system comprising two

C100 nanofibers, each prepared as described above and then placed in the same

simulation box such that the axes of the fibers were parallel and separated by a prescribed

distance, s (Figure 5.1a). Here s=s(r 3N, r2 3N) is defined by the distance between the

centers of mass (COM) of the two fibers, which in turn are computed from the 3N

coordinates of the united atoms initially assigned to each fiber; we considered ten

different interfiber distances over the range 1 nm < s < 11 nm. Figure 5. 1b shows the

initial configuration of the simulated system at a separation distance of s = 7 nm. To

maintain each interfiber distance constant, the momentum of the COM of each nanofiber

was fixed via the "fix momentum" command in LAMMPS. While this method does not

affect the relative motion of the atoms within either nanofiber, it ensures that the COM's

of the two nanofibers remain at the initial separation distance throughout the entire

simulation duration. The system was then equilibrated in the NVT ensemble at 100K for

300 ns. These MD simulations thus provide estimates of E(t), E[s], and U[s] for

conditions under which thermally activated motion is sampled over sufficient time to

permit reconfiguration of chains within and between fibers.

In addition, we also performed MS or energy minimizations of the same two-fiber

system, with the same constraint on separation distance s. The purpose of the interfiber

MS simulations was to establish U[s] in a manner that did not impose constraints on the

fiber positions, but also minimized thermally activated interactions. The same two-fiber

simulation box setup was used as in the MD interfiber simulations, with nanofibers

positioned parallel to the long axis at an interfiber distance that ranged 1 nm < s < 11 nm.



The energy minimization algorithm iteratively adjusted atomic coordinates to lower the

system energy, and iterations were terminated when the configuration attained a local

potential energy minimum of magnitude and tolerance within 0.01 J/mol UA. In order to

sample more two-fiber systems and thus obtain better statistics on calculated energies,

several initial configurations were generated by rotating one of the fibers about its z-axis

by 100 increments.

(a(b)

Figure 5.1 (a) Schematic representation of the fiber-fiber simulation system. (b) Visual
Molecular Dynamics (VMD) image of the fiber-fiber simulation setup at interfiber
distance s = 7 nm. Five periodic images in the axial direction are connected for clarity
(Rfiber = 2.3 nm at 100 K).

5.3 Results from Molecular Dynamics Simulations

5.3.1 Potential energy profiles at different separation distances

The total potential energy E(s) of the fiber-pair systems was used to calculate the

interaction energy between the nanofibers as a function of separation distance U(s).

Figures 5.2a and 5.2b show the change in total potential energy as a function of time,

E(t), for the MD simulations at s = 2, 5, 7, and 9 nm. Potential energy profiles at s = 3, 4,

6 and 8 nm follow trends similar to those shown in Figure 5.2a, and are omitted for

clarity. Potential energy profiles at s =10 nm superpose the data obtained at s = 9 nm in

Figure 5.2b.
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Figure 5.2 MD simulations of system potential energy for two-fiber equilibration
trajectories at 100 K. (a) Potential energy vs. time for separation distances of s = 2, 5, and
7 nm indicate an initial fast decay followed by a slower decay that persists for hundreds
of ns. (b) Potential energy vs. time for s = 9 nm indicates equilibration within 100 ns.

During a typical MD trajectory, the potential energy E(t) initially decreases rapidly due to

fast rectification of unfavorable contacts, and then continues to decline more slowly.

Once a local or global equilibrium is attained, E(t) fluctuates around an average, constant

value. As Figure 5.2a shows, the potential energy of the nanofibers at 1 nm < s < 9 nm

continued to decrease very slowly over the entire course of the 300 ns MD simulation.

For s- 9nm, the systems reached equilibrium within approximately t - 50 ns, after which

potential energy fluctuates less than 12% around an average value of -627 J/mol UA. The

time it takes for an MD simulation of such polymeric systems to equilibrate depends on

several factors, including molecular weight and temperature; however, these fiber-fiber

simulations were run under identical molecular weight and temperature conditions. The

separation distance determines the degree of interaction between the fibers at early times,

and can affect the time required for the fiber-fiber system to reach a local energetic

minimum [281. Since the fiber radius (as defined by the Gibbs dividing surface) is 2.3

nm, the fibers overlap significantly at s = 2, 3, and 4 nm. Furthermore, the surfaces of

nanofibers are finite in thickness; the interfacial thickness, defined here as the distance

over which the density of the fiber decreases from 90% to 10% of the bulk value, is 1.4

nm, so that the density of polymer segments is significant out to a distance from the fiber

core of -3.0 nm. Even so, the position of individual segments of chains may fluctuate to



distances even further from the fiber axis, due to thermal motion. Due to these

fluctuations, fibers can communicate even for values of s as large as 8 nm, which

presumably accounts for the long equilibration times. For s > 9 nm, no interaction

between the fibers was observed (as defined by molecular overlap between chains from

distinct fibers over the simulated trajectories) and the system reached a local energetic

minimum within 50 ns.

5.3.2 Radial density and cross-sectional shape profiles

We calculated the radial density profiles (details of this calculation can be found

elsewhere [25]) of one fiber within our MD simulations at different s, in order to analyze

structural changes of the fiber at the molecular level (Figure 5.3a). The density profile of

a single, separately equilibrated fiber is also given in Figure 5.3a, as a reference point to

emphasize the differences in density profiles due to interfiber interactions.

(a) 1.4 Single equilibrated fiber. (b)
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Figure 5.3 (a) Mass density profile of an equilibrated single nanofiber, as compared with
the mass density profile of one of the fibers in fiber-fiber MD simulations at different
separation distances s. (b) Aspect ratio for one of the fibers in MD simulations at 100 K
vs. separation distance shows that the cylindrical symmetry is distorted when a second
fiber is placed adjacent to an initially cylindrical nanofiber. The ellipses are representative
of simple cross-sections corresponding to the aspect ratio of each datum.



In the case of a single, isolated fiber, the density is constant and highest within the core of

the fiber and equal to -0.9 g/cm3 . In contrast, in the case of two fibers at a separation

distance s = 2 nm, the region of highest density is displaced towards the surface of the

fibers. Furthermore, this density is lower than in the case of the isolated fiber, at -0.6

g/cm 3; a similar trend is observed at s = 3 nm. At s = 4 and 5 nm, the mass density

profiles are similar to that of an isolated single fiber. The distortion of the density profiles

at s=2 and 3 nm are indicative of significant overlap of the two fibers, which necessitates

displacement of the chains, on average, away from the COM of each fiber. The

cylindrical symmetry of each fiber is disrupted.

Figure 5.3b shows the ratio of major and minor axes (Rfiber,x and Rfiber,y, respectively) for

the cross-section of one fiber, called the aspect ratio as a function of separation distance,

s. Fiber cross-sections become increasingly elliptical for decreasing separation distances.

This change in fiber shape is also demonstrated graphically in Figure 5.3b, where ellipses

are drawn to scale to represent the aspect ratio at each separation distance. The aspect

ratio is the largest (-1.2) at s = 2 nm, where distortion of the mass density profile is

greatest.

The changes in both the density and shape profiles suggest that the macromolecular

chains tend to intermix from one fiber to another, leading to a constrained coalescence

(because s is fixed to be nonzero) of the two fibers. Since the chains are chemically and

structurally "identical" in the two fibers, this coalescence can be understood as a

consequence of the tendency to reduce the total the surface energy of the system, in a

manner analogous to particle sintering and microstructural coarsening in nonpolymeric

materials [29].

The change in cross-sectional profile is also demonstrated in Figure 5.4a, which shows a

contour plot of mass density for this fiber-pair in cross-section for s = 2 nm. Figure 5.4b

compares the radial mass density profile of one of the initial, single nanofibers (R = 2.3

nm) to that of the larger fiber formed by partial coalescence of two such nanofibers. This

radial mass density illustrates that the density of macromolecular chains at both the



single-fiber and fiber-pair cores are comparable within 300 ns of simulation; however,

the distance from the core over which this high density extends is naturally greater for the

larger, partially coalesced fiber-pair. Although this coalesced fiber-pair is not cylindrical

in cross-section, an estimate of the effective radius obtained by the GDS method is 3.4

nm. This estimate will assist in comparison of the limits of interaction energy in the

model discussed below.
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Figure 5.4 (a) Contour plot of mass density for this fiber-pair in cross-section for s = 2
nm, obtained from averaged trajectories over 300 ns of MD simulation. (b) Radial mass
density profile of one of the partially coalesced fiber-pair extends over greater distances
from the core than that of a fiber in the isolated state (R = 2.3 rim).

At this point, it is worth remarking on the slow decay of energy over a period of 100's of

nanoseconds observed in Fig 5.2a, for cases where s < 9 nim. The energy E(t) at any time

t is higher for systems with larger s, since the constraint on the separation distance

between the fiber COM's implies a final equilibrium configuration that is increasingly

distorted from being circular in cross-section, and thus higher in surface energy; only a

system in which the constraint on s is completely released could the system completely

rearrange to form a single, larger fiber. Nevertheless, it seems remarkable that such a

decay is observed at all on the time scale of these simulations, in light of the fact that the

temperature of simulation (100 K) was chosen to lie well below not only the glass

transition of the core of the fiber (280 K), but also that previously determined to be

characteristic of the surface of the fiber (150 K) [25].



We interpret this relaxation as evidence for a small but more mobile fraction of material

at the outer periphery of the fibers, which remains highly dynamic, even at very low

temperature. To view the differences between the dynamics of bulk and interfacial

regions, we calculated the residence times of individual atoms. (Figure 5.5b) The fibers

are divided into cylindrical shells (i.e. bins) of 0.5 nm width, starting from the center of

the fiber. (Figure 5.5a) The circular grids in this figure, which are numbered from 2 to 7

(bin 1 is the black circle in the middle), represent the bins; color coded same as the data

that is plotted in Figure 5.5b. Only 10% to 15 % of the atoms starting out in bin 1 (the

bulk region) move out of their original at s=2, 6 and 9 nm. A similar trend is observed at

other separation distances (data not shown). In contrast, the percentage of atoms that

moves out of bin 6 is significantly larger at s=6 and 9 nm than at s = 2 nm. This might be

due in part to most of the surface being an interface with the other fiber at s = 2 nm. On

the other hand, at s = 6 and 9 nm, the atom positions fluctuate sufficiently to exit and re-

enter this surface region.
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Figure 5.5 (a) Circular grids, which are numbered from 2 to, 7 represent the bins.
(b)Fraction of atoms which stay in their original bin, as a function of time and the
separation distance s. Black lines correspond to bin 1 (0< r <0.5 nm) and red lines
correspond to bin 6 (2.5< r <3 nm).



Taken together, this data indicates that the degree of molecular mobility is the highest at

the fiber surface compared to the fiber core. This is consistent with our previous studies

on these fibers describing effective Tg in terms of a simplified layer model with a surface

region of higher molecular mobility [25]. Also, as the bin number increases, the residence

time of atoms in their original bin decreases. This merely serves as a reminder that the

fiber surface is actually a gradient material, with dynamical behavior that varies

throughout its width from that of a vitrified solid to that of a low density melt. As the size

scale of the material (e.g. a fiber) is reduced to the nanoscale, this more mobile surface

fraction becomes increasingly important. Even for these 4.6 nm diameter fibers, however,

complete relaxation of the fiber-pair system mediated by this molten surface fraction is

too slow to follow to completion, requiring times in excess of 3 months of simulation on

a single 2.66 GHz dual-quad core in LAMMPS.

5.3.3 Interaction model for MD results

From these MD simulations, we can summarize the interaction between two fibers by

comparing the energies of the two-fiber system to that of single, isolated fibers. Figure

5.6a shows the potential energy per mole of united atom (mol UA) as a function of s* =

s/2R, the separation distance normalized by the diameter of the fibers, 2R = 4.6 nm. For

any given snapshot of simulation time longer than about 50 ns (the single fiber

equilibration time), this potential energy varies smoothly between that of an isolated fiber

with R = 2.3 nm (the upper bound marked EN, where the linear density N/L=3000/4.3 nm,

or 1.6x10-8 tex) at large distances and that of an isolated fiber with R=3.4 nm, having

twice this linear density (the lower bound marked E2N). With increasing simulation time,

these potential energy data shift downward, with little change in shape of the variation

between EN and E2N (c.f the data in Figure 5.6 at t = 200 ns and 300 ns). To obtain the

interaction energy U(s*), we subtract EN from the total potential energy of the fiber-pair

system at each s* (Figure 5.6b).



On the basis of these observations, we construct a mathematical function that describes

the interaction U(s*) between two nanofibers as a function of their normalized separation

distance. The form of the interaction is well-described by the logistic function:

U(s*)=U 0 +(U.-Uo)L1+exp s -so (5.1)

where s*0 and a serve to translate and rescale, respectively, the independent variable s*,

while Uo and (U-Uo) serve to translate and rescale, respectively, the dependent variable

U(s*). Here, energy tends to Uo as s* tends to 0 (full coalescence) and to U as s* goes to

+0o (distant, non-interacting fibers). The inflection point of this interaction energy is

located at s*0, while a is sometimes called the "steepness parameter". The form of this

function predicts that within a certain (small) distance of approach, two fibers will

experience a force driving them into contact, with a work of adhesion on the order of (U

- Uo). However, here we do not report fitted parameters of the fit from our MD

simulation data, as Fig. 5.6b makes clear that the system has not yet attained the

equilibrium state which this function aims to describe; that state would span the physical

limits Uo and U, over these simulation timescales.

These limiting energetic values are not arbitrary results of fits to MD simulations of fiber-

pairs, but in fact can be related directly to the surface energy. We have previously shown

that the energy of an isolated fiber, even at such small diameters, is well-described by the

following equation:

EN= Eb,,+ y(2xfRNL)N,/N (5.2)

where NIL is the number of UA per unit length L of fiber, RN is the radius of the fiber,

Ebulk is the molar energy density of UA in the bulk amorphous phase 102 J/cm 3 at 100 K

and y is the surface energy (-45 mJ/m 2 [25]), which is more or less independent of fiber

radius. This surface energy is also in agreement with an experimental estimate of 44.7



mJ/m2 for amorphous PE at 100 K [30]. When two fibers of radius RN merge completely

to form a single, larger fiber of radius R2N, the change in energy is predicted by

continuum mechanics to be:

AE=E 2N -EN A (R 2 N - 2RN )
N

(5.3)

Substituting the values reported above for NIL, 'y, R2N and RN, we obtained zE=-290 J/mol

UA, which is about similar in magnitude to (Uco - Uo) = -273 J/mol UA. Thus, the work

of adhesion for fiber-fiber contacts by this approach is consistent with the change in

energy due to a reduction in total surface area.
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Figure 5.6 (a) Potential energy per mole of united atoms for the fiber-pair system as a
function of separation distance s, normalized by the diameter of the fibers 2R. Each data
symbol corresponds to the energy E(t) extracted from the simulations at different times:
100 ns (filled squares), 200 ns (open circles), 300 ns (open triangles) . The upper and
lower horizontal lines are limits for isolated fibers of radius RN and R2N, respectively. (b)
Interaction energy per mole of UA as a function of s*, where EN(t) is subtracted from E(t).
Symbols indicate the same time points as in (a). The solid curve illustrates the best fit of
the sigmoidal form given by Eq. (5.1) to the simulation data at 100 ns; see text for details.
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5.4 Results from molecular statics (MS) simulations

5.4.1 Interaction model for MS simulations

We have used a conjugate gradient method [21] to run energy minimizations (MS) of the

same fiber-pair systems as those discussed above for MD simulations. Figure 5.7a shows

the potential energy as a function of separation distance, averaged over an ensemble of 36

systems at each s*. For all separation distances s > 7 nm, the potential energy is

approximately equal to the total energy of two non-interacting fibers, and can be taken as

E, for this set of calculations. Subtracting E. from the total potential energy, we obtain

the static interaction energy, U(s*), for static fibers (Figure 5.7b). At s = 6 nm, there is an

attractive energy well depth of approximately 26.5 J/mol UA; for s < 6 nm, the force of

interaction between static fibers is repulsive, in stark contrast to the results for dynamic

fibers from MD simulations. Interestingly, s = 6 nm corresponds to a separation distance

slightly larger than s*O, where the density of polymer segments is still significant. The

range of attractive interaction is narrow (extending -1 nm), indicating a short-range

attraction between nanoscale fibers.
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;Z -1000-
-0 - 800

6 -1200 I-
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400-

.- 16 0 0 200-
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Figure 5.7 (a) Total potential energy as a function of separation distance E(s*) calculated
from energy minimizations. (b) Net interaction energy as a function of separation
distance U(s *), obtained by subtracting the energy for two non-interacting fibers, E.,
from E(s *) (see text for details). Data points represent the simulation results and the
solid line is the best fit to the simulation data using eq (4).
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In contrast to the MD simulations of fiber-pairs, the interaction energy as a function of

separation distance obtained by molecular statics is reminiscent of classical pair

potentials between particles. We considered several such forms, and found best

agreement with the data using a Mie type interaction potential with (n,m) = (8,4):

U (s*)= A (s*) 8 -B(s*) * (5.4)

For the data in Figure 5.7b, A = 200 J/mol UA and B = 125 J/mol UA. As Figure 5.7b

shows, equation 5.4 can successfully predict the interaction energy of fibers for s > 3 nm.

At s = 2 and 3 nm, this model overpredicts the repulsion energy at s/2R < 0.7 by two

orders of magnitude, and thus is not shown in Fig. 5.7b. (Many variations of the Mie

potential, as well as other forms such as piecewise exponential decays, were considered;

none of those other forms better captured both the trends at small s and the depth and

curvature of the energy minimum at s - 6 nm.) The form of Eq. (5.4) thus summarizes

the interaction potential between two fibers up to the point at which the fiber radii

defined by the GDS begin to intersect (here, for s < 4 nm). Physically, this corresponds to

separation distances of significant overlap between the chains in adjacent nanofibers that

extend beyond the GDS.

1.4 -- Single, separate fiber
2nm

1.2 -3nm
-4nm

1.0

0.8

0.6

0 0.4

0.2

0.0
0 10 20 30 40 50

Distance from fiber axis (A*)

Figure 5.8 Mass density profile of an equilibrated single nanofiber, as compared with the
mass density profile of one of the fibers in fiber-fiber MS simulations at different
separation distances s.
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Similar to Figure 5.3.a, we also calculated the radial density profiles of one fiber within

our MS simulations at different s, in order to analyze structural changes of the fiber. The

density profile of a single, separately equilibrated fiber is also given in Figure 5.8, as a

reference point. As it can be seen from this figure, the density profiles of the fibers do not

change significantly during the MS simulations and resemble the density profile of a

single, separately equilibrated fiber.

5.5 Discussion

Both MD simulations and MS calculations indicate that there exists a short-ranged

attractive interaction between fibers that extend out to a distance s of 3R to 4R. However,

where MD predicts an eventual coalescence of the nanofibers with a significant work of

adhesion, energy minimization results predict that the interaction between fibers becomes

repulsive for smaller separation distances. The difference between these two results can

be understood to result from the action of dynamical relaxation processes on the MD time

scale in the dynamic simulations. There is both a simulation-specific rationale and a

physical parallel for these differing perspectives. While MD approach enables

exploration of dynamics, energy minimization emphasizes configuration-based

energetics. Yin and Boyd have previously estimated that the time scale of the y relaxation

below Tg for a UA model of C768 in the bulk state is on the order of 32 ps [32], far

longer than our MD simulations here. However, a mobile surface fraction of PE-like

chains may relax much faster; estimates of the Rouse time for a UA model of C 100 above

its Tg are on the order of 2.5 ns [33], well within the timescale of these simulations.

In physical experiments involving electrospun polymeric fibers, each simulation

perspective can be realized. If the fibers are in contact with each other and their surfaces

are sufficiently mobile (analogous to the MD simulations), they will tend to coalesce.

This is in agreement with the experimental results of interfiber "welding" when

electrospun nonwoven materials are laid down "wet" or annealed at high temperature or

in the presence of a plasticizing agent or solvent: the role of temperature or solvent in this
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case is to increase the mobile surface fraction so that a significant consolidation of the

fibers at the point of contact can be achieved [7-10]. In contrast, the molecular statics

results are representative of the more conventional case where the contacts between fibers

are strictly "solid-like". In such cases, there is a weak, short-ranged attractive interaction

between fibers. As the diameter of fibers in contact is reduced, the relevance of the

mobile surface fraction, with its shorter time scale of relaxation, becomes more

important, and one anticipates that a transition from the static, solid-like contact picture

to the dynamic, cohesive contact picture may be observed. While the fiber size and

simulation times are necessarily very short, compared to most electrospun fibers and

experimental observations, we think that this may motivate further studies to explore the

size-dependent nature of fiber-fiber interactions in nonwoven materials.

5.6 Conclusions

Previous studies of nonwoven materials modeling [14-19] have employed several

different forms of interfiber interactions, without measuring or predicting these

interactions at the molecular level. Here we have studied the interfiber interactions by

two distinct simulation methods, in order to develop a quantitative understanding and

prediction of interfiber interaction energies. We propose two interfiber potentials

constructed directly from atomistic simulations of individual nanofiber pairs. The

resulting formulae capture trends from MD simulations (eq 5.1) and energy minimization

simulations (eq 5.4) for nanoscale polymer fibers. Both perspectives find reasonable

analogy with specific experimental conditions that have been realized for electrospun

polymer nanofiber-based materials, and point toward future experiments and models that

will exploit these interactions. These equations can now be used to represent the

interfiber interactions accurately in nonwoven material models. Further, the comparison

among these approaches suggests the need for new experiments and models to explore

the critical timescales of interfiber interactions in polymeric systems at the nanoscale.
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CHAPTER 6: MODELING OF NONWOVEN MATS

6.1 Introduction

Nanostructured fibrous materials have been made more readily available in large part

owing to recent advances in electrospinning. When deposited as a nonwoven mat, the

resulting fabrics are highly porous; they have a large interconnected void volume in the

range of 50% to even greater than 90% and possess one of the highest surface-to-volume

ratios among all cohesive porous materials. The entangled fibrous geometry has a

pseudo-bicontinuous structure; the pore volume is essentially continuous and

interconnected. Due to these topological features of the porous space, electrospun

nanofibrous materials have gained rapid popularity in many applications [1-5]. Hence, to

obtain detailed information on the properties of these fibrous networks is extremely

important and has been the subject of many studies [6-23]. Many of these previous

studies of modeling porous and fibrous media have focused exclusively on the pore

interconnectivity (for porous media used, e.g., in catalysis or sorption studies) or the fiber

arrangement (for fibrous media used, e.g., in mechanical studies).

On the other hand, fibrous networks are more commonly modeled as arrangements of

rigid geometric objects, with attention paid to the contacts or interaction between these

objects in studies that have investigated fiber modeling for other purposes such as fiber

flocculation or fiber behavior in flow [24-30]. For example, Melrose and Ning [30]

developed a numerical method for simulating mechanical behavior of flexible fibers. A

circular crossed fiber is represented by a number of cylindrical segments linked by a

spring dash-pot systems. Segments are lined up and bonded to each neighbor. They do

not consider interactions between non-neighboring segments. Computer simulation has

been conducted to verify the single fiber model with elastic theory and excellent

agreements have been found between the simulation results and the theory in various

situations such as beam deflection under static loads, vibrating cantilevers, and dynamics

of helical shaped fibers.
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In this chapter a model that is similar to that used by Melrose and Ning [30] is employed

to generate a range of nonwoven structures, with different fiber orientation distributions.

Our aim is to lay the groundwork for generating nonwoven mats whose important

characteristics (e.g. fiber orientation, porosity, fiber diameter) match the electrospun mats

that are prepared in the lab.

6.2 Monte Carlo (MC) simulation methodology

6.2.1 Model

In our model, the fibers were represented by a number of cylindrical segments. (Figure

6.1) Here R is the radius of each cylindrical segment, do is the initial length of each

cylindrical segment and L is the total length of the fiber. These segments were lined up

and bonded to each neighbor at the ends, which is denoted as junctions in Figure 6.1.

Each bond can be stretched or compressed by changing the bond distance. Bending

deflection and twist movement occured respectively by changing the bending and torsion

angles. The flexibility was obtained by changing the material and geometrical properties

of the segments in stretching, bending and twisting. This modeling way is analogous to

that of molecular dynamics method in respect that a molecule is constructed from atoms

by bonding each other.

L

junctions

Figure 6.1 Schematic representation of a single, straight fiber
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We assumed the elastic beam theory to represent the energy change associated with

different types of movement. According to the elastic beam theory, the energy of an

elastically stretched (or compressed) beam is equal to

AUstretchcompress _EA d -do) 2  (6.1)
2do

where E is the Young's modulus of each of the cylindrical segments, A is the cross-

sectional area and d is length of the cylindrical segment after stretching (or compression).

Similarly, the energy of an elastically bent and twisted beam can respectively be written

as

EI2
AUbnd =- ( 0 )2 (6.2)

2do

GI 2_

AUs,, - ( 0)2 (6.3)
2do

where I = TrR 4/4 is the moment of inertia, 0 = 0 is the equilibrium angle between 2

cylinders, 0 is the angle after the cylindrical segments are bent, G is the shear modulus, Ip
= TrR 4/2 is the polar moment of inertia, $o = 0 is the equilibrium twist angle and @ is the

twisting angle after the segments are twisted.

Since we were working on the interfiber interaction potential derivation using MD

simulations (Chapter 5) and the MC model simultaneously, we did not have the results

for a more accurate description of the fiber pair interactions. Thus, as a first estimation,

the interactions between individual fibers were represented by a hard cylinder potential,

which can be written as,

AUinter (r) = +00,s<2R (6.4)
0, s > 2R
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where s is the separation distance between the centers of the cylinders. This type of

interaction prevents the fibers from physically crossing each other (therefore avoids

unphysical overlaps) but does not define a specific interaction (e.g. attractive, repulsive)

for fibers with s > 2R. The results given below were obtained by using equation 6.4.

However, the model is flexible in the sense that other interfiber interaction potential

functions, including the ones suggested by the MD simulations (as described in more

detail in Chapter 5), can be incorporated.

We used dimensionless quantities where all parameters are scaled either by the length

scale R (radius of each cylindrical segment in m) and the energy scale ER3 (E is the

modulus of each cylindrical segment in N/m2). The dimensionless total energy change of

a single cylindrical segment can then be represented as

EA (d_ 2 El 2 GI 2
(d -+ (#po)2 +AUine,

.U * - 2d0  2d0  2d0  (6.5)
segment ER3

Similarly, we can write down the dimensionless total energy change of the whole system

by plugging in A, I and Ip and dividing by ER3

A*=. L -) ( d - do 2 '+9( -2 ) R +)( #-#2 ) G R(6)
do 2 doR 8 do 4 E do

where N is the total number of fibers in a simulation box and L/do is the number of

cylindrical segments per fiber (i.e. aspect ratio of the fiber).

6.2.2 Simulation procedure

We used Monte Carlo simulations to generate the nonwoven structures. In general, the

MC method is a stochastic method which generates configurations of a given system

within a particular ensemble. It provides no information on the trajectories and velocities
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of particles. In an atomistic Monte Carlo simulation, for a NVT ensemble, the probability

of accepting an event is given by

p, = exp (-A U/kT) (6.7)

where AU is the energy change associated with that event and kT is the thermal energy,

which is the energy scale that determines the possibility of molecular events.

However, in our MC algorithm, the thermal energy was not the relevant energy scale

since our goal was to simulate continuum objects rather than molecules. Therefore, we

defined a dimensionless stochastic energy, T*, which can be calculated from

T *=S/ER3  (6.8)

where S is a parameter (a "pseudo-energy") with units of J. By using T*, in case of the

continuum MC model, the probability of an event is proportional to the following

exponential function

Pi < exp(-AU*/T*) (6.9)

where AU* is the non-dimensional total energy change that is calculated from Equation

6.6. According to this formulation, at low "temperature", the ensemble will be dominated

by random arrangements of essentially rigid fibers; at higher "temperature", the ensemble

will be enriched by contributions from flexible, coiling fibers.

All the simulations were run in NVT ensemble (where the volume of the simulation box

and the number of fibers were kept constant) and for durations of 1x 105 MC cycles. The

Monte Carlo moves employed include site translation, end rotation and reptation. In the

site translation move, the coordinates of a junction were changed by a random

displacement such that the total length change (d-do) and/or the total angle change (0-00)
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did not exceed 1%, which is within the elastic deformation limit of polymeric materials.

In the end rotation move, the twisting angle (V at a randomly selected fiber end was

perturbed by a random amount within a range whose maximum was set to 1%. In the

reptation move, a junction was removed from one end of a chain and appended to the

other end of the same chain, while keeping d and 0 constant. The new twisting angle @V

was perturbed from the old one by a random value whose maximum was set to 1%.

4 different fiber volume fractions, 5%, 10%, 15% and 20% were simulated since the

electrospun nonwoven mats that are prepared in the lab are 80% to 95% porous.

6.3 Results

6.3.1 Nonwoven mats from flexible and rod-like nanofibers

When we look at equation 6.6, we can see that the aspect ratio of the fiber (L/do), aspect

ratio of each cylindrical segment (doIR) and the ratio of shear modulus to Young's

modulus (GIE) are the important variables that determine the energy change of the

system. A systematic study of these variables is required to explore the limits of the MC

model. However, in an attempt to investigate the model behavior, we simulated the

nonwoven systems with the parameters given in Table 6.1. As doIR gets smaller, the

number of energy calculations increases, requiring longer simulation times. On the other

hand, as doIR gets larger, the fiber aspect ratio becomes closer to d0/R, resulting in a

coarser calculation of the fiber configurations. Therefore, as a first approximation, we set

doIR to 2 and L/do to 49, which provided a reasonable number of configurations in a

practical amount of simulation time. Also, we set the shear modulus G to 0.3xE assuming

a Poisson's ratio of 0.3 which is typical of an amorphous polymer. Figures 6.2, 6.3 and

6.4 show the results from these simulations. In these figures, the volume fraction of the

fibers in the simulation box is 15%, R is equal to 1 x 10-6 m and the system has been

simulated using 3 different values of E: 104, 106, and 108 N/m2 (while S is kept constant)

respectively. Similar results were obtained for other volume fractions, which are not

shown here.
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Variable Non-dimensional value
N 100

dO/R 2
Lido 49
G/E 0.3

T* 10, 10', 10~

Table 6.1 Representation of a nonwoven system in dimensionless quantities

Figure 6.2 Representation of the nonwoven system with T* = 10

As it can be seen from these figures, by using the MC model and the parameters given in

Table 6.1, we can generate nonwoven mat structures with different fiber structures (i.e.,

flexible or rod-like) and orientations (i.e., random vs. aligned). While Figures 6.2-6.4

represent the type of nonwoven structures that can be generated by using this method,

several other structures can be created by changing the parameters in Table 6.1. Indeed, a

thorough study of the variables is required to help us understand the strength of the

analogy between the MC generated mats and experimentally prepared mats.
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Figure 6.3 Representation of the nonwoven system with T* = 0.1

Figure 6.4 Representation of the nonwoven system with T* = 0.001
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6.3.2 Parametric analysis example: Effect of T* on the fiber orientation of nonwoven

mats

The importance of the several dimensionless parameters (i.e. Lido, Rido and GIE) has

been discussed in the previous section. T* is another dimensionless parameter that

directly affects the acceptance criteria of the MC moves. Therefore, in this section, we

investigate the effect of T* on the fiber orientation of nonwoven mats in order to illustrate

parametric analysis.

To quantify the fiber orientation, we calculate the order parameter tensor from

T= viv - 19,) (6.10)

where vi (i=1, 2 and 3) denote the Cartesian coordinates of unit vector that lies in the

direction of the vector connecting junction i-I to i+1 and the averaging is performed over

all the fibers. Tij matrix can be diagonalized and its eigenvalues are 2/3, -1/34L and -1/3.

"4' is the order parameter and equivalent to the second Legendre polynomial coefficient

P2, which is equal to 1 when the fibers are aligned along a certain direction and equal to 0

when the fibers do not have preferred orientations.

Figure 6.5a shows the effect of T* on the order parameter for different volume fractions

of nonwoven mats. These mats were simulated using the parameters given in Table 6.1.

As it can be seen from this figure, we observe randomly distributed straight, rod-like

fibers when T* > 0.1. For T* < 0.1, the orientation parameter starts to increase, which is

an indication of fiber alignment. The order parameter is close to 1 and the fibers are

aligned along a certain direction for 7* < 0.005. Figure 6.5b is the semi-log plot of Figure

6.5a and was plotted in order to show the effect of volume fraction on the order

parameter more clearly. As it can be seen from Figure 6.5b, the mats with higher fiber

volume concentration start to align at slightly larger T* values.
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Figure 6.5 (a) Order parameter vs. T* for the nonwoven system simulated with parameters
given in Table 6.1. (b) Order parameter vs. log(T*) plot for the same nonwoven system.

6.4 SEM image analysis

6.4.1 Image analysis algorithm

To analyze the scanning electron microscope (SEM) images of the electrospun nonwoven

mats, we employed an algorithm based on the orientation of simple neighborhoods

proposed by Jahne [31]. This algorithm enabled us to quantify fiber orientation

distributions of the experimentally prepared nonwoven mats. The algorithm was

implemented in a Matlab code by Dimitrios Tzeranis from the So Bioinstrumentation Lab

at MIT. In summary, the algorithm calculates a structure tensor, Jpq, which is a first order

representation of a local neighbourhood and can be written as

+00 g (x) ag Vx). W
J" (x)= fW(x- X) a, a, x (6.11)
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where w is a window function that determines the size and shape of the neighborhood

around a point x in which the orientation is averaged and g is the gradient vector that

represents the gray value changes in the image. Analytical solution to equation 6.11 in

two dimensions results in an eigenvalue problem, which can be shown as

Jew =2Ae, (6.12)

An eigenvector e, of the matrix J is thus a vector that is not turned in direction by

multiplication with the matrix J but is only multiplied by a scalar factor, the eigenvalue

,. This implies that the structure tensor becomes diagonal in a coordinate system that is

spanned by the eigenvectors. According to the maximization problem formulated here,

the eigenvector to the maximum eigenvalue gives the orientation of the local

neighborhood. The solution to equation 6.12 yields the orientation angle as

tan 20= 2J2  (6.13)
J22 - J 

(

The algorithm also calculates cohesion, which is given as

c (=2: -L1) 2 (6.14)
Jl +J 2 2

Cohesion is a measure which is used to distinguish between a constant gray area (i.e.

oriented structures but maybe the window size is too small) and an isotropic gray value

structure without preferred orientation. While a cohesion value equal to 1 represents ideal

local orientation, a cohesion value of 0 represents isotropic gray value structure. The

details of this digital image processing algorithm can be found elsewhere [31].
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6.4.2 Orientation distribution from Nylon6(3) nonwoven mats

The algorithm, which is described above, was used to analyze the fiber orientation

distributions from SEM images that are similar to the ones shown in Figures 6.6a, 6.7a,

6.8a and 6.9a. There are two user inputs to this algorithm: The "block size", which sets

the size of the window function and "gamma", which controls the visibility of the image.

Or in other words, gamma is a parameter which adjusts the intensity values in grayscale

image. A block size of 2 pixels was used for SEM images with a magnification of x1000

and 4 pixels was used for SEM images with a magnification of x2000. These values were

chosen such that the cohesion value (which is explained above) is close to 1 which

enabled us to calculate local orientation and indicated that the window size is correct for

the magnification of the image. (i.e. We did not zoom into the image too much to miss

the local orientation). A gamma value (which can range from 0 to 1) of 0.7 was used for

all images since same adjustment for the intensity of the grayscale image was desired.

The fiber orientation histograms (Figures 6.6b, 6.7b, 6.8b and 6.9b) were then calculated

by averaging several SEM images taken from different samples. The electrospun mats

that are shown in these images were electrospun from a solution of 35 wt%

Nylon6(3)t/DMF by Chia-ling Pai from Rutledge group at MIT. In the aligned samples,

the fibers were aligned by collecting the fibers on a rotating drum during electrospinning.

The average diameter of Nylon6(3) nanofibers was measured to be - 0.5x10~6 m [32].

Young's modulus of a single Nylon6(3) nanofiber was measured to be 4 GPa [32]. The

porosity of the these electrospun Nylon6(3) mats were calculated to be -10-12% [32].

As it can be seen from fiber orientation histograms, even though the SEM images do not

show it clearly, the nanofibers are oriented at the desired angles. For the random

Nylon6(3) mats, which is shown is Figure 6.9, even though some alignments seem to be

more probable than the others, this can be an artifact of the larger magnification of the

SEM samples (the magnification for random mat data is x2000 while it's x1000 for

aligned mat data) as well as the insufficient number of SEM samples analyzed. Even

though we used a larger window size to compensate for the larger magnification of this
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set of images, the number of fibers (analyzed for orientation) in images with x2000

magnification was significantly smaller than the number of fibers in images with x1000

magnification. Thus, the statistics was not as good as the x1000 data to demonstrate the

overall randomness of the mats.

8 . . . . . . .
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Figure 6.6 a)SEM image of horizontally aligned Nylon6(3) nanofibers. b) Fiber orientation
histogram of horizontally aligned Nylon6(3) nanofibers, which is calculated by averaging 15
SEM images that are similar to the one in part a.
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Figure 6.7 a)SEM image of Nylon6(3) nanofibers that are aligned 45* to horizontal direction.
b) Fiber orientation histogram of 450 aligned Nylon6(3) nanofibers, which is calculated by
averaging 17 SEM images that are similar to the one in part a.
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Figure 6.8 a)SEM image of vertically aligned Nylon6(3) nanofibers. b) Fiber orientation
histogram of vertically aligned Nylon6(3) nanofibers, which is calculated by averaging 14
SEM images that are similar to the one in part a.
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Figure 6.9 a)SEM image of random Nylon6(3) nanofibers. b) Fiber orientation histogram of
random Nylon6(3) nanofibers, which is calculated by averaging 10 SEM images that are
similar to the one in part a.
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6.4.3 Property match example: Comparison of fiber orientations with experimental

mats

In an effort to demonstrate how the properties of MC generated mats can be matched to

the experimentally prepared mats, in this section, we calculate the fiber orientations of

the MC model generated mats and compare them with the Nylon6(3) electrospun mats.

We generated nonwoven systems with N = 100, do/R = 2, L/do = 49, GIE = 0.3, R =

2.5x 10- m and E = 4x10 9 N/m 2 for several T* values. These parameters were chosen to

match the properties of the Nylon6(3), which are given in the previous section.

Figure 6.10 shows the order parameter as a function of log(T*) at 10% volume fraction of

fibers. Images of the nonwoven mats are also given to show how orientation is changing

as T* is altered. Similar plots can be created for different fiber volume fractions. As it can

be seen from these images and the orientation parameter plot, we observe randomly

dispersed rod-like fibers for 5 T*. For T* 5 the fibers start to align and the fibers are

aligned along one direction for T* 0.05.

In Figure 6.10, the order parameter was calculated from equation 6.10. Since alignment

of the vector connecting junction i-i to i+1 was measured in this calculation, the distance

over which this calculation was made can be estimated as 1 x 10-6 m for a straight fiber

(Figure 6.11a). On the other hand, the fiber orientations for Nylon6(3) mats were

calculated from SEMs which are 256 pixels (-130x 10~6 m) long on one side (Figure

6.11b). As mentioned above, a window size of 2 pixels was chosen as the input

parameter; resulting in a distance of - 1x 10-6 m over which the fiber orientation is

calculated (Figure 6.11 b). Since both of these orientation calculations were carried out on

the same local length scale, we can compare the MC model generated nonwoven mats

with the experimental samples. As we can see from Figure 6.10, we can generate random

rod-like fibers as well as fibers aligned along a certain direction (and other intermediate

structures), just like the Nylon6(3) mats. In this way, MC model is promising in
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generating nonwoven mats whose fiber orientations match with the real electrospun

nonwoven mats.

Figure 6.10 Order parameter vs. log(T*) for MC model generated nonwoven mats with
parameters N= 100, do/R = 2, Ldo = 49, GIE = 0.3, R = 2.5x10-' m and E = 4x109 N/m2
shows that a range of fiber orientations (from completely random to aligned in 1-D) can
be attained.

Local distance over which
order parameter is calculated

256 pixels - 130x10 4 m

Figure 6.11 (a)The distance over which orientation parameter was calculated can be
estimated as 1 x 10-6 m for a straight fiber. (b) A window size of 2 pixels was chosen as
the input parameter in section 6.4.2; resulting in a distance of - 1x10~6 m over which the
fiber orientation is calculated for Nylon6(3) mats.
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6.5 Conclusions

We used direct stochastic Monte Carlo simulations to generate nonwoven mat structures

that consist of nanofibers. In our novel MC model, that the fibers are comprised of

several short cylinders which act like elastic beams. The interactions between different

fibers are represented by a hard cylinder potential (equation 6.4) which prevents

unphysical overlaps. As mentioned above, since we have recently finalized the derivation

of an interfiber interaction potential using molecular scale simulations (Chapter 5), we

have not yet implemented it in the MC model. However, the MC model is set up such

that this kind of interactions can be easily incorporated. These interactions are very

important in determining the mechanical properties of the nonwoven mats since they

control how the load is transferred from one fiber to another. Therefore, implementation

of different types of interfiber interactions (like the ones defined by equations 5.1 and

5.4) would enable a detailed study of the mechanisms by which the nonwoven mats

deform at the nanofiber level.

The MC simulation algorithm is set up such that the acceptance probability of MC moves

depends on both the pseudo energy (S) and fiber properties (E, R). Above S was

presented as an arbitrary parameter but it can actually be associated with the energy put

into the system during processing (from the start of the process when the polymer

solution is charged to the end of the process when the elongated jet is collected in

different forms including random mats and well-aligned fibers). If energy input into the

system (e.g. electrical energy spent to charge the polymer solution, the energy required to

rotate the drum if the liquid jet is being collected on a rotating drum to align the fibers)

for different processing conditions can be calculated, a correlation between S and

processing parameters (such as voltage applied or viscosity of the polymer solution) can

be derived. This would enable a direct relationship between experimental and modeling

parameters. Up to our knowledge, none of the existing nonwoven models are capable of

this.
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Using this model, several nonwoven structures with different fiber orientations, fiber

structures and fiber volume fractions have been successfully generated. An example of

parametric analysis was given in order to show how the model parameters affect the

generated nonwoven structures. The model would greatly benefit from similar parametric

analysis of different dimensionless variables (e.g., L/do, R/do, GIE) in order to explore the

model capabilities and limits.

Finally, fiber orientation distributions from SEM images of electrospun mats were

compared with the fiber orientations of MC generated mats, to illustrate how the model

generated mats can be realistic representations of the experimental samples. In this way,

MC model is promising in generating nonwoven mats whose fiber orientations match

with the real electrospun nonwoven mats.

The work presented in this chapter constructs the basis for future studies of the nonwoven

mat generation and properties. Once the model capabilities and limits are thoroughly

investigated, many relevant and experimentally verifiable properties of the nonwoven

materials can be quantified.
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CHAPTER 7: CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

7.1 Thesis summary

This thesis focused on developing the necessary modeling tools to understand and

describe the structural, thermal and mechanical properties of polymer nanofibers and

interactions between such nanofibers. Another focus of this work was to construct a

framework for a novel simulation technique that incorporates individual nanofiber

properties and inter-fiber interactions, to generate realistic nonwoven structures and to

establish a quantitative connection between nanoscale features and nonwoven properties.

The first focus of this thesis was to study the size-dependent properties of amorphous

polymer nanofibers using molecular simulations. For this, we used molecular dynamics

methods. The fibers consist of chains that mimic the prototypical polymer polyethylene,

with chain lengths ranging between 50 and 300 carbons (C50 to C300). These nanofibers

have diameters in the range 1.9 to 23.0 nm, as determined by GDS method. We analyzed

these nanofibers for signatures of emergent behavior in their structural and thermal

properties as a function of diameter. The mass density at the center of all fibers is

constant and comparable to that of the bulk polymer. The surface layer thickness, which

is defined as the distance over which the mass density of the fiber decreases from 90% to

10% of the corresponding bulk value, ranges from 0.78 to 1.39 nm for all fibers and

increases slightly with fiber size. The interfacial excess energy is calculated to be

0.022±0.002 J/m2 for all of the nanofibers simulated and no size-dependence was found

for this property. The chains at the surface are found to be more confined as compared to

the chains at the center of the nanofiber; the latter acquire unperturbed dimensions in

sufficiently large nanofibers. Consistent with experiments and simulations of amorphous

polymer films of nanoscale thickness, the glass transition temperature of these amorphous

nanofibers are found to decrease with decreasing fiber diameter, and is independent of

molecular weight over the range considered.
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We used the same molecular dynamics techniques to investigate the emergent mechanical

properties of these amorphous, polyethylene nanofibers. We found that the elastic

mechanical properties (i.e., Young's modulus E) are dependent on the fiber diameter at a

given temperature. We reported E for fibers of diameter less than 10 nm can be as much

as 52% lower than that of the corresponding bulk material. This physical phenomenon

was described in terms of a two layer model, which is similar to composite material

model, for which the surface of the fiber has different mechanical properties than the

center of the fiber. We also studied the plastic deformation of the same nanofibers by

straining them up to and beyond their elastic limit. We found that the yield stress can be

as much as 80% lower than that of the same polyethylene simulated in the amorphous

bulk. Our findings also indicate that a small but finite stress exists on the simulated

nanofibers prior to elongation. This was attributed to surface tension and was explained

in terms of the Young-Laplace equation, showing the validity of this continuum-scale

equation for these nanoscale structures.

Our molecular dynamics simulation results enabled us to evaluate properties of polymer

nanofibers at the molecular level as a function of fiber size, and thereby understand the

origin of transition from the regime of bulk-like behavior to that of nanomaterial

behavior. It also allowed us to estimate and predict some properties that are challenging

to measure due to the limitations of experimental capabilities. With these modeling tools

and results in hand, we now know that the structural, thermal and mechanical properties

change as the polymer nanofibers are made smaller. This realization should thus be

considered while designing polymer nanofibers for selected design objectives.

Our second main focus was to investigate the interfiber interactions between polymer

nanofibers. For this purpose, we employed two different techniques; molecular dynamics

simulations similar to the ones explained above and energy minimization, or molecular

statics (MS). We studied the interfiber interactions between prototypical polymeric fibers

of C100 chains that are 4.6 nm in diameter. Our MD simulations showed that fibers

aligned parallel and within 9 nm of one another experience a significant force of

attraction. These fibers tend to coalesce on a very short time scale, even below Tg. In
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contrast, our MS simulations suggest an interfiber interaction that transitions from an

attractive to a repulsive force at a separation distance of 6 nm. The results of either

simulation approach can be used to obtain a quantitative, closed-form relation describing

fiber-fiber interactions. However, the predicted form of interaction is quite different for

the two approaches. MD predicts an eventual coalescence of the nanofibers with a

significant work of adhesion where energy minimization results predict that the

interaction between fibers becomes repulsive for smaller separation distances. This

difference can be understood in terms of differences in molecular mobility within and

between fibers.

The results of our interfiber interaction simulations can be used to interpret experimental

observations for electrospun polymer nanofiber mats. Our findings highlighted the role of

temperature and kinetically accessible timescales in predicting interface-dominated

interactions at polymer fiber surfaces, which is very important not only in determining

the physical and functional properties of polymeric nonwoven mats, but also for the

purposes of polymer surface characterization.

Our third and final focus was to lay the groundwork for developing a novel method in

order to generate nonwoven structures. We employed a stochastic Monte Carlo method in

which the fibers consisted of elastic cylinders. We have demonstrated that the model can

generate nonwoven mats comprised crimpled fibers and rod-like fibers (representing the

different types of materials electrospun into nonwoven mats) and nonwoven mats with

different fiber orientations (representing the different processing conditions during

electrospinning. The MC presented in this thesis constructs the basis for future studies of

the nonwoven mat generation and properties.

Nonwoven mats are of mat lengths of several centimeters and thickness of several

millimeters. These mats comprise polymer fibers of diameters in the nanometer scale and

several centimeters in length. Thus such nonwoven polymer mats are truly multiscale

materials. Our model is capable of incorporating nanoscale features (i.e., individual fiber

properties and interfiber interactions) for the modeling of a macroscale structure. Thus, it
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can be used to relate the fiber characteristics to the performance of nonwoven fabrics

comprised of these materials in key performance applications.

7.2 Suggestions for future research

7.2.1 MD simulations of larger polymer nanofibers (Rfiber> 15 nm)

The molecular dynamics studies of individual nanofibers, which is described in this

thesis, examine the properties of nanofibers of radius Rfiber < 15 nm. However, the

experimental electrospun nonwoven mats usually comprise of nanofibers of Rfiber > 100

nm. Thereby, a natural extension of this thesis is to simulate larger polymer nanofibers.

Currently available force fields are quantitatively accurate, and the methods are soundly

rooted in statistical mechanics. Variations in polymer structure on the scale of 1-10 nm

(comparable to intermolecular interaction distances) can be efficiently simulated, and

both bulk and interfacial structure and properties can be determined in a consistent

manner. However, current computer speeds are practically limited to studies of 0(5000

atoms) and 0(10 ns) for molecular dynamics on a single CPU, which generates a

nanofiber Rfiber = 3.1. nm. For larger fibers, additional techniques are required, such as

massively parallel computation and coarse-grained modeling.

We have used both of these techniques in order to create larger nanofibers. The largest

system we have simulated consisted of 150,000 C atoms and generated a nanofiber Rfiber

= 11.5 nm. This simulation required 3 months of real time to simulate this system for 10

ns running LAMMPS in parallel on 18 2.33 GHz processors. Figure 7.1 shows a plot of

Rfiber (calculated using GDS [1] at 495 K) vs. total number of atoms N in the simulation

system. From this figure, it can be seen that, when the total number of atoms in the

system is doubled, the new fiber radius is R2N = 1.26x RN. To generate a fiber with radius

Rfiber = 100 nm, a total system size of N = 19,200,000 is required. Recently a

montmorillonite clay system that consisted of ten million atoms was successfully

simulated using LAMMPS on 1024 processors [2]. Thus, if the computational resources
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are available, nanofibers of 100 nm : Rfiber can be generated using the similar molecular

dynamics that are used in this thesis.

o '-
0.0 5.0x10 4  1.0x10 5  1.5x10 5

N

Figure 7.1 Rfiber (calculated from GDS for
atoms in the simulation system.

simulations at 495K) vs. total number of C

Another approach might be to employ the wavelet-based coarse graining procedure

(Wavelet Accelerated Monte Carlo, WAMC), which was developed by the Rutledge

group. This method employs successive wavelet transformations to represent the polymer

chain on increasingly coarse length scales, ranging from atomistic detail to Gaussian-like

coils [3]. Using this method, the total computational time can be orders of magnitude less

than the equivalent atomistic simulation.

7.2.2 Studying nanoconfined crystallization using MD simulations of crystalline

polymer nanofibers

This thesis focused on the properties of amorphous polymer nanofibers. Although it is

true that there are some amorphous polymers (i.e., polystyrene, Nylon6(3)) that are

electrospun into nanofibers and electrospun mats, several other crystalline polymers (i.e.,
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PEO, PCL, PLLA) are also used in electrospinning. The crystallization of a polymer and

the extent to which this occurs depends on many factors including confinement. For ex.

the effect of nanoconfinement upon the crystallization behavior of PCL has been

investigated by Zhang et al. and low percentage of crystallinity was found for

nanoconfined PCL relative to that for PCL homopolymer [4]. Molecular simulation

methods can also be used to study nanoconfined crystallization and they have the

advantage of studying free-standing systems of the polymer, which eliminates the effect

of interaction between the polymer and the confining walls. Then the inherent influence

of the confinement to a nanoscale environment will be solely responsible for any

differences in the crystallization of the confined polymer and the same polymer in its

unconfined melt. Nanofiber simulations are a good candidate for such systems. One study

investigated the crystallization of a confined, short polyethylene chain n-tetracone,

quenched from the melt by a dynamics Monte Carlo method on high coordination lattice

[5]. It was found that crystallization produces a single crystalline domain, in which the

chains are oriented parallel to the fiber axis, in contrast with the multiple, differently

oriented crystalline domains that are usually produced in the similar quench of a free-

standing thin film. Similar simulations can be used to investigate nanoconfined

crystallinity using the MD techniques described in this thesis. Previous molecular

dynamics studies, using the same force field that is used in this thesis [6-8], successfully

captured the crystallization of polyethylene. The technique used in these studies can be

used to analyze confined crystallization of different polymers in nanofibers and compare

it with the bulk polymer crystallization.

7.2.3 Interfiber interactions for different fiber sizes and orientations

The inter-fiber interaction studied in this thesis represents the interaction between parallel

polymeric fibers of C100 chains that are 4.6 nm in diameter. One extension to this study

would be to study this interaction for different polymer fiber diameters to investigate if

the fiber size has an effect on this interaction. Another interesting extension to this study

would be to investigate the effect of orientation on the inter-fiber interaction. The

orientation of one fiber with respect to the other change the effective interaction area
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between the fibers. While parallel configuration (when fibers are placed on top of each

other in a parallel fashion), which is studied in this thesis, represents the largest

interaction area, the perpendicular alignment (when fibers are placed on top of each other

in a perpendicular fashion) represents the smallest interaction area between the fibers.

Wu et al. showed that the adhesive force and the area of contact decrease rapidly with the

increase of the angle between two filaments [9]. Orthogonal filaments were found to have

the minimum adhesive force and the minimum area of contact zone.

Molecular dynamics simulations that are used in this thesis can be used to study both the

effect of fiber diameter and orientation on the inter-fiber interactions. Simulating larger

nanofibers would require large computational resources, as explained in Section 7.2.1.

7.2.4 Measurement of interfiber interactions by experiments

One of the challenges in the macroscopic modeling of nonwoven materials is the accurate

representation of the fiber-fiber contact interactions. Several models have been

developed, each based on various assumptions of fiber-fiber interactions, without

confirmation by direct experimental measurements or finer-scale simulations. Direct

experimental measurements of fiber-fiber interactions are very challenging, particularly

for polymeric fibers of sub-micrometer diameter, due to the difficulty of isolating and

handling fiber-fiber couples and the uncertainties involved in measuring forces and

energies at this scale. However, advances in experimental techniques will allow

measurement of such small forces and energies and eventually will enable us to compare

our results with these measurements. For ex. direct measurement of single gecko foot-

hair was reported by using a 2-D micro-electro-mechanical systems force sensor and a

wire force gauge [10]. The dual-axis atomic force microscopy (AFM) cantilever with

independent piezoresistive sensors used in this study was previously developed by Chui

et al. [11] for simultaneous detection of vertical and lateral forces. This cantilever can

perform microfriction measurements as well as obtain simultaneous vertical-force and

lateral-force AFM images [11]. With the advancement of experimental techniques that
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would enable handling of fiber couples and measurement of interaction forces between

these fibers, the effect of inter-fiber interactions on the nonwoven mats can be studied.

7.2.5 Improvements to the MC model and characterization of mat properties

While the MC model described in this thesis is a promising method to generate

nonwoven mats and to investigate nonwoven mat properties, several open questions need

to be answered to understand the capabilities and the limits of the model.

As briefly mentioned at the end of Chapter 6, the interfiber interaction potentials derived

in Chapter 5 have not yet been implemented in the model. These interactions are very

important in determining the mechanical properties of the nonwoven mats since they

control how the load is transferred from one fiber to another. Once they're implemented,

the effect of different type of potentials on the mechanical properties of the nonwoven

mats can be analyzed. The results of such a study can help us understand and possibly

explain the deformation mechanisms of nonwoven mats at the fiber level, which is not

possible with the current experimental techniques.

Another interesting study would be to perform a systematic parametric analysis of the

important dimensionless variables of the model, to determine the most critical variables

and how they affect the results, which would help us understand the model in more detail.

Once the model is thoroughly studied, many characteristics of the nonwoven mats can be

quantified in detail for several properties including pore size and shape distributions;

tortuosity and pore interconnectivity; resistance to vapor transport; effective surface area

of fabric for different sized reagents; surface roughness and effective liquid-solid contact

angle and mechanical response of the mesh under different loading conditions. These

characteristics, and their dependence on fiber size and method of fabrication, are crucial

to understanding and designing better filtration media, permselective membranes for

personal protection garments against chemical and biological warfare agents, durability

of the fabric to thermal cycling and mechanical loading.
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For example pore size and shape distributions can be quantified by making use of

algorithms that are used to calculate free volume in molecular simulations [12, 13]. Misra

et al. [12] determined the free volume in polybutadiene by hard spherical probes that see

the atoms as hard spheres of radii which equal 89% of their van der Waals radii. The total

free volume, the free volume distribution, and the shape of the voids were analyzed. In't

Veld et al. [13] developed an algorithm that is based on energetic rather than geometric

considerations, and used it to determine the cavity size distribution in liquids. It is

applicable to any liquid structure, including polymers, and is readily extended to fiber

nonwovens. Tomadakis et al. [14] applied a Brownian diffusion random-walk simulation

technique to obtain the pore size distribution and its moments in random and ordered

array of fibers. Brownian diffusion random walk method can also be used to calculate the

properties of the nonwoven networks. The mechanical properties of the nonwovens (i.e.

Young's modulus) and effects of inter-fiber interaction, fiber size and fiber orientation on

these mechanical properties can also be investigated. These results can be compared with

the experimental mechanical properties which can be easily determined with today's

experimental capabilities.

7.2.5.1 Preliminary results for mechanical characterization of the nonwoven mats

In order to demonstrate how the mechanical characterization of the nonwoven mats can

be achieved, we have calculated the Young's modulus of the nonwoven mats that have

been generated with the system parameters (N = 100, doIR = 2, L/do = 49, GIE = 0.3, R =

2.5x 107 m and E = 4x109 N/m 2) as explained in more detail in Section 6.4.3. In these

simulations, Young's modulus of the single nanofibers as well as the average radius of

the nanofibers were matched with the electrospun Nylon6(3) mats. While the random

mats were created with T* = 10, the aligned mats were created with T* = 0.05. Once the

mats were generated, the uniaxial deformation was imposed by displacing the fiber

junctions affinely to a predetermined strain. While this was done along a random

direction for the random mats, the mats that composed of oriented fibers were strained

either parallel to the aligned fiber direction or perpendicular to the aligned fiber direction
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in order to investigate the differences between the two. After the mats were deformed, the

minimum energy of the system was calculated by using a conjugate gradient energy

minimization algorithm. The stress at a given strain was calculated from

1 aE
07i = (7.1)

VO a 1lTek 1

for the nonwoven structures at the end of energy minimization simulation. The stress vs.

strain plot for uniaxially stretched random mats is given in Figure 7.2. Similarly, the

stress vs. strain plots for the uniaxially stretched oriented nonwoven mats are given in

Figures 7.3 (deformed parallel to the aligned fiber direction) and 7.4 (deformed

perpendicular to the aligned fiber direction). Uniaxial testing results of the corresponding

Nylon6(3) electrospun mats were also given in the same figures in order to compare the

stress-strain behavior of MC model generated mats and experimentally produced

nonwoven mats.

As it can be seen from these figures, the MC model generated mats capture the linear

elastic deformation behavior of the Nylon6(3) mats effectively. The Young's modulus

values, which are calculated from the slope of the stress-strain curves from both data (i.e.,

MC generated mats and Nylon6(3) mats) are summarized in Table 7.1 and compare well

with each other. However, the stress increases with increasing strain after the linear

elastic region for the MC generated mats while the stress exhibits a turn and levels off

(which can be a signature of yielding of the material) in case of the Nylon6(3) mats. This

can be due to many reasons including the fact that the fibers continue to deform

elastically even at large strains (in case of the MC generated mats) since the elastic beam

theory was chosen to represent the deformation behavior of the individual segments that

make up these fibers. It can also be due to the assumption of the interfiber potential (since

the load is transferred from one fiber to another through this interaction) or the number of

fiber-fiber contacts. A thorough investigation of the MC model (including studying the

effect of each dimensionless parameter and different interfiber interactions) is required to
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answer several questions that arise as a result of mechanical characterization of these

mats.

0

0.00 0.02 0.04 0.06 0.08 0.10
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Figure 7.2 Stress-strain response
generated random mats.
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of random Nylon6(3) nonwoven mats compared with MC

0.02 0.04 0.06 0.08

Engineering strain

Figure 7.3 Stress-strain response of Nylon6(3) nonwoven mats comprised of oriented fibers
compared with MC generated mats. Unixial deformation was applied parallel to the aligned
fiber direction.
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Figure 7.4 Stress-strain response of Nylon6(3) nonwoven mats comprised of oriented
fibers compared with MC generated mats. Unixial deformation was applied perpendicular
to the aligned fiber direction.

Mat Random Parallel Perpendicular
Nylon6(3) (MPa) 20.5±3.8 129.3±6.4 20.5±3.8
MC generated (MPa) 19.2 104 21.2

Table 7.1 The Young's modulus values, which are calculated from the slope of the stress-
strain curves of MC generated mats and Nylon6(3) mats.
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APPENDIX A: DERIVATION OF Tg LAYER MODEL FOR DIFFERENT

SHAPES

If we consider an ellipsoid with semi-major axes of length a, b and c, of which the

outermost layer having thickness E(T) is considered to be "surface" material with a glass

transition temperature Tg =Tg,suf, and the remaining core material exhibits a glass

transition Tg =Tg,bulk, then a simple volume-averaged Tg can be calculated as:

=T (ab+ac+bc){T,) (a+b+c)((T,) + ( ( (Al)
abc abc abc

For a thin film, a = h1 and b = c -4 oo resulting in the thin film equation:

=T -7 (l ) (Tg bulk -Tsu i) (A2)
/u 2

For a cylinder, a=b=R and c -- oo, so we obtain the nanofiber result:

2f(T ) {T)
T T ulk [2 R suf) (A3)

where the factor of 2 in the linear term is due to the two-fold symmetry of the cylindrical

cross-section.

For a sphere, a=b=c=R, so we obtain:

3f(T) (T) 2 {{T)
T=T - * 3 + g (T-,bulk 7,su) (A4)

R R R

where the factor of 3 in the linear and quadratic terms is due to the three-fold symmetry

of the sphere.

140


