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Abstract

We develop a multiscale simulation method for dense granular drainage,
based on the recently proposed spot model, where the particle packing flows
by local collective displacements in response to diffusing “spots” of interstitial
free volume. By comparing with discrete-element method (DEM) simulations
of 55,000 spheres in a rectangular silo, we show that the spot simulation is
able to approximately capture many features of drainage, such as packing
statistics, particle mixing, and flow profiles. The spot simulation runs two
to three orders of magnitude faster than DEM, making it an appropriate
method for real-time control or optimization. We demonstrate extensions for
modeling particle heaping and avalanching at the free surface, and for simu-
lating the boundary layers of slower flow near walls. We show that the spot
simulations are robust and flexible, by demonstrating that they can be used
in both event-driven and fixed timestep approaches, and showing that the
elastic relaxation step used in the model can be applied much less frequently
and still create good results.
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1. Introduction

Particle-based simulation of slow, dense granular flow is needed in many
engineering applications, but presents a difficult computational challenge.
One simulation approach is the discrete-element method (DEM) [1], whereby
individual particles are integrated according to Newton’s laws with a contact
force model, but simulating realistic three-dimensional flows still requires
days to weeks on a parallel computer. While this method is useful in-depth
analysis, it is impractical in certain situations, such as for process control,
where it may be advantageous to estimate features of a flow in real-time, or
for optimization, where a large number of varying configurations may need
to be considered.

In this paper, we develop a multiscale simulation technique that can be
used to rapidly simulate many features of dense granular drainage. The
model is simple and easy to implement, and can approximate both micro-
scopic and macroscopic flow features, using two to three orders of magnitude
less computational power than DEM. A key strength of the simulation is its
ability to model granular mixing, for which relatively few descriptions are
available. In some industrial hopper flows, where several granular materials
of different compositions are draining through a single hopper, it may be
important to estimate in real-time how much mixing is taking place. One
example of where this occurs is the pebble-bed nuclear reactor concept [2, 3],
that features a reactor core comprised of spherical fuel pebbles of diameter
∼ 6 cm that are slowly cycled. Some designs, such as the MIT Modular
Pebble-Bed Reactor (MPBR) [4], feature an additional type of reflecting
moderator pebbles, and the amount of moderator/fuel pebble mixing has
direct implications on reactor power output and fuel burnup [5, 6]. Mixing
in this geometry has been investigated using DEM [7], but even simulating a
single cycle of this large-scale, three-dimensional geometry took several weeks
of time on a parallel computer.

The physics of mixing in slow, dense granular flow is significantly dif-
ferent from traditional models of diffusion of gases and liquids. In these
slow, dense flows, particles move quasi-statically and experience long-lasting
contacts with their neighbors. Kinetic stresses (based upon the variance of
particle velocities) are small in comparison to the static stresses (based upon
the particle contact forces). Mixing in this regime been investigated experi-
mentally by Choi et al. [8] using 3 cm glass beads in a thin rectangular silo.
These experiments pointed to a rate-independence for granular diffusion: if
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the total drainage rate was changed, then the amount of mixing over the
course of the run would remain the same, thus being controlled by the total
deformation, as opposed to time. It was also observed that the total amount
of particle mixing in these experiments was very small, on a scale of two to
three orders of magnitude less than the system size. Particles have persis-
tent cages of neighbors, with a single particle keeping more than 90% of its
neighbors even after a large amount of flow.

A number of lattice-based models have been proposed for approximately
simulating granular drainage. Perhaps the simplest is the void model [9, 10,
11] where particles lie on a hexagonal lattice, and move in response to voids
of empty space that are introduced at the orifice that propagate upwards
through the material according to a random walk. Taking the continuum
limit of this model shows that the mean vertical velocity vz follows a diffusion
equation of the form ∂zvz = b∂xxvz. The kinematic model [12, 13] derives
this same equation purely from continuum considerations, and it leads to
Gaussian velocity profiles and a parabolic region of flow, which is in reason-
able agreement with experimental measurements [14, 15, 16]. More recently,
similar ideas have been employed in cellular automata models [17, 18, 19].
However, all of these models have a fundamental problem when estimating
mixing, that whenever a particle moves from one lattice site to another, it
necessarily loses contact with many of its neighbors, violating the slow cage-
breaking seen in experiment. Indeed, a continuum analysis of diffusion in
the void model shows that the length scale associated with particle diffusion
would exactly match the length scale of the flow width b [20].

Motivated by these observations, Bazant proposed the spot model for
random packing dynamics [21, 22]. In this approach, particles are held off-
lattice, and motion is mediated by “spots”, which represent a region of free
interstitial space spread across several particle diameters, as shown by the
blue circle in Fig. 1(a). When the spot moves according to the blue arrow, it
induces a small, correlated motion of all particles within range in the oppo-
site direction. This model is simple enough for mathematical analysis [21],
and predicts the correct magnitude for particle diffusion: since spots cause
particles to move co-operatively with their neighbors, cage-breaking occurs
much less frequently. However, simulations based on Fig. 1(a) do not en-
force packing constraints, which, over time, result in unphysical packings.
In order to preserve valid packings, a second step was proposed, whereby a
small elastic relaxation is applied, during which the particles and their near-
est neighbors experience a soft-core repulsion with each other, as shown in
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(a) (b) (c)

Figure 1: The mechanism for structural rearrangement in the spot model. The random
displacement of a diffusing spot of free volume (dashed circle) causes affected particles
to move as a block by an amount (a), followed by a relaxation under soft-core repulsion
forces(b); the net co-operative motion combining these two steps (c). (Particle displace-
ments are exaggerated for clarity.) Figure from Ref. [22].

Fig. 1(b). This is done on a purely geometrical basis, and no mechanical
quantities such as contact forces, energy, or momentum are considered. The
net effect, as shown in Fig. 1(c), is then a co-operative local deformation,
whose mean is roughly the original block motion.

This model formed the basis of a multiscale simulation technique that
was demonstrated by Rycroft et al. [22] to reproduce granular drainage. A
DEM drainage simulation in a rectangular silo was carried out, and a sys-
tematic procedure was then derived to fit several free parameters in the spot
simulation, based upon physical measurements from DEM (such as velocity
correlation measurements, particle diffusion, and total flow). A spot sim-
ulation was then run by introducing spots at the orifice, and having them
propagate upwards according to a random walk. The spot simulation re-
produced many features of the granular packing, including mean velocity
profiles, particle diffusion, and velocity correlations. In addition, the sim-
ulation recreated statistical signatures of the particle packings, such as the
radial distribution function g(r) and the bond angle distribution function
g3(θ).

In order to simulate the flow of a given initial packing using the spot
model, all that remains is to specify the statistical dynamics of spots. Al-
though the microscopic deformation of the particle packing is determined
entirely by geometrical constraints, the mesoscale dynamics of spots reflects
overall mechanical response, specific to the material. One such theoretical
framework has recently been developed by Kamrin and Bazant [23], based
on the hypothesis of a “stochastic flow rule” (SFR) for limit-state plasticity,
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where spots perform random walks along slip lines biased by local stress im-
balances upon fluidization (localized yielding). In the case of Mohr–Coulomb
(MC) plasticity for two-dimensional granular material at incipient yield, they
derive a simple theory of spot drift, by assuming that fluidization leads to
a localized change in the friction coefficient from the static value to a lower
dynamic value, which disrupts mechanical equilibrium; the resulting force on
particles affected by the spot causes them to move in a collective fashion,
thereby propelling the spot in the opposite direction.

The MC/SFR theory provides a possible mechanical basis for the spot
model, which can be implemented in (at least) two ways: (i) The continuum
limit can be taken to obtain a drift-diffusion (Fokker–Planck) equation for
the spot density, which closes the model by connecting stresses to the mean
velocity field and particle diffusion [23], or (ii) the spot drift vector field
obtained from the stresses can be used in discrete spot-based multiscale sim-
ulations [24]. These approaches provide an appealing, unified description of
some previously distinct granular flows, notably silo drainage under gravity
and shear flow in a Couette cell with a moving, rough inner cylinder [23, 24].
In the case of the continuum model, these flows are accurately predicted by
introducing only one new parameter, the spot size (or velocity correlation
length), which is obtained from explicit measurements and not adjusted to
fit velocity profiles. A recent analysis of continuum variables in a wide va-
riety of DEM simulations, however, casts doubt on the validity of certain
hypotheses in the SFR theory [25] and points toward some more complicated
phenomena that may eventually need to be incorporated into the theory.

Regardless of the general mechanical basis, it is clear that the random-
walk based spot algorithm provides a very efficient means of approximately
simulating a wide variety of hopper drainage problems. The aim of Rycroft’s
study [22] was to validate the spot microscopic mechanism as a model for
flowing random packings. In this paper, we focus instead on developing
aspects of the model that would be useful in a practical context. We introduce
the simulation method in Sec. 2, and then demonstrate extensions that can
be used to model free surface behavior (Sec. 3) and boundary layer behavior
(Sec. 4). We also demonstrate that the spot-based simulations are robust
and flexible, showing that they can be used in both event-driven and fixed
timestep approaches, and demonstrating that the elastic relaxation step can
be applied much less frequently and while still creating very good results
(Sec. 5).
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2. Simulation overview

The simulations in this paper are carried out using monodisperse spheres
of mass m and diameter d in a thin three-dimensional rectangular container,
that makes use of the same geometry as in Ref. [22]. The container is con-
structed with walls at x = ±25d, y = ±4d, and z = 0. Gravity g acts in the
negative z direction, which defines a natural time unit τ =

√
d/g.

As a baseline for comparison, a DEM simulation was first carried out
in this geometry, making use of the LAMMPS software package developed
at Sandia National Laboratories [26]. In this simulation, particles interact
according to the Cundall–Strack contact model [27] for cohesionless partic-
ulates that makes use of Hertzian, history-dependent contact forces. If a
particle and its neighbor are separated by ~r, and they are in compression, so
that δ = d − |~r| > 0, then they experience a force ~F = ~Fn + ~Ft, where the
normal and tangential components are given by

~Fn =
√
δ/d

(
knδ~n−

γn~vn
2

)
(1)

~Ft =
√
δ/d

(
−kt∆~st −

γt~vt
2

)
(2)

Here, ~n = ~r/|~r|, and ~vn and ~vt are the normal and tangential components
of the relative surface velocity. ∆~st is the elastic tangential displacement
between spheres, obtained by integrating tangential relative velocities during
elastic deformation for the lifetime of the contact. If |~Ft| > µ|~Fn|, so that a

local Coulomb yield criterion is exceeded, then ~Ft is rescaled so that it has
magnitude µ|~Fn| and ∆~st is modified so that equation 2 is upheld. Particle–
wall interactions are handled with the same model, although the friction
coefficient µw is set independently. The contact model is integrated using
the Velocity Verlet scheme with timestep ∆t, and the parameters used in the
simulation are given in Table 1(a). The normal spring constant we use is four
to five orders of magnitude smaller than what would be realistic for typical
hard materials such as sand or glass, but is chosen this way for computational
efficiency, since a significantly higher spring constant would need a much
smaller timestep to be modeled effectively. It has been shown that the value
of kn we employ is a reasonable compromise, capturing the dynamics of the
hard particles without too many detrimental elastic effects. For more detailed
information, see Refs. [28, 29, 22].
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An initial packing was created by pouring in 55,000 particles from z =
160d and allowing them to come to rest, filling the container up to z = 110d.
A drainage simulation was then carried out by opening a circular orifice of
diameter 8d in the center of the container base, with snapshots of all particle
positions being recorded at fixed intervals of 2τ . To effectively model hard
particles, the normal spring interaction in these simulations is very stiff,
requiring small timesteps to run, and thus the computations were carried
out in parallel on 24 processors, taking three days to simulate the complete
drainage of the packing. The DEM simulations have been shown to be in very
good agreement with experimental data [30] for a wide variety of microscopic
and macroscopic measurements.

The spot simulation was implemented in C++, with the main routine
being written as part of a class that represents the entire simulation domain.
For efficiency, the class divides the simulation up into a rectangular subgrid of
regions, and keeps a separate list of position vectors of particles within each
region. When particles are added to the container, they are sorted into the
correct region. Two key routines are used to implement the spot microscopic
mechanism. The first, spot(~p,~v, rs) applies the spot motion, by displacing all
particles within a distance rs of ~p by an amount ~v.

The second, relax(~p, re) applies the elastic relaxation procedure to all par-
ticles within a distance re of ~p. Suppose that the positions of particles within
re of ~p are labeled ~x1, ~x2, . . . , ~xm and that all remaining particles are labeled
~xm+1, ~xm+2, . . . , ~xn. For two particles i and j, the amount of overlap is de-
fined to be as δij = min{d− |~xi− ~xj|, 0}. If ~̂nij is the normal vector pointing
from ~xj to ~xi, then the relaxation displacement experienced by a particle i
is given by

∆~xi =
1

2

m∑
j=1, j 6=i

αδij~̂nij +
n∑

j=m+1

αδij~̂nij. (3)

Once all particles have been considered, these displacements are applied si-
multaneously. For this paper, we make use of α = 0.8, but previous studies
have shown that the physical results are largely insensitive to the parame-
ter [22]. Typically, the particle displacements caused by a single spot oper-
ation are on the order of 10−3d or less. Hence only a very small relaxation
displacement is needed and the details of its operation are relatively unim-
portant. Also, throughout this paper, we carry out the relaxations within a
radius re = rs + d. After a spot event, the majority of the particle overlaps
caused by a spot will be at the interface between the displaced particles and
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(a)

Parameter Value
Normal elastic constant kn 2× 105mg/d
Tangential elastic constant kt 2kn/7
Normal viscoelastic constant γn 50τ−1

Tangential viscoelastic constant γt 50τ−1

Integration timestep ∆t 10−4τ
Friction coefficient µ 0.5
Wall friction coefficient µw 0.5

(b)

Parameter Value Fitting method
Spot diffusion length, b 2.28d The width of the DEM flow profile

Spot/particle displacement ratio, w 399
A single particle diffusion measurement
in the top center of the container

Spot radius, rs 2.60d
Fitting a length scale to the
DEM spatial velocity correlation function

Spot insertion rate, λ 375τ−1 Overall DEM flow rate
Spot move rate, µ 28.0τ−1 Density drop during flow

Table 1: (a) The parameters used in the DEM simulation. (b) The five parameters used
in the spot model simulations that were fitted from DEM simulation. All values are taken
from Ref. [22].

those not displaced. A displaced particle could potentially touch a particle
up to one diameter away, so making use of the above value of re will account
for these interactions. Since the spot and relax operations are both local, they
can be carried out very efficiently, by only testing the regions of the container
which they overlap. The operations take care of cases when particles move
from one region into another.

To carry out the spot simulation of the granular drainage process, an
initial packing of particles is copied from the DEM simulation. The drainage
process is then implemented as an event-driven simulation, whereby individ-
ual spots are introduced and moved according to exponential waiting time
distributions with parameters λ and µ respectively. Spots initially start at
the orifice at ~s = ~0. When a spot at position ~s moves, its displacement ~v is
randomly chosen from one of the four vectors in V = {(±∆x,±∆y,∆z)}. If
a spot’s displacement would cause it to come within a buffer distance dw of
a wall, then ~v is truncated so that its position after the displacement would
lie exactly dw from the wall. The spot’s position is updated to ~s + ~v, and
the microscopic mechanism is applied at the midpoint of this step, by calling
spot(~s + ~v/2,−~v/w, rs) and then relax(~s + ~v/2, re). When a spot reaches a
height zmax above the top of the packing, it is removed from consideration.

8



This simulation approach is detailed in the following algorithm, where the
current position vectors of spots is held in a list S that is initially set to
empty:

t = 0, S = {}
while t < tfinal do
t→ t− log(rand())/(λ+ |S|µ)
if rand() < λ/(λ+ |S|µ) then

choose ~s from S
if sz < zmax then

choose ~v from V
truncate ~v if within dp of a wall
spot(~s+ ~v/2,−~v/w, rs)
relax(~s+ ~v/2, re)
~s→ ~s+ ~v

else
delete ~s from S

end if
else

add ~0 to S
end if

end while

In the same manner as the DEM simulation, snapshots of the particles are
saved at intervals of 2τ . The parameters {∆x,∆y,∆z, w, rs, λ, µ} control
the speed and characteristics of the flow, and in general, appropriate val-
ues can be determined from DEM simulation or experimental data, that can
be carried out once and then used in many simulations. Ref. [22] describes
a systematic process for fitting these parameters from the DEM simulation
based upon physical considerations. In the current paper, we do not con-
centrate on the fitting process, and make use of the same parameters from
the previous study that are summarized in Table 1(b). The five parameters
listed here control five independent degrees of freedom governing the main
physical characteristics of the bulk flow. In addition, we make use of dw = 1d
from Ref. [22], although this only affects particle motion near the walls. The
vertical step size ∆z determines how accurately the diffusing spots are mod-
eled, but does not strongly affect the results. Here, we choose ∆z = 0.1d;
smaller steps have been investigated, but increase the total simulation time
with little change in the physical results. Once the vertical step size is cho-
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sen, the horizontal displacements must be set to ∆x = ∆y = 0.676d so that
the spot diffusion rate b satisfies the relationship 2b∆z = ∆x2 = ∆y2.

Since the spot simulation is based on geometry alone and does not have
to accurately model individual particle contacts, it runs much faster than
DEM: draining the entire packing takes approximately eight hours to run as
a serial code on a Mac Pro system with a 2.67 GHz dual-core Intel Xeon
processor. The elastic relaxation process is the most time-intensive part of
the simulation, with a typical relax call taking 115 µs, which is about sixteen
times slower than a spot call, that takes 7.15 µs to run.

Figure 2 shows snapshots of the DEM and spot simulations at t = 60τ .
Despite the two simulations being very different in running times, the overall
agreement is very high, with the colored bands of particles deforming simi-
larly. It should be borne in mind that the total flow rate and overall width
of the spot simulation were fitted from DEM, but the shape of the velocity
profile, and the individual particle mixing and rearrangement are reproduced
well. Although not discussed here, a quantitative study of these two simu-
lations showed good matches for velocity profiles, particle diffusion, spatial
velocity correlation functions, radial distribution functions, and bond angle
distribution functions [22].

Since spots can be thought of as carrying negative volume, it is interest-
ing to examine the local changes in packing fraction that occur during the
simulation. Figures 3(a) and 3(b) show plots of the local packing fraction in
the DEM and spot simulations respectively, computed using the Voronoi cell
software library Voro++ [31]. Initially the packing fraction is approximately
64% but during flow this decreases to below 60%. The snapshots at t = 20τ
show that the front of lower densities propagates at a similar speed in the
two simulations. However, in DEM the areas of largest density drop are lo-
cated at the sides, in regions of highest shear, whereas in the spot model,
the areas of highest density drop are located the center, in regions of highest
spot density and velocity. However, it is interesting to observe that at later
times when the flow is developed, the regions of lower packing fraction are
similar between spot and DEM simulations.

2.1. Fixed timestepping

Since the spot model microscopic mechanism is local, it offers the possibil-
ity of being coded efficiently in parallel, by carrying out many spot motions
in different parts of the container simultaneously. Several possible algorithms
have been implemented [20] that display modest parallel efficiency. However,
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(a) (b)

Figure 2: Snapshots of the (a) DEM simulation and (b) event-driven spot simulations at
t = 60τ . The central slice of the packing is shown, by only plotting those particles with
y > 0. The two colors of particles are physically identical and initially form layers of
thickness 10d, and are used to highlight the flow and particle mixing that takes place.
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the main hurdle to these algorithms is to correctly implement the event-
driven nature of the spot motion: there are cases when a single spot may
move several times in quick succession, or where several spots may overlap
with each other, in which case the motions must be applied serially and the
parallel efficiency is diminished. Similarly, if the simulation is divided into
separate regions, each of which is controlled by a different processor that
handles spots and particles in that area, there are difficulties with correctly
synchronizing the time.

Because of these difficulties, we therefore investigated whether the event
driven spot motion could be replaced with a fixed timestep, where all spots
move after an interval ∆t. To match the event-driven simulation, this timestep
was chosen to be the mean time between spot move events, 1/λ, and the
number of spots introduced at the orifice at each timestep followed a Poisson
distribution with parameter µ/λ. In this approach there is some freedom
in what order the spot motions are applied, and we considered two differ-
ent methods: (a) applied in a random ordering at each timestep, and (b)
ordered according to the time they were inserted, applying the newest spots
first. The ordering of the spots could potentially have a small effect on the
particle motion. Method (a) is similar to the event-driven procedure where
the spot motions occur randomly. Method (b) could potentially result in
slightly different behavior, since by applying the newer, lower spots first,
there is slightly more free space available for the particles above to move
into. Simulations with both of these methods yield almost identical results
to the event-driven approach, and snapshots of the flow are indistinguishable.
Figure 3(c) shows Voronoi plots of the packing fraction in a fixed timestep
simulation using method (b). The front of lower density at t = 20τ is almost
identical to the event-driven case, and the behavior at later times is very
similar.

We therefore think it is reasonable to conclude that both event-driven
and fixed timestepping approaches can be used in spot simulations. With a
fixed timestepping approach, it becomes feasible to write a fully distributed
parallel spot algorithm, where all spot and motions are taken care of locally,
and a master node is not required to keep track of the clock. We leave this
as a subject for future work, but expect that very high parallel efficiency
could be achieved. Our results also suggest that the precise ordering of spot
motions does not play a significant role. For a multicore spot algorithm, this
suggests that there may be some leeway in reordering spot motions while still
achieving similar results, allowing for further boosts in speed.
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Figure 3: Plots of local packing fraction at two different times, for (a) the DEM simulation,
(b) the event-driven spot simulation, and (c) the fixed timestep spot simulation. At each
point, the local packing fraction is computed by finding all particles within a distance of
2.2d of that point, and then dividing the total particle volume by the total volume of their
Voronoi cells. (For packing fractions in the range 0%–50% near the orifice, the color is
smoothly graded from white to red.)
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3. Modeling the free surface

The simulations presented previously concentrated only on the particle
flow in the bulk, and as such, the free surface of the packing was omitted from
investigation and not shown. However, many situations arise where modeling
the free surface would be essential, and in this section, we show that it is
possible to modify the spot random walk process using methods that preserve
all of the flow properties in the bulk, but also give a realistic description of
the top of the packing. The free surfaces of granular materials have been
extensively studied [32, 33, 34], and it is well-known that the inclination of
the surface of a granular pile will not exceed a critical angle, referred to as
the angle of repose. In granular drainage, an initially flat surface will become
progressively more inclined towards the angle of repose as drainage occurs.
As shown in the DEM snapshot in figure 4(a), the yellow and cyan particles
near the top surface avalanche towards the center during flow. The unbiased
random walk process described in the previous section will not capture this
behavior, as the free surface will follow the mean velocity streamlines in the
bulk.

In the void model, the evolution of the free surface has been addressed by
making use of a very simple modification of the random walk process [11]. In
the bulk of the packing, when a void generally has two particles in the lattice
points above it, the void moves to each of these sites with equal probability.
However, in the case when only one of these two sites is filled with a particle,
the void always moves in the direction of the particle. A void is only removed
from the simulation when both of the sites above it are vacant. This simple
modification suffices to create heaps and avalanching at the free surface, as
when a void reaches a heap, it travels diagonally upwards along the heap
surface. The angle of repose in this model is tied to the spacing of the
underlying lattice.

This, in effect, creates a simple biasing of the random walk: there are
two locations it can move to, and it chooses randomly among the available
options. This concept can be adapted to the spot model. Suppose a spot
can move to N different locations, and it would influence pi particles if it
moved to location i. Let q =

∑N
i=1 pi. If q = 0, remove the spot from the

simulation. Otherwise, let

P(Spot moves to i) =
pi
q
. (4)

In the bulk, where the density of the packing is almost constant, this does
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not alter the random walk process by a large amount, but at the surface, the
motion of the spots is biased to create heaps. A snapshot of a spot drainage
simulation using this procedure is shown in figure 4(b), that qualitatively
captures the particle avalanching seen in DEM. However, the free surface
angle is too large, and furthermore it can be seen that particles near the top
surface have become separated. This can be seen more clearly in figures 5(a)
& 5(b), which show close-up images of the the central slice of the packing.
Here, each particle is colored according to the packing fraction computed
from its Voronoi cell, revealing a large drop in density in the spot model.
This occurs because there is no explicit gravity in the spot model, so par-
ticles which become separated during elastic relaxation events will remain
separated.

A further modification to the spot model can be employed to correct
for this. In the previous implementation, when a spot moves by ~rs, then
the particles experience a displacement −w~rp, where w is a fixed quantity.
Suppose that a spot is going to influence p particles, each of volume Vp. If
spots are thought of as carrying a completely fixed amount of free volume
Vs, then another possible approach would be to let w = Vs/pVp, so the
spot’s influence is divided equally among the particles in range. In the bulk,
where the particles are roughly at constant density, this modification has
little effect. However, at the free surface, where p is lower, the spots give a
larger downwards push, stopping the particles from separating.

The preceding argument about spots carrying a completely fixed amount
of volume is only directly applicable in the bulk of the packing, and must
be modified slightly at the orifice and at the free surface. For a spot in the
neighborhood of the orifice, at a height zs < rs, we compute the modified
influence V ′s (zs) by multiplying Vs by the proportion of the spot that is above
z > 0. A volume integration gives

V ′s (zs) =

(
1

2
+

3zs
4rs
− z3

s

4r3
s

)
Vs. (5)

At the free surface, as spots exit the packing, the number of particles within
range of a given spot may be very small, and hence those particles may expe-
rience a very large displacement due to the 1/p dependence in the influence.
An additional constraint was therefore implemented: if p < 20, then the spot
displacement was calculated based on p = 20. Physically, this modification
could be thought of as spots partially evaporating when they get close to
the top of the packing, so that their influence is weakened. A snapshot of a
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(a) (b) (c) (d)

Figure 4: Snapshots of (a) DEM simulation, (b) a spot simulation using a random walk
with simple biasing, (c) a spot simulation using simple biasing and influence weighting,
and (d) a spot simulation using adapted biasing (with β = 3) and influence weighting.
The snapshots are taken at t = 300τ .

simulation using this prescription is shown in figure 4(c), and appears very
promising. The free surface correctly forms heaps, and the Voronoi computa-
tion of packing fraction in figure 5(c) shows that particles no longer become
separated at the free surface.

The specific implementation of the random walk biasing procedure given
in Eq. 4 is arbitrary, and could be replaced by a different scheme. One
possibility is the nonlinear power-law weighting,

P(Spot moves to i) =
pβi∑N
i=1 p

β
i

, (6)

where β is a parameter that can be used to control the amount of biasing.
For β > 1 the bias is more strongly weighted toward high particle densities
(above the mean), while for β < 1 the bias is reduced compared to linear
weighting. Figure 4(d) shows a snapshot of a simulation using β = 3, in
addition to the spot influence weighting, and figure 5(d) shows a close-up of
the free surface, with very good agreement to DEM. Values of up to β = 10
were tested, and result in progressively shallower free surface slopes.

To track the time evolution of the free surface in these simulations, a
simple regression procedure was used to extract the surface angle. We define
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(a) (b)

(c) (d)

Figure 5: Close-up snapshots of the free surface of the particle packings for the same
simulations in figure 4, for the region 50d < z < 90d. Each particle is colored according to
its local packing fraction, computed as the ratio of its volume to its Voronoi cell volume.
The central slice of the packing is shown by only plotting particles with y > 0. The same
color scheme is used as for figure 3.
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Figure 6: Time evolution of the angle of the free surface, calculated using linear regression,
of the four simulations shown in figure 4.

xj = (2.5j − 1.25)d for j = 1, 2, . . . , 10. For a given particle snapshot, the
values zj are computed as the maximum particle z coordinate in the range
||x| − xj| < 1.25d. The angle of the slope can then be computed by applying
linear regression on set of (xj, zj) points. Figure 6 shows the a plot of this
angle for the four simulations considered. The weighted spot simulation with
β = 3 is in good agreement with the DEM simulation, and can track a gradual
increase in the slope angle during flow.

4. Boundary layers

In transport phenomena, a boundary layer is a region near a surface where
the continuum variables very rapidly in the normal direction on a length
scale much smaller than the global flow domain. The proper mathematical
treatment of boundary layers is based on the method of matched asymptotic
expansions, when the governing equations contain a small singular pertur-
bation parameter which can often be expressed as a typical boundary layer
thickness divided by a geometrical length. In fluid mechanics, boundary lay-
ers generally arise due to the no-slip boundary condition, causing viscous
stresses to be important close to the surface, while often less important in
the bulk (at high Reynolds number). In granular materials, the continuum
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description is less clear, and combines liquid-like and solid-like behavior, but
the appearance of boundary layers is possible whenever wall interactions re-
tard the flow (e.g. by roughness or friction), compared to the bulk flow, if
the bulk material has relatively short-range correlations.

In the test geometry considered here, the best place to examine this be-
havior is in the y direction, across the 8d width of the packing. Figure 7(a)
shows the velocity profile in this direction in the central region of flow, for
DEM simulations with five different values of wall friction, µw. For µw = 0.1
the flow is almost constant across the width of the packing, but as µw is
increased, regions of slower flow next to the wall become apparent.

In the spot simulations, the downwards velocity profile is given approxi-
mately by the convolution of the spherical spot influence with the width over
which the spots move. (Additional motion from particle relaxation could also
play a role, although it can be expected that this is a less important effect.)
Near the container walls, the velocities will therefore begin to smoothly de-
crease, and the size of this slower-moving region will be determined by the
wall buffer distance dw, that controls how close the spot centers can come
to the wall. Figure 7(b) confirms this by showing the same cross sections
for spot simulations with the default value of dw = d, and three other values
of dw. For dw = 0.5d the width of the spot simulation boundary layer is
in reasonable agreement with those in DEM for high wall friction values, al-
though the very rapid drop in velocities close to the wall is not well captured.
In order to reproduce the low wall friction case where no boundary layer is
present, the best match is achieved with dw = −1.5d, so that the centers of
spots are allowed to move outside of the container walls.

Allowing the spot centers to move outside the walls is valid, since these
spots still create valid collective motions of the particles near the wall. How-
ever, it introduces an additional complication: in determining the original
spot model parameters, the insertion rate λ is set by balancing the DEM
particle outflow rate with amount of displacement an individual spot causes.
If a fraction of the total number of spots are allowed to significantly drift
out of the container then they influence fewer particles and the total particle
outflow rate is significantly lowered. For the simulation with dw = −1.5d,
the total particle outflow rate is 106.8τ−1 over the time interval used in
Fig. 7, whereas the outflow rate for the DEM simulation used in the original
parameter fitting was 131.1τ−1.

The spot influence weighting procedure discussed in the previous section,
where the particle displacements caused by a spot are scaled by the number
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Figure 7: Normalized vertical velocity profiles across the width of the container, in the test
region x < 10d, 50d < z < 70d, over the time window 80τ < t < 180τ , for (a) five different
DEM simulations with different values of wall friction µw, and (b) five different spot
simulations with different values of dp, plus the reflection procedure. For each simulation,
the velocities are normalized by the average velocity v̄z in the test region, so that ṽz(y) =
vz(y)/v̄z.
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of particles influenced, provides one method of circumventing this issue, as
each spot will always have equal influence. Another possible approach is
to set dw = 0, and then reflect the part of the spot’s influence that lies
outside the container back into the packing. More specifically, if a spot is
at ~s = (sx, sy, sz) with sy > 0, and there is a wall at y = 0, then the
displacement on a particle at ~x is scaled according to

S(~x) =


0 if |~x− ~s| ≥ rs
1 if |~x− ~s| < rs and |~x− (sx,−sy, sz)| ≥ rs
2 if |~x− ~s| < rs and |~x− (sx,−sy, sz)| < rs.

(7)

This procedure means that the total spot influence is uniform across the
entire width of the packing. For spots near edges between two walls, the
reflection procedure is applied for both walls. As shown in Fig. 7(b), the
vertical velocity profile is roughly uniform using this procedure, without the
large drop in particle flux seen in the dw = −1.5d simulation.

With the ability to approximate boundary layers of slower flow, it is
possible to gain good estimates of particle residence-time distributions during
a drainage process. In previous work, it has been shown that a continuum
analysis of the kinematic model can be useful in predicting the tails of a
the residence time distribution [7], even without any careful treatment of
the flow near the boundaries. In the spot simulation, where the bulk flow is
similar to the kinematic model, and the boundary layers of slower flow can
be approximated, it will be possible to predict residence-time distributions
to a higher degree of accuracy.

5. Infrequent relaxation

One of the most surprising aspects of the spot simulation is that addition
of the relaxation step, shown in figure 1(b), is enough to completely enforce
packing constraints. While the displacements introduced by the relaxation
step are based upon geometry alone with no details of the contact physics,
and typically are the order of 20% of the spot displacement, the radial dis-
tribution function g(r) was exactly zero over the range 0 < r < 1d for the
entirety of the simulation, corresponding to no overlapped particles. Further-
more, over a medium time interval, the spot model simulation was accurate
enough to track minuscule changes in g(r) and the bond angle distribution
function g3(θ) that were seen in DEM. This success can be largely attributed
to the fact that the particle displacement induced by a single spot motion
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is extremely small, on the order of a hundredth of a particle diameter, so
after each motion, only an extremely small motion is required to fix packing
constraints.

As discussed in section 2, even when efficiently implemented, the elastic
relaxation step is the most time-consuming part of the simulation, requiring a
consideration of all neighboring pairs of particles, and can take approximately
sixteen times as long as a spot motion. Here, we ask whether it is possible
to apply relaxation less often and still recreate valid particle packings, as a
potential method of speeding up the code even further. While this will result
in a loss of accuracy, it may be appropriate for some situations, where we do
not require perfect random packings, but would still like the particles not to
suffer from large local buildups in density.

A series of simulations was carried out whereby the amount of relaxation
applied was reduced by a factor of k. For a given reduction factor, three
different methods were implemented:

1. A local relaxation is applied after each step with probability 1/k, for
k = 10, 100, 1000.

2. Each spot keeps an individual counter of the number of times it has
moved, and a local relaxation is applied after every kth motion, for
k = 10.

3. After a time ∆t = k/µ, when spots have each moved k times on average,
a global relaxation is applied, for k = 1, 10, 100.

It is not clear a priori whether methods 1 & 2 with local relaxations, or
method 3 with global relaxations, would be more efficient in maintaining
the quality of the packing. By applying local relaxations infrequently, the
possibility may arise that some particles will not be part of any relaxation
event for a long period of time, but with periodic global relaxations, one is
assured that all particles will be considered equally often. However, the local
relaxation procedures have the advantage that the amount of relaxation in
a particular region is proportional to the number of spot motions in that
region. A summary of the simulations considered and their running times is
given in Tab. 2.

Figure 8 shows a selection of simulation snapshots during the flow, at
t = 120τ . For the original simulation with full relaxation (a), the snapshot
looks very similar to DEM, with no visible evidence of overlapped particles.
This is in contrast to the simulation, with no relaxation shown in (d), where
the absence of any relaxation causes significant particle overlaps as the flow

22



Relaxation method Relaxation ratio k trelax (s) B
Full relaxation 1 22446.4 0.00110
No relaxation – 0 0.501
Method 1 10 2359.23 0.00798
Method 1 100 244.4 0.0286
Method 1 1000 23.8 0.0871
Method 2 10 1629.81 0.00792
Method 3 1 261.1 0.0183
Method 3 10 28.0 0.0631
Method 3 100 2.8 0.171
DEM – – 0.00365

Table 2: Summary of the simulation runs considered making use of infrequent inelastic
relaxations. trelax refers to the total time spent in the relaxation routines. Also given is
an overall packing badness B, computed over 40τ < t < 160τ .

takes place. In figures (b) and (c), the same snapshots are shown using
method 1 relaxation for k = 100 and k = 1000 respectively. Despite the
relaxation steps being applied much less frequently, the particle packings
appear to be in very good agreement with the original case, and very little
evidence of significantly overlapped particles can be seen.

To investigate this quantitatively, the radial distribution function g(r)
was computed in the central region of flow, C = {−15d < x < 15d, 15d <
z < 45d} over all snapshots in the time interval 40τ < t < 200τ . This is done
by first computing the frequency distribution N(r) of neighbor separations
r = |~x− ~y| for all particle pairs (~x, ~y) subject to the restriction that ~x ∈ C.
After this, N̄(r) is calculated as the theoretical frequency distribution for a
homogeneous arrangement of particles at the same average density ρ as the
test packing. In three dimensions this would simply be N̄(r) = 4πr2ρ by
integrating over a spherical shell. However, here the packings are confined
over an 8d range in the y direction, so that some of the spherical shells are
not complete. By carrying out a surface integration, it can be shown that

N̄(r) =

{
4πρr2(1− r

16d
) r ≤ 8d

16πρdr 8d < r ≤ 10d.
(8)

We do not consider this for r > 10d, since the spherical shells centered within
the test region C would then be affected by the side walls also, and the inte-
gration would become significantly more complicated. The radial distribution
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(a) (b) (c) (d)

Figure 8: Snapshots at t = 120τ for (a) the original simulation, (b) the method 1 simulation
with k = 100, (c) the method 1 simulation with k = 1000, and (d) the simulation with no
relaxation. The region −15d < x < 15d, 0 < z < 40d is shown, and only particles with
y > 0 are plotted, to view the central slice of the particle packings.

function is then calculated as g(r) = N(r)/N̄(r), so that it represents the
deviations in the neighbor separations from a completely homogeneous pack-
ing. Figure 9 shows the computed curves for all of the spot simulations listed
in Tab. 2. For the simulation with full relaxation, there are no significantly
overlapped particles: g(r) is identically zero over the range 0 < r < 0.9925d.
The curve also has significant peaks at r =

√
3d, 2d, due to local particle

ordering, a behavior which closely matches the corresponding DEM simula-
tion. The radial distribution functions for the simulations with infrequent
relaxation are difficult to distinguish from the full relaxation case, and the
differences only become clear when looking at a zoomed-in region, as shown in
Fig. 10(a). In this plot, we can see that the the runs with less relaxation give
progressively smoother curves. Figure 10(b) shows a semi-logarithmic plot
of g(r) for small separations to highlight the amount of overlapped particles.
For the infrequently relaxed simulations, there are some overlaps, although
even with very little relaxation the tails in g(r) do not significantly extend
beyond 0.8d to 0.9d. All the curves with some relaxation are significantly
more realistic than the case with no relaxation, which has a large number of
separations less than 1d, and has an almost uniform distribution, as would
be expected for randomly placed points in a domain.

To directly compare the results of each simulation, an overall packing
badness B is computed for each, based on the amount that particles are
overlapped. If a given particle i has ni overlapping contacts, and the over-
lap amounts are specified by δij for j = 1, . . . , ni, the packing badness is
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computed as

B =
1

p

p∑
i=1

ni∑
j=1

δ2
ij

d2
. (9)

Here we consider all particles in the same region as the g(r) distributions,
using the same time interval. The results are shown in Tab. 2 and figure 11.
For the three different infrequent relaxations considered, there is a roughly
one-to-one relationship between the total simulation time spent on relax-
ation and the packing badness, suggesting that the precise details of how the
relaxation is applied have little overall effect on the packing structure.

These results suggest that infrequent relaxation is a promising method
of speeding up a spot simulation. As discussed in section 2, a typical local
relaxation step takes about sixteen times as long as a spot motion. Thus
a simulation will run an order of magnitude faster if relaxation is applied
only a tenth of the time, and at this level, the computed packing badnesses
are very small, and roughly comparable to DEM, where particles necessarily
overlap to create forces. Reducing the relaxation by a factor of a hundred or a
thousand still results in reasonable packings, although there is less practical
justification for using these, since at that level the total simulation time
becomes dominated by the spot motions.

6. Conclusion

In this paper, we have demonstrated a simple multiscale simulation tech-
nique that is capable of modeling many features of granular drainage at a
fraction of the computational cost of DEM. The spot model microscopic
mechanism provides a reasonable description of particle flow and rearrange-
ment in the bulk, and in addition, we have shown that simple modifications
to the simulations can be used to model free surfaces and boundary layers.
We believe that the spot model may have applications in a large number of
practical problems where features of granular drainage must be estimated
in real time. We envisage that the free parameters in the model could be
initially estimated, either from DEM simulation or from experimental data,
and then used as a basis for many spot simulations.

We have also demonstrated that the basic concept of breaking down a flow
into mesoscopic group displacements is robust, and that the physical results
do not depend strongly on the precise implementation. Both event-driven
and fixed timestep simulations yield largely similar results. One of the most

27



0.001

0.01

0.1

1 10 100 1000 10000 100000

P
ac

k
in

g
b
ad

n
es

s
B

Relaxation time trelax (s)

Full relaxation
Method 1
Method 2
Method 3

Figure 11: Logarithmic plot of the packing badness B versus the total time spent on relax-
ation in the simulation trelax, for the simulation with full relaxation, and the simulations
with the three different types of infrequent relaxation.

surprising conclusions of the simulations by Rycroft et al. [22] was that the
simple elastic relaxation step was good enough to preserve random packings,
with no significantly overlapped particles, and here we have shown that even
if relaxation is applied very infrequently, the random packings can still be
reasonably accurate. These results bode well for designing future spot-based
algorithms, as they point to a great deal of flexibility in the implementation.
Since the spot simulations are much quicker than DEM, and handle particle
interactions purely based on geometry as opposed to a detailed consideration
of contact dynamics, they offer the possibility of simulating problems that
would be otherwise infeasible with DEM. It would be possible to simulate
several orders of magnitude more particles than can currently be considered
with DEM. Since particle dynamics in the spot model is based on geometric
considerations, it is straightforward to generalize to polydisperse systems or
irregular particles. The particle relaxation displacements given in Eq. 3 can
be generalized to polydisperse particles by weighting according to the relative
particle masses. Using this, it may be possible to understand the role of
geometric packing constraints on effects such as segregation. For elongated
or irregular particles, a more complex relaxation step would be needed, that
also induces rotations on the particles, allowing for the study of effects such
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as texturing under shear.
The largest limitation of the simulations presented here is that the tech-

nique only applies to granular drainage problems where the kinematic model,
with diffusing vertical velocity profiles, is a good approximation. However,
the basic concept of breaking down a flow in a mesoscopic group displace-
ments appears to be generally applicable, and related work [23, 25] suggests
that it may be possible to link this mechanism of particle motion with a me-
chanical theory of granular flow, to create a complete model. The microscopic
particle mechanism may be a useful technique in studying other systems fea-
turing dense amorphous arrangements of particles, where co-operative parti-
cle motion [35] is a frequently observed feature.

7. Nomenclature

b spot diffusion length (L)

d particle diameter (L)

µ particle–particle Coulomb friction coefficient

µw particle–wall Coulomb friction coefficient

τ simulation time unit (T)

g gravitational acceleration (L/T2)

rs spot radius (L)

re relaxation radius (L)

δij particle overlap (L)

λ spot insertion rate (T)

µ spot move rate (T)

dw spot wall buffer distance (L)

∆x,∆y,∆z spot random walk step sizes (L)

w spot displacement ratio

k relaxation factor
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g(r) radial distribution function

B packing badness

trelax simulation time for relaxation (T)
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