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Abstract

We present a novel Bayesian topic model for
learning discourse-level document structure.
Our model leverages insights from discourse
theory to constrain latent topic assignments in
a way that reflects the underlying organiza-
tion of document topics. We propose aglobal
model in which both topic selection and order-
ing are biased to be similar across a collection
of related documents. We show that this space
of orderings can be elegantly represented us-
ing a distribution over permutations called the
generalized Mallows model. Our structure-
aware approach substantially outperforms al-
ternative approaches for cross-document com-
parison and single-document segmentation.1

1 Introduction

In this paper, we introduce a novel latent topic model
for the unsupervised learning of document structure.
Traditional topic models assume that topics are ran-
domly spread throughout a document, or that the
succession of topics in a document is Markovian.
In contrast, our approach takes advantage of two
important discourse-level properties of text in de-
termining topic assignments: first, that each docu-
ment follows a progression of nonrecurring coher-
ent topics (Halliday and Hasan, 1976); and sec-
ond, that documents from the same domain tend
to present similar topics, in similar orders (Wray,
2002). We show that a topic model incorporat-
ing these long-range dependencies outperforms al-

1Code, data, and annotations used in this work are available
at http://groups.csail.mit.edu/rbg/code/mallows/

ternative approaches for segmentation and cross-
document comparison.

For example, consider a collection of encyclope-
dia articles about cities. The first constraint captures
the notion that a single topic, such as Architecture,
is expressed in a contiguous block within the docu-
ment, rather than spread over disconnected sections.
The second constraint reflects our intuition that all
of these related articles will generally mention some
major topics associated with cities, such as History
and Culture, and will often exhibit similar topic or-
derings, such as placing History before Culture.

We present a Bayesian latent topic model over re-
lated documents that encodes these discourse con-
straints by positing a single distribution over a doc-
ument’sentire topic structure. This global view on
ordering is able to elegantly encode discourse-level
properties that would be difficult to represent using
local dependencies, such as those induced by hid-
den Markov models. Our model enforces that the
same topic does not appear in disconnected portions
of the topic sequence. Furthermore, our approach
biases toward selecting sequences with similar topic
ordering, by modeling a distribution over the space
of topic permutations.

Learning this ordering distribution is a key tech-
nical challenge in our proposed approach. For this
purpose, we employ thegeneralized Mallows model,
a permutation distribution that concentrates proba-
bility mass on a small set of similar permutations.
It directly captures the intuition of the second con-
straint, and uses a small parameter set to control how
likely individual topics are to be reordered.

We evaluate our model on two challenging



document-level tasks. In thealignmenttask, we aim
to discover paragraphs across different documents
that share the same topic. We also consider theseg-
mentationtask, where the goal is to partition each
document into a sequence of topically coherent seg-
ments. We find that our structure modeling approach
substantially outperforms state-of-the-art baselines
for both tasks. Furthermore, we demonstrate the im-
portance of explicitly modeling a distribution over
topic permutations; our model yields significantly
better results than variants that either use a fixed or-
dering, or are order-agnostic.

2 Related Work

Topic and Content Models Our work is grounded
in topic modeling approaches, which posit that la-
tent state variables control the generation of words.
In earlier topic modeling work such aslatent Dirich-
let allocation(LDA) (Blei et al., 2003; Griffiths and
Steyvers, 2004), documents are treated as bags of
words, where each word receives a separate topic
assignment; the topic assignments are auxiliary vari-
ables to the main task of language modeling.

More recent work has attempted to adapt the con-
cepts of topic modeling to more sophisticated repre-
sentations than a bag of words; they use these rep-
resentations to impose stronger constraints on topic
assignments (Griffiths et al., 2005; Wallach, 2006;
Purver et al., 2006; Gruber et al., 2007). These
approaches, however, generally model Markovian
topic or state transitions, which only capture lo-
cal dependencies between adjacent words or blocks
within a document. For instance, content mod-
els (Barzilay and Lee, 2004; Elsner et al., 2007)
are implemented as HMMs, where the states cor-
respond to topics of domain-specific information,
and transitions reflect pairwise ordering prefer-
ences. Even approaches that break text into con-
tiguous chunks (Titov and McDonald, 2008) as-
sign topics based on local context. While these
locally constrained models can implicitly reflect
some discourse-level constraints, they cannot cap-
ture long-range dependencies without an explosion
of the parameter space. In contrast, our model cap-
tures the entire sequence of topics using a compact
representation. As a result, we can explicitly and
tractably model global discourse-level constraints.

Modeling Ordering Constraints Sentence order-
ing has been extensively studied in the context of
probabilistic text modeling for summarization and
generation (Barzilay et al., 2002; Lapata, 2003;
Karamanis et al., 2004). The emphasis of that body
of work is on learning ordering constraints from
data, with the goal of reordering new text from the
same domain. Our emphasis, however, is on ap-
plications where ordering is already observed, and
how that ordering can improve text analysis. From
the methodological side, that body of prior work is
largely driven by local pairwise constraints, while
we aim to encode global constraints.

3 Problem Formulation

Our document structure learning problem can be for-
malized as follows. We are given a corpus ofD
related documents. Each document expresses some
subset of a common set ofK topics. We assign a
single topic to each paragraph,2 incorporating the
notion that paragraphs are internally topically con-
sistent (Halliday and Hasan, 1976). To capture the
discourse constraint on topic progression described
in Section 1, we require that topic assignments be
contiguous within each document.3 Furthermore,
we assume that the underlying topic sequences ex-
hibit similarity across documents. Our goal is to re-
cover atopic assignmentfor each paragraph in the
corpus, subject to these constraints.

Our formulation shares some similarity with the
standard LDA setup, in that a common set of topics
is assigned across a collection of documents. How-
ever, in LDA each word’s topic assignment is con-
ditionally independent, following the bag of words
view of documents. In contrast, our constraints on
how topics are assigned let us connect word distri-
butional patterns to document-level topic structure.

4 Model

We propose a generative Bayesian model that ex-
plains how a corpus ofD documents, given as se-
quences of paragraphs, can be produced from a set
of hidden topic variables. Topic assignments to each

2Note that our analysis applies equally to other levels of tex-
tual granularity, such as sentences.

3That is, if paragraphsi andj are assigned the same topic,
every paragraph between them must have that topic.



paragraph, ranging from 1 toK, are the model’s
final output, implicitly grouping topically similar
paragraphs. At a high level, the process first selects
the bag of topics to be expressed in the document,
and how they are ordered; these topics then deter-
mine the selection of words for each paragraph.

For each documentdwithNd paragraphs, we sep-
arately generate abag of topicstd and atopic order-
ing πd. The unordered bag of topics, which contains
Nd elements, expresses how many paragraphs of the
document are assigned to each of theK topics. Note
that some topics may not appear at all. Variabletd

is constructed by takingNd samples from a distri-
bution over topicsτ , a multinomial representing the
probability of each topic being expressed. Sharing
τ between documents captures the intuition that cer-
tain topics are more likely across the entire corpus.

The topic ordering variableπd is a permutation
over the numbers 1 throughK that defines the order
in which topics appear in the document. We drawπd
from thegeneralized Mallows model, a distribution
over permutations that we explain in Section 4.1. As
we will see, this particular distribution biases the
permutation selection to be close to a single cen-
troid, reflecting the discourse constraint of prefer-
ring similar topic structures across documents.

Together, a document’s bag of topicstd and or-
dering πd determine the topic assignmentzd,p for
each of its paragraphs. For example, in a corpus
with K = 4, a seven-paragraph documentd with
td = {1, 1, 1, 1, 2, 4, 4} andπd = (2 4 3 1) would
induce the topic sequencezd = (2 4 4 1 1 1 1). The
induced topic sequencezd can never assign the same
topic to two unconnected portions of a document,
thus satisfying the constraint of topic contiguity.

As with LDA, we assume that each topick is as-
sociated with a language modelθk. The words of a
paragraph assigned to topick are then drawn from
that topic’s language modelθk.

Before turning to a more formal discussion of the
generative process, we first provide background on
the permutation model for topic ordering.

4.1 The Generalized Mallows Model

A central challenge of the approach we take is mod-
eling the distribution over possible topic permuta-
tions. For this purpose we use the generalized Mal-
lows model (GMM) (Fligner and Verducci, 1986;

Lebanon and Lafferty, 2002; Meilă et al., 2007),
which exhibits two appealing properties in the con-
text of this task. First, the model concentrates proba-
bility mass on some “canonical” ordering and small
perturbations of that ordering. This characteris-
tic matches our constraint that documents from the
same domain exhibit structural similarity. Second,
its parameter set scales linearly with the permuta-
tion length, making it sufficiently constrained and
tractable for inference. In general, this distribution
could potentially be applied to other NLP applica-
tions where ordering is important.

Permutation Representation Typically, permuta-
tions are represented directly as an ordered sequence
of elements. The GMM utilizes an alternative rep-
resentation defined as a vector(v1, . . . , vK−1) of in-
version countswith respect to the identity permuta-
tion (1, . . . ,K). Termvj counts the number of times
a value greater thanj appears beforej in the permu-
tation.4 For instance, given the standard-form per-
mutation(3 1 5 2 4), v2 = 2 because 3 and 5 appear
before 2; the entire inversion count vector would be
(1 2 0 1). Every vector of inversion counts uniquely
identifies a single permutation.

The Distribution The GMM assigns proba-
bility mass according to the distance of a
given permutation from the identity permutation
{1, . . . ,K}, based onK − 1 real-valued parameters
(ρ1, . . . ρK−1).5 Using the inversion count represen-
tation of a permutation, the GMM’s probability mass
function is expressed as an independent product of
probabilities for eachvj :

GMM(v | ρ) =
e−

P

j ρjvj

ψ(ρ)

=

n−1
∏

j=1

e−ρjvj

ψj(ρj)
, (1)

whereψj(ρj) is a normalization factor with value:

ψj(ρj) =
1 − e−(K−j+1)ρj

1 − e−ρj
.

4The sum of a vector of inversion counts is simply that per-
mutation’s Kendall’sτ distance to the identity permutation.

5In our work we take the identity permutation to be the fixed
centroid, which is a parameter in the full GMM. As we explain
later, our model is not hampered by this apparent restriction.



Due to the exponential form of the distribution, re-
quiring thatρj > 0 constrains the GMM to assign
highest probability mass to eachvj being zero, cor-
responding to the identity permutation. A higher
value forρj assigns more probability mass tovj be-
ing close to zero, biasingj to have fewer inversions.

The GMM elegantly captures our earlier require-
ment for a probability distribution that concentrates
mass around a global ordering, and uses few param-
eters to do so. Because the topic numbers in our
task are completely symmetric and not linked to any
extrinsic observations, fixing the identity permuta-
tion to be that global ordering does not sacrifice any
representational power. Another major benefit of
the GMM is its membership in the exponential fam-
ily of distributions; this means that it is particularly
amenable to a Bayesian representation, as it admits
a natural conjugate prior:

GMM0(ρj | vj,0, ν0) ∝ e(−ρjvj,0−logψj(ρj))ν0 . (2)

Intuitively, this prior states that overν0 prior trials,
the total number of inversions wasν0vj,0. This dis-
tribution can be easily updated with the observedvj
to derive a posterior distribution.6

4.2 Formal Generative Process

We now fully specify the details of our model. We
observe a corpus ofD documents, each an ordered
sequence of paragraphs, and a specification of a
number of topicsK. Each paragraph is represented
as a bag of words. The model induces a set of hid-
den variables that probabilistically explain how the
words of the corpus were produced. Our final de-
sired output is the distributions over the paragraphs’
hidden topic assignment variables. In the following,
variables subscripted with 0 are fixed prior hyperpa-
rameters.

1. For each topick, draw a language modelθk ∼
Dirichlet(θ0). As with LDA, these are topic-
specific word distributions.

2. Draw a topic distributionτ ∼ Dirichlet(τ0),
which expresses how likely each topic is to ap-
pear regardless of position.

6Because eachvj has a different range, it is inconvenient
to set the prior hyperparametersvj,0 directly. In our work, we
instead fix the mode of the prior distribution to a valueρ0, which
works out to settingvj,0 =

1
exp(ρ0)−1

−

K−j+1
exp((K−j+1)ρ0)−1

.

3. Draw the topic ordering distribution parame-
tersρj ∼ GMM0(ρ0, ν0) for j = 1 to K − 1.
These parameters control how rapidly probabil-
ity mass decays for having more inversions for
each topic. A separateρj for every topic allows
us to learn that some topics are more likely to
be reordered than others.

4. For each documentd with Nd paragraphs:

(a) Draw a bag of topicstd by samplingNd

times from Multinomial(τ).

(b) Draw a topic orderingπd by sampling a
vector of inversion countsvd ∼ GMM(ρ).

(c) Compute the vector of topic assignments
zd for documentd’s paragraphs, by sorting
td according toπd.7

(d) For each paragraphp in documentd:
i. Sample each wordwd,p,j according to

the language model ofp: wd,p,j ∼
Multinomial(θzd,p

).

5 Inference

The variables that we aim to infer are the topic as-
signmentsz of each paragraph, which are deter-
mined by the bag of topicst and orderingπ for each
document. Thus, our goal is to estimate the marginal
distributions oft andπ given the document text.

We accomplish this inference task through Gibbs
sampling (Bishop, 2006). A Gibbs sampler builds
a Markov chain over the hidden variable state space
whose stationary distribution is the actual posterior
of the joint distribution. Each new sample is drawn
from the distribution of a single variable conditioned
on previous samples of the other variables. We can
“collapse” the sampler by integrating over some of
the hidden variables in the model, in effect reducing
the state space of the Markov chain. Collapsed sam-
pling has been previously demonstrated to be effec-
tive for LDA and its variants (Griffiths and Steyvers,
2004; Porteous et al., 2008; Titov and McDonald,
2008). Our sampler integrates over all but three sets

7Multiple permutations can contribute to the probability ofa
single document’s topic assignmentszd, if there are topics that
do not appear intd. As a result, our current formulation is bi-
ased toward assignments with fewer topics per document. In
practice, we do not find this to negatively impact model perfor-
mance.



of hidden variables: bags of topicst, orderingsπ,
and permutation inversion parametersρ. After a
burn-in period, we treat the last samples oft and
π as a draw from the true posterior.

Document Probability As a preliminary step,
consider how to calculate the probability of a single
document’s wordswd given the document’s para-
graph topic assignmentszd, and other documents
and their topic assignments. Note that this proba-
bility is decomposable into a product of probabil-
ities over individual paragraphs, where paragraphs
with different topics have conditionally independent
word probabilities. Letw

−d and z
−d indicate the

words and topic assignments to documents other
thand, andW be the vocabulary size. The proba-
bility of the words ind is then:

P (wd | z,w−d, θ0)

=

K
∏

k=1

∫

θk

P (wd | zd, θk)P (θk | z,w−d, θ0)dθk

=
K
∏

k=1

DCM({wd,i : zd,i = k}

| {w
−d,i : z

−d,i = k}, θ0), (3)

where DCM(·) refers to theDirichlet compound
multinomial distribution, the result of integrat-
ing over multinomial parameters with a Dirichlet
prior (Bernardo and Smith, 2000). For a Dirichlet
prior with parametersα = (α1, . . . , αW ), the DCM
assigns the following probability to a series of ob-
servationsx = {x1, . . . , xn}:

DCM(x | α) =
Γ(

∑

j αj)
∏

j Γ(αj)

W
∏

i=1

Γ(N(x, i) + αi)

Γ(|x| +
∑

j αj)
,

whereN(x, i) refers to the number of times word
i appears inx. Here,Γ(·) is the Gamma function,
a generalization of the factorial for real numbers.
Some algebra shows that the DCM’s posterior prob-
ability density function conditioned on a series of
observationsy = {y1, . . . , yn} can be computed by
updating eachαi with counts of how often wordi
appears iny:

DCM(x | y, α)

= DCM(x | α1 +N(y, 1), . . . , αW +N(y,W )).
(4)

Equation 3 and 4 will be used again to compute the
conditional distributions of the hidden variables.

We now turn to a discussion of how each individ-
ual random variable is resampled.

Bag of Topics First we consider how to resample
td,i, the ith topic draw for documentd conditioned
on all other parameters being fixed (note this isnot
the topic of theith paragraph, as we reorder topics
usingπd):

P (td,i = t | . . .)

∝ P (td,i = t | t
−(d,i), τ0)P (wd | td, πd,w−d, z−d, θ0)

∝
N(t

−(d,i), t) + τ0

|t
−(d,i)| +Kτ0

P (wd | z,w−d, θ0),

wheretd is updated to reflecttd,i = t, andzd is de-
terministically computed by mappingtd andπd to
actual paragraph topic assignments. The first step
reflects an application of Bayes rule to factor out the
term forwd. In the second step, the first term arises
out of the DCM, by updating the parametersτ0 with
observationst

−(d,i) as in equation 4 and dropping
constants. The document probability term is com-
puted using equation 3. The newtd,i is selected
by sampling from this probability computed over all
possible topic assignments.

Ordering The parameterization of a permutation
π as a series of inversion valuesvj reveals a natural
way to decompose the search space for Gibbs sam-
pling. For a single ordering, eachvj can be sampled
independently, according to:

P (vj = v | . . .)

∝ P (vj = v | ρj)P (wd | td, πd,w−d, z−d, θ0)

= GMMj(v | ρj)P (wd | zd,w−d, z−d, θ0),

whereπd is updated to reflectvj = v, andzd is com-
puted according totd andπd. The first term refers
to thejth multiplicand of equation 1; the second is
computed using equation 3. Termvj is sampled ac-
cording to the resulting probabilities.

GMM Parameters For eachj = 1 toK − 1, we
resampleρj from its posterior distribution:

P (ρj | . . .)

= GMM0

(

ρj

∣

∣

∣

∣

∑

i vj,i + vj,0ν0

N + ν0
, N + ν0

)

,



where GMM0 is evaluated according to equation 2.
The normalization constant of this distribution is un-
known, meaning that we cannot directly compute
and invert the cumulative distribution function to
sample from this distribution. However, the distri-
bution itself is univariate and unimodal, so we can
expect that an MCMC technique such asslice sam-
pling (Neal, 2003) should perform well. In practice,
the MATLAB black-box slice sampler provides a ro-
bust draw from this distribution.

6 Experimental Setup

Data Sets We evaluate our model on two data sets
drawn from the English Wikipedia. The first set
is 100 articles about large cities, with topics such
as History, Culture, and Demographics. The sec-
ond is 118 articles about chemical elements in the
periodic table, including topics such as Biological
Role, Occurrence, and Isotopes. Within each cor-
pus, articles often exhibit similar section orderings,
but many have idiosyncratic inversions. This struc-
tural variability arises out of the collaborative nature
of Wikipedia, which allows articles to evolve inde-
pendently. Corpus statistics are summarized below.

Corpus Docs Paragraphs Vocab Words
Cities 100 6,670 41,978 492,402
Elements 118 2,810 18,008 191,762

In each data set, the articles’noisy section head-
ingsinduce a reference structure to compare against.
This reference structure assumes that two para-
graphs are aligned if and only if their section head-
ings are identical, and that section boundaries pro-
vide the correct segmentation of each document.
These headings are only used for evaluation, and are
not provided to any of the systems.

Using the section headings to build the reference
structure can be problematic, as the same topic may
be referred to using different titles across different
documents, and sections may be divided at differing
levels of granularity. Thus, for the Cities data set, we
manually annotated each article’s paragraphs with a
consistent set of section headings, providing us an
additional reference structure to evaluate against. In
this clean section headingsset, we found approxi-
mately 18 topics that were expressed in more than
one document.

Tasks and Metrics We study performance on the
tasks of alignment and segmentation. In the former
task, we measure whether paragraphs identified to
be the same topic by our model have the same sec-
tion headings, and vice versa. First, we identify the
“closest” topic to each section heading, by finding
the topic that is most commonly assigned to para-
graphs under that section heading. We compute the
proportion of paragraphs where the model’s topic as-
signment matches the section heading’s topic, giv-
ing us a recall score. High recall indicates that
paragraphs of the same section headings are always
being assigned to the same topic. Conversely, we
can find the closest section heading to each topic,
by finding the section heading that is most com-
mon for the paragraphs assigned to a single topic.
We then compute the proportion of paragraphs from
that topic whose section heading is the same as the
reference heading for that topic, yielding apreci-
sion score. High precision means that paragraphs
assigned to a single topic usually correspond to the
same section heading. The harmonic mean of recall
and precision is the summaryF-score.

Statistical significance in this setup is measured
with approximate randomization(Noreen, 1989), a
nonparametric test that can be directly applied to
nonlinear metrics such as F-score. This test has been
used in prior evaluations for information extraction
and machine translation (Chinchor, 1995; Riezler
and Maxwell, 2005).

For the second task, we take the boundaries at
which topics change within a document to be a
segmentation of that document. We evaluate us-
ing the standard penalty metricsPk and WindowD-
iff (Beeferman et al., 1999; Pevzner and Hearst,
2002). Both pass a sliding window over the doc-
uments and compute the probability of the words
at the ends of the windows being improperly seg-
mented with respect to each other. WindowDiff re-
quires that the number of segmentation boundaries
between the endpoints be correct as well.8

Our model takes a parameterK which controls
the upper bound on the number of latent topics. Note
that our algorithm can select fewer thanK topics for
each document, soK does not determine the number

8Statistical significance testing is not standardized and usu-
ally not reported for the segmentation task, so we omit these
tests in our results.



of segments in each document. We report results
using bothK = 10 and 20 (recall that the cleanly
annotated Cities data set had 18 topics).

Baselines and Model Variants We consider base-
lines from the literature that perform either align-
ment or segmentation. For the first task, we
compare against thehidden topic Markov model
(HTMM) (Gruber et al., 2007), which represents
topic transitions between adjacent paragraphs in a
Markovian fashion, similar to the approach taken in
content modeling work. Note that HTMM can only
capture local constraints, so it would allow topics to
recur noncontiguously throughout a document.

We also compare against the structure-agnostic
approach of clustering the paragraphs using the
CLUTO toolkit,9 which uses repeated bisection to
maximize a cosine similarity-based objective.

For the segmentation task, we compare to
BayesSeg (Eisenstein and Barzilay, 2008),10

a Bayesian topic-based segmentation model
that outperforms previous segmentation ap-
proaches (Utiyama and Isahara, 2001; Galley et al.,
2003; Purver et al., 2006; Malioutov and Barzilay,
2006). BayesSeg enforces the topic contiguity
constraint that motivated our model. We provide
this baseline with the benefit of knowing the correct
number of segments for each document, which is
not provided to our system. Note that BayesSeg
processes each document individually, so it cannot
capture structural relatedness across documents.

To investigate the importance of our ordering
model, we consider two variants of our model that
alternately relax and tighten ordering constraints. In
theconstrainedmodel, we require all documents to
follow the same canonical ordering of topics. This
is equivalent to forcing the topic permutation distri-
bution to give all its probability to one ordering, and
can be implemented by fixing all inversion countsv

to zero during inference. At the other extreme, we
consider theuniform model, which assumes a uni-
form distribution over all topic permutations instead
of biasing toward a small related set. In our im-
plementation, this can be simulated by forcing the

9http://glaros.dtc.umn.edu/gkhome/views/cluto/
10We do not evaluate on the corpora used in their work, since

our model relies on content similarity across documents in the
corpus.

GMM parametersρ to always be zero. Both variants
still enforce topic contiguity, and allow segments
across documents to be aligned by topic assignment.

Evaluation Procedures For each evaluation of
our model and its variants, we run the Gibbs sampler
from five random seed states, and take the 10,000th
iteration of each chain as a sample. Results shown
are the average over these five samples. All Dirich-
let prior hyperparameters are set to 0.1, encouraging
sparse distributions. For the GMM, we set the prior
decay parameterρ0 to 1, and the sample size prior
ν0 to be 0.1 times the number of documents.

For the baselines, we use implementations pub-
licly released by their authors. We set HTMM’s pri-
ors according to values recommended in the authors’
original work. For BayesSeg, we use its built-in hy-
perparameter re-estimation mechanism.

7 Results

Alignment Table 1 presents the results of the
alignment evaluation. In every case, the best per-
formance is achieved using our full model, by a sta-
tistically significant and usually substantial margin.

In both domains, the baseline clustering method
performs competitively, indicating that word cues
alone are a good indicator of topic. While the sim-
pler variations of our model achieve reasonable per-
formance, adding the richer GMM distribution con-
sistently yields superior results.

Across each of our evaluations, HTMM greatly
underperforms the other approaches. Manual ex-
amination of the actual topic assignments reveals
that HTMM often selects the same topic for discon-
nected paragraphs of the same document, violating
the topic contiguity constraint, and demonstrating
the importance of modeling global constraints for
document structure tasks.

We also compare performance measured on the
manually annotated section headings against the ac-
tual noisy headings. The ranking of methods by per-
formance remains mostly unchanged between these
two evaluations, indicating that the noisy headings
are sufficient for gaining insight into the compara-
tive performance of the different approaches.

Segmentation Table 2 presents the segmentation
experiment results. On both data sets, our model



Cities: clean headings Cities: noisy headings Elements: noisy headings
Recall Prec F-score Recall Prec F-score Recall Prec F-score

K
=

1
0

Clustering 0.578 0.439 ∗ 0.499 0.611 0.331 ∗ 0.429 0.524 0.361 ∗ 0.428
HTMM 0.446 0.232 ∗ 0.305 0.480 0.183 ∗ 0.265 0.430 0.190 ∗ 0.264
Constrained 0.579 0.471 ∗ 0.520 0.667 0.382 ∗ 0.485 0.603 0.408 ∗ 0.487
Uniform 0.520 0.440 ∗ 0.477 0.599 0.343 ∗ 0.436 0.591 0.403 ∗ 0.479
Our model 0.639 0.509 0.566 0.705 0.399 0.510 0.685 0.460 0.551

K
=

2
0

Clustering 0.486 0.541 ∗ 0.512 0.527 0.414 ∗ 0.464 0.477 0.402 ∗ 0.436
HTMM 0.260 0.217 ∗ 0.237 0.304 0.187 ∗ 0.232 0.248 0.243 ∗ 0.246
Constrained 0.458 0.519 ∗ 0.486 0.553 0.415 ∗ 0.474 0.510 0.421 ∗ 0.461
Uniform 0.499 0.551 ∗ 0.524 0.571 0.423 ∗ 0.486 0.550 0.479 ⋄ 0.512
Our model 0.578 0.636 0.606 0.648 0.489 0.557 0.569 0.498 0.531

Table 1: Comparison of the alignments produced by our model and a series of baselines and model variations, for both
10 and 20 topics, evaluated against clean and noisy sets of section headings. Higher scores are better. Within the same
K, the methods which our model significantly outperforms are indicated with∗ for p < 0.001 and⋄ for p < 0.01.

Cities: clean headings Cities: noisy headings Elements: noisy headings
Pk WD # Segs Pk WD # Segs Pk WD # Segs

BayesSeg 0.321 0.376 † 12.3 0.317 0.376 † 13.2 0.279 0.316 † 7.7

K
=

1
0 Constrained 0.260 0.281 7.7 0.267 0.288 7.7 0.227 0.244 5.4

Uniform 0.268 0.300 8.8 0.273 0.304 8.8 0.226 0.250 6.6
Our model 0.253 0.283 9.0 0.257 0.286 9.0 0.201 0.226 6.7

K
=

2
0 Constrained 0.274 0.314 10.9 0.274 0.313 10.9 0.231 0.257 6.6

Uniform 0.234 0.294 14.0 0.234 0.290 14.0 0.209 0.248 8.7
Our model 0.221 0.278 14.2 0.222 0.278 14.2 0.203 0.243 8.6

Table 2: Comparison of the segmentations produced by our model and a series of baselines and model variations, for
both 10 and 20 topics, evaluated against clean and noisy setsof section headings. Lower scores are better.†BayesSeg
is given the true number of segments, so its segments count reflects the reference structure’s segmentation.

outperforms the BayesSeg baseline by a substantial
margin regardless ofK. This result provides strong
evidence that learning connected topic models over
related documents leads to improved segmentation
performance. In effect, our model can take advan-
tage of shared structure across related documents.

In all but one case, the best performance is ob-
tained by the full version of our model. This result
indicates that enforcing discourse-motivated struc-
tural constraints allows for better segmentation in-
duction. Encoding global discourse-level constraints
leads to better language models, resulting in more
accurate predictions of segment boundaries.

8 Conclusions

In this paper, we have shown how an unsupervised
topic-based approach can capture document struc-
ture. Our resulting model constrains topic assign-
ments in a way that requires global modeling of en-
tire topic sequences. We showed that the generalized

Mallows model is a theoretically and empirically ap-
pealing way of capturing the ordering component
of this topic sequence. Our results demonstrate the
importance of augmenting statistical models of text
analysis with structural constraints motivated by dis-
course theory.
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José M. Bernardo and Adrian F.M. Smith. 2000.
Bayesian Theory. Wiley Series in Probability and
Statistics.

Christopher M. Bishop. 2006.Pattern Recognition and
Machine Learning. Springer.

David M. Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation.Journal of Machine Learn-
ing Research, 3:993–1022.

Nancy Chinchor. 1995. Statistical significance of MUC-
6 results. InProceedings of the 6th Conference on
Message Understanding.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. InProceedings of
EMNLP.

Micha Elsner, Joseph Austerweil, and Eugene Charniak.
2007. A unified local and global model for discourse
coherence. InProceedings of NAACL/HLT.

M.A. Fligner and J.S. Verducci. 1986. Distance based
ranking models.Journal of the Royal Statistical Soci-
ety, Series B, 48(3):359–369.

Michel Galley, Kathleen R. McKeown, Eric Fosler-
Lussier, and Hongyan Jing. 2003. Discourse segmen-
tation of multi-party conversation. InProceedings of
ACL.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101:5228–5235.

Thomas L. Griffiths, Mark Steyvers, David M. Blei, and
Joshua B. Tenenbaum. 2005. Integrating topics and
syntax. InAdvances in NIPS.

Amit Gruber, Michal Rosen-Zvi, and Yair Weiss. 2007.
Hidden topic markov models. InProceedings of AIS-
TATS.

M. A. K. Halliday and Ruqaiya Hasan. 1976.Cohesion
in English. Longman.

Nikiforos Karamanis, Massimo Poesio, Chris Mellish,
and Jon Oberlander. 2004. Evaluating centering-
based metrics of coherence for text structuring using
a reliably annotated corpus. InProceedings of ACL.

Mirella Lapata. 2003. Probabilistic text structuring: Ex-
periments with sentence ordering. InProceedings of
ACL.

Guy Lebanon and John Lafferty. 2002. Cranking: com-
bining rankings using conditional probability models
on permutations. InProceedings of ICML.

Igor Malioutov and Regina Barzilay. 2006. Minimum
cut model for spoken lecture segmentation. InPro-
ceedings of ACL.
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