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Abstract— In this paper we study distributed estimation and
control problems over graphs under partially nested informa-
tion patterns. We show a duality result that is very similar to
the classical duality result between state estimation and state
feedback control with a classical information pattern.

Index Terms— Distributed Estimation and State Feedback
Control, Duality.

I. INTRODUCTION

Control with information structures imposed on the de-

cision maker(s) have been very challenging for decision

theory researchers. Even in the simple linear quadratic static

decision problem, it has been shown that complex nonlinear

decisions could outperform any given linear decision (see

[10]). Important progress was made for the stochastic static

team decision problems in [6] and [7]. New information

structures were explored in [5] for the stochastic linear

quadratic finite horizon control problem. The distributed

stochastic linear quadratic team problem was revisited in

[4], which generalizes previous results for tractability of the

dynamic team decision problem with information constraints.

An analog deterministic version of the stochastic team de-

cision problem was solved in [4], which also showed that

for the finite and infinite horizon linear quadratic minimax

control problem with bounds on the information propagation,

the optimal decision is linear and can be found by solving a

linear matrix inequality. In [8], the stationary state feedback

stochastic linear quadratic control problem was solved using

state space formulation, under the condition that all the

subsystems have a common past. With common past, we

mean that all subsystems have information about the global

state from some time step in the past. The problem was

posed as a finite dimensional convex optimization problem.

The time-varying and stationary output feedback version was

solved in [3].

II. PRELIMINARIES

A. Notation

Let R be the set of real numbers. For a stochastic variable

x, x ∼ N (m,X) means that x is a Gaussian variable with

E{x} = m and E{(x − m)(x − m)T } = X .

Mi, or [M ]i, denotes either block column i or block row i

of a matrix M with proper dimensions, which should follow

from the context. For a matrix A partitioned into blocks,

[A]ij denotes the block of A in block position (i, j). For

vectors vk, vk−1, ..., v0, we define v[0,k] := (vk, vk−1, ..., v0).
The forward shift operator is denoted by q. That is xk+1 =

qxk, where {xk} is a given process. A causal linear time-

invariant operator T (q) is given by its generating function

T (q) =
∑∞

t=0 Ttq
−t, Tt ∈ R

p×m. A causal linear time-

varying operator T (k,q) is given by its generating function

T (k,q) =
∑∞

t=0 Tt(k)q−t, Tt(k) ∈ R
p×m. A transfer

matrix in terms of state-space data is denoted








A B

C D









:= C(qI − A)−1B + D.

III. GRAPH THEORY

We will present in brief some graph theoretical definitions

and results that could be found in the graph theory or

combinatorics literature (see for example [2]). A (simple)

graph G is an ordered pair G := (V, E) where V is a

set, whose elements are called vertices or nodes, E is a

set of pairs (unordered) of distinct vertices, called edges or

lines. The vertices belonging to an edge are called the ends,

endpoints, or end vertices of the edge. The set V (and hence

E) is taken to be finite in this paper. The order of a graph

is |V| (the number of vertices). A graph’s size is |E| , the

number of edges. The degree of a vertex is the number of

other vertices it is connected to by edges. A loop is an edge

with both ends the same.

A directed graph or digraph G is a graph where E is a

set of ordered pairs of vertices, called directed edges, arcs,

or arrows. An edge e = (vi, vj) is considered to be directed

from vi to vj ; vj is called the head and vi is called the tail

of the edge.

A path or walk Π in a graph of length m from vertex u to

v is a sequence e1e2 · · · em of m edges such that the head

of em is v and the tail of e1 is u, and the head of ei is the

tail of ei+1, for i = 1, ...,m − 1. The first vertex is called

the start vertex and the last vertex is called the end vertex.

Both of them are called end or terminal vertices of the walk.

If also u = v, then we say that Π is a closed walk based at

u. A directed graph is strongly connected if for every pair

of vertices (vi, vj) there is a walk from vi to vj .

The adjacency matrix of a finite directed graph G on n

vertices is the n × n matrix where the nondiagonal entry

aij is the number of edges from vertex i to vertex j, and

the diagonal entry aii is the number of loops at vertex i
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Fig. 1. An example of a graph G.

(the number of loops at every node is defined to be one,

unless another number is given on the graph). For instance,

the adjacency matrix of the graph in Figure 1 is

A =























1 0 1 0
1 1 0 0
0 1 1 1
0 0 0 1























.

A graph G with adjacency matrix A is isomorphic to

another graph G′ with adjacency matrix A′ if there exists

a permutation matrix P such that

PAPT = A′

The matrix A is said to be reducible if there exists a

permutation matrix P such that

PAPT =









E F

0 G









(1)

where E and G are square matrices. If A is not reducible,

then it is said to be irreducible.

Proposition 1: A matrix A ∈ Z
n×n
2 is irreducible if and

only if its corresponding graph G is strongly connected.

Proof: If A is reducible, then from (1) we see that the

vertices can be divided in two subsets; one subset belongs

to the rows of E and the other belongs to the rows of G.

The latter subset is closed, because there is no walk from

the second subset to the first one. Hence, the graph is not

strongly connected.

Now, suppose that G is not strongly connected. Then there

exists an isolated subset of vertices. Permute the vertices of

G such that the vertices in the isolated subset comes last in

the enumeration of G. Then we see that the same permutation

with A gives a block triangular form as in (1).

Proposition 2: Consider an arbitrary finite graph G with

adjacency matrix A. Then there is a permutation matrix P

and a positive integer r such that

PAPT =



























A1 A12 · · · A1j

0 A2 · · · A2j

...
...

. . .
...

0 0 · · · Ar



























, (2)

where A1, ..., Ar are adjacency matrices of strongly con-

nected graphs.

Proof: If A is strongly connected, then it is irreducible

according to Proposition 1, and there is nothing to do.

Suppose now that A is reducible. Then Proposition 1 gives

that there is a permutation matrix P1 such that A1 = P1APT
1

with

A1 =









E F

0 G









,

and E and G are square matrices. Now if E and G are

irreducible, then we are done. Otherwise we repeat the same

argument with E and/or G. Since the graph is finite, we

can only repeat this procedure a finite number of times, and

hence there is some positive integer r where this procedure

stops. Then we arrive at a sequence of permutation matrices

P1, ..., Pr , such that (Pr · · ·P1)A(Pr · · ·P1)
T has a block

triangular structure given by (2) with A1, ..., Ar irreducible,

and hence adjacency matrices of strongly connected graphs.

Taking P = Pr · · ·P1 completes the proof.

Now let ω : E → R be a weight function on E with values

in some commutative ring R (we can take R = C or a poly-

nomial ring over C). If Π = e1e2 · · · em is a walk, then the

weight of Π is defined by w(Π) = w(e1)w(e2) · · ·w(em).
Let G be a finite directed graph, with |V| = p. In this case,

letting i, j ∈ {1, ..., p} and n ∈ N, define

Aij(n) =
∑

Π

ω(Π),

where the sum is over all walks Π in G of length n from vi

to vj . In particular Aij(0) = δ(i− j). Define a p× p matrix

A by

Aij =
∑

e

ω(e),

where the sum is over all edges e with vi and vj as the head

and tail of e, respectively. In other words, Aij = Aij(1). The

matrix A is called the adjacency matrix of G, with respect

to the weight function ω.

The following proposition can be found in [9]:

Proposition 3: Let n ∈ N. Then the (i, j)-entry of An is

equal to Aij(n).
Proof: This is immediate from the definition of matrix

multiplication. Specifically, we have

[An]ij =
∑

Aii1Ai1i2 · · ·Ain−1j ,

where the sum is over all sequences (i1, ..., in−1) ∈
{1, ..., p}n−1. The summand is 0 if there is no walk

e1e2 · · · en from vi to vj with vik
as the tail of ek (1 <

k ≤ n) and vik−1
as the head of ek (1 ≤ k < n). If such

a walk exists, then the summand is equal to the sum of the

weights of all such walks, and the proof follows.

Corollary 1: Let G be a graph with adjacency matrix A ∈
Z

n×n
2 . Then there is a walk of length k from node vi to node

vj if and only if [Ak]ij 6= 0. In particular, if [An−1]ij = 0,

then [Ak]ij = 0 for all k ∈ N.

A particularly elegant result for the matrices Aij(n) is that

the generating function gij(λ) =
∑

n Aij(n)λn is

gij(λ) =
∑

n

Aij(n)λn

=
∑

n

[An]ijλ
n
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Fig. 2. The adjoint of the graph G in Figure 1.

Thus, we can see that the generating matrix function

G(λ) = (I − λA)−1,

is such that [G(λ)]ij = gij(λ).
The adjoint graph of a finite directed graph G is denoted

by G∗, and it is the graph with the orientation of all arrows

in G reversed. If the adjacency matrix of G with respect to

the weight function ω is A then the adjacency matrix of G∗

is A∗.

Example 1: Consider the graph G in Figure 1. The adja-

cency matrix (in Z
4×4
2 ) of this graph is

A =























1 0 1 0
1 1 0 0
0 1 1 1
0 0 0 1























.

The adjoint graph G∗ is given by Figure 2. It is easy to verify

that the adjacency matrix (in Z
4×4
2 ) of G∗ is

A∗ =























1 1 0 0
0 1 1 0
1 0 1 0
0 0 1 1























.

To see if there is a walk of length 2 or 3 between any two

nodes in G, we calculate A2 and A3:

A2 =























1 1 2 1
2 1 1 0
1 2 1 2
0 0 0 1























, A3 =























2 3 3 3
3 2 3 1
3 3 3 3
0 0 0 1























.

Using Corollary 1, we can see that there is no walk of length

2 from node 2 to node 4 since [A2]24 = 0. On the other hand,

there is a walk of length 3 since [A3]24 = 1 6= 0. There is

also a walk of length 3 from node 2 to node 3, since we have

assumed that every node has a loop. An example of such a

walk is node 2 → node 1 → node 1 → node 3. Note also

that since [A3]4i = 0 for i = 1, 2, 3, there is no walk that

leads from 4 to any of the nodes 1, 2, or 3.

Example 2: Consider the matrix

A =























A11 0 A13 0
A21 A22 0 0
0 A32 A33 A34

0 0 0 A44























. (3)

The sparsity structure of A can be represented by the graph

given in Figure 1. Hence, if there is an edge from node i to

node j, then Aij 6= 0. Mainly, the block structure of A is

the same as the adjacency matrix of the graph in Figure 1.

Proposition 4: Let G1 = (V1, E1) and G2 = (V2, E2) be

two graphs with corresponding weighting functions ω1 :
E1 → R and ω2 : E2 → R, respectively. Also, let their ad-

jacency matrices be represented by the generating functions

G1 and G2, respectively. Define a graph G3 corresponding to

G3 = G1G2. Then, if any two of the functions G1, G2, G3

has the same sparsity structure, then G1, G2, G3 all have

the same structure (that is the graphs G1, G2, and G3 are

identical).

Proof: The proof is simple by realizing that the graph

G3 corresponding to G3 is identical to G1 and G2, and has a

weighting function ω3 = ω1 + ω2.

A. Systems over Graphs

Consider linear systems {Gi(q)} with state space realiza-

tion

xi(k + 1) =
N

∑

j=0

Aijxj(k) + Biui(k) + wi(k)

yi(k) = Cixi(k),

(4)

for i = 1, ..., N . Here, Aii ∈ R
ni×ni , Aij ∈ R

ni×nj for

j 6= i, Bi ∈ R
ni×mi , and Ci ∈ R

pi×ni . Here, wi is the

disturbance and ui is the control signal entering system i.

The systems are interconnected as follows. If the state of

system j at time step k (xj(k)) affects the state of system

i at time step k + 1 (xi(k + 1)), then Aij 6= 0, otherwise

Aij = 0.

This block structure can be described by a graph G of

order N , whose adjacency matrix is A, with respect to some

weighting function ω. The graph G has an arrow from node

j to i if and only if Aij 6= 0. The transfer function of the

interconnected systems is given by G(q) = C(qI −A)−1B.

Then, the system GT (q) is equal to BT (qI − AT )−1CT ,

and it can be represented by a graph G∗ which is the adjoint

of G, since the adjacency matrix of G∗ is A∗ = AT . The

block diagram for the transposed interconnection is simply

obtained by reversing the orientation of the interconnection

arrows. This property was observed in [1].

Example 3: Consider four interconnected systems with

the global system matrix A given by

A =























A11 0 A13 0
A21 A22 0 0
0 A32 A33 A34

0 0 0 A44























. (5)

The interconnection can be represented by the graph G in

Figure 1. The state of system 2 is affected directly by the

state of system 1, and this is reflected in the graph by an

arrow from node 1 to node 2. It is also reflected in the A

matrix, where A21 6= 0. On the other hand, system 1 is not

affected direclty by the state of system 2 since A12 = 0,

and therefore there is no arrow from node 1 to node 2. The
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adjoint matrix AT is given by

AT =























AT
11 AT

21 0 0
0 AT

22 AT
32 0

AT
13 0 AT

33 0
0 0 AT

34 AT
44























. (6)

The interconnection structure for the transposed system can

be described by the adjoint of G in Figure 2.

B. Information Pattern

The information pattern that will be considered in this

paper is the partially nested, which was first discussed in

[5] and that we will briefly describe in this section. A more

modern treatment can be found in [4], which our presentation

builds on.

Consider the interconnected systems given by equation (4).

Now introduce the information set

I
k = {{y1(t), ..., yN (t)}k

t=0, {µ
t
1, ..., µ

t
N}k

t=0},

the set of all input and output signals up to time step k. Let

the control action of system i at time step k be a decision

function ui(k) = µk
i (Ik

i ), where I
k
i ⊂ Ik. We assume that

every system i has access to its own output, that is yi(k) ∈
I
k
i . Write the state x(k) as

x(k) =
k

∑

t=1

Ak−t(Bu(t − 1) + w(t − 1)),

For t < k, the decision µt
j(I

t
j) = uj(t) will affect the

output yi(k) = [Cx(k)]i if [CAk−t−1B]ij 6= 0. Thus, if

I
t
j 6⊂ I

k
i , decision maker j has at time t an incentive to

encode information about the elements that are not available

to decision maker i at time k, a so called signaling incentive

(see [5], [4] for further reading).

Definition 1: We say that the information structure I
k
i is

partially nested if I
t
j ⊂ I

k
i for [CAk−t−1B]ij 6= 0, for all

t < k.

It’s not hard to see that the information structure can

be defined recursively, where the recursion is reflected by

the interconnection graph (which is in turn reflected by

the structure of the system matrix A). Let G represent the

interconnection graph. Denote by Ji the set of indexes that

includes i and its neighbours j in G. Then, I
k
i = yi(k)∪j∈Ji

I
k−1
j . In words, the information available to the decision

function µk
i is what its neighbours know from one step back

in time, what its neighbours’ neighbours know from two

steps back in time, etc...

IV. PROBLEM DESCRIPTION

A. Distributed State Feedback Control

The problem we’re considering here is to find the optimal

distributed state feedback control law ui(k) = µk
i (Ik

i ), for

i = 1, ..., N that minimizes the quadratic cost

JM (x, u) :=

M
∑

k=1

E‖Cx(k) + Du(k)‖2,

with respect to the system dynamics

xi(k + 1) =
N

∑

j=1

Aijxj(k) + Biui(k) + wi(k)

yi(k) = xi(k),

(7)

w(k) ∼ N (0, I), and x(k) = 0 for all k ≤ 0. Without loss

of generality, we assume that Bi has full column rank, for

i = 1, ..., N (and hence has a left inverse). In [5], it has

been shown that if {Ik
i } are described by a partially nested

information pattern, then every decision function µk
i can be

taken to be a linear map of the elements of its information

set I
k
i . Hence, the controllers will be assumed to be linear:

ui(k) = [Kt(k,q)]ix(k) =

∞
∑

t=0

[Kt(k)]iq
−tx(k). (8)

The information pattern is reflected in the parameters Kt(k),
where [Kt(k)]ij = 0 if [At]ij = 0. Thus, the sparsity

structure of the coefficients of K(k,q) is the same as that

of (I − q−1A)−1 = I + Aq−1 + A2q−2 + · · · . Hence,

our objective is to minimize the quadratic cost J(x, u) →
min, subject to (7) and sparsity constraints on Kt(k) that

are reflected by the dynamic interconnection matrix A. In

particular, we are interested in finding a solution where every

Kt(k) is ”as sparse as it can get” without loosing optimality.

To summarize, the problem we are considering is:

inf
u

M
∑

i=1

N
∑

k=1

E‖zi(k)‖2

subject to xi(k + 1) =

N
∑

j=1

Aijxj(k) + Biui(k) + wi(k)

z(k) = Cx(k) + Du(k)

ui(k) =

∞
∑

t=0

[Kt(k)]iq
−tx(k)

[Kt(k)]ij = 0 if {[Ak−t−1B]ij = 0, t < k

or t = k, i 6= j}

w(k) = x(k) = x(0) = 0 for all k < 0

w(k) ∼ N (0, I) for all k ≥ 0

for i = 1, ..., N
(9)

B. Distributed State Estimation

Consider N systems given by

x(k + 1) = Ax(k) + Bw(k)

yi(k) = Cixi(k) + Diw(k),
(10)

for i = 1, ..., N , w(k) ∼ N (0, I), and x(k) = 0 for all

k ≤ 0. Without loss of generality, we assume that Ci has full

row rank, for i = 1, ..., N . The problem is to find optimal

distributed estimators µk
i in the following sense:

inf
µ

M
∑

i=1

N
∑

k=1

E‖xi(k) − µk
i (Ik−1

i )‖2 (11)
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In a similar way to the distributed state feedback problem, the

information pattern is the partially nested, which is reflected

by the interconnection of the graph. The linear decisions are

optimal, hence we can assume that

x̂i(k) := µk
i (Ik−1

i ) = [Lt(k,q)]iyi(k − 1)

=

∞
∑

t=0

[Lt(k)]iq
−tyi(k − 1).

(12)

Then, our problem becomes

inf
x̂

M
∑

i=1

N
∑

k=1

E‖xi(k) − x̂i(k)‖2

subject to x(k + 1) = Ax(k) + Bw(k)

yi(k) = Cixi(k) + Diw(k)

x̂i(k) =
∞
∑

t=0

[Lt(k)]iq
−tyi(k − 1)

[Lt(k)]ij = 0 if {[CAk−t−1]ij = 0, t < k

or t = k, i 6= j}

w(k) = x(k) = x(0) = 0 for all k < 0

w(k) ∼ N (0, I) for all k ≥ 0

for i = 1, ..., N
(13)

V. DUALITY OF ESTIMATION AND CONTROL UNDER

SPARSITY CONSTRAINTS

In [4], it was shown that the distributed state feedback

control problem is the dual to the distributed estimation prob-

lem under the partially nested information pattern. It showed

exactly how to transform a state feedback problem to an

estimation problem. Note that since we are considering linear

controllers, we can equivalently consider linear controllers of

the disturbance rather than the state. It can be done since

x(k) = (qI − A − BK(k,q))−1w(k)

= (I − Aq−1 − BK(k,q)q−1)−1q−1w(k),
(14)

which clearly yields

w(k − 1) = (I − Aq−1 − BK(k,q)q−1)x(k). (15)

Thus, we will set

u(k) = −R(k,q)w(k − 1) = −
∞
∑

t=0

Rt(k)q−tw(k − 1).

The structure of R(k,q) is inherited from that of (I −
q−1A)−1. To see this, note that R(k,q) = K(k,q)(I −
Aq−1 − BK(k,q))−1. (I − Aq−1) clearly has the same

sparsity structure as that of (I − q−1A)−1. K(k,q) does

also have the same sparsity structure as (I − q−1A)−1 (by

definition of the information constraints on the controller),

and since B is block diagonal, so does BK(k,q). Applying

Proposition 4 twice, shows that (I − Aq−1 − BK(k,q))−1

and K(k,q)(I−Aq−1−BK(k,q))−1 has the same sparsity

structure as (I − q−1A)−1.

Now each term in the quadratic cost of (9) is given by

E‖Cx(k) + Du(k)‖2 =

E‖C(qI − A)−1w(k)−

[C(qI − A)−1B + D]R(k,q)q−1w(k)‖2 =

E‖(qI − AT )−1CT w(k)−

RT (k,q)q−1[BT (qI − AT )−1CT + DT ]w(k)‖2

(16)

where the last equality is obtained from transposing which

doesn’t change the value of the norm. Introduce the state

space equations

x̄(k + 1) = AT x̄(k) + CT w(k)

y(k) = BT x̄(k) + DT w(k)
(17)

and let

x̂(k) = RT (k,q)y(k − 1).

Then comparing with (16) we see that

E‖Cx(k) + Du(k)‖2 = E‖x̄(k) − x̂(k)‖2

=
N

∑

i=1

E‖x̄i(k) − x̂i(k)‖2.
(18)

Hence, we have transformed the control problem to an

estimation problem, where the parameters of the estimation

problem are the transposed parameters of the control prob-

lem:

A ↔ AT

B ↔ CT

C ↔ BT

D ↔ DT

(19)

The solution of the control problem described as a feed-

forward problem, R(k,q), is equal to LT (k,q), where

L(k,q) = RT (k,q) is the solution of the corresponding dual

estimation problem. The information constraints on L(k,q)
follow easily from that of R(k,q) by transposing (that is,

looking at the adjacency matrix of the dual graph). We can

now state

Theorem 1: Consider the distributed state feedback linear

quadratic problem (9), with state space realization















A I B

C

I

0 D

0 0















and solution u(k) =
∑∞

t=0 Rt(k)q−tw(k − 1), and the dis-

tributed estimation problem (13) with state space realization















AT CT 0
I

BT

0 0
DT 0















and solution x̂(k) =
∑∞

t=0 Lt(k)q−ty(k − 1). Then

Rt(k) = LT
t (k).
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VI. CONCLUSION

We show that distributed estimation and control problems

are dual under partially nested information pattern using a

novel system theoretic formulation of dynamics over graphs.

Future work will be examining controller order reduction

of the optimal controllers without loosing optimality by

exploiting the structure of the problem.
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