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Abstract

We present a novel method for modeling dynamic visual
phenomena, which consists of two key aspects. First, the in-
tegral motion of constituent elements in a dynamic scene is
captured by a common underlying geometric transform pro-
cess. Second, a Lie algebraic representation of the trans-
form process is introduced, which maps the transformation
group to a vector space, and thus overcomes the difficul-
ties due to the group structure. Consequently, the statis-
tical learning techniques based on vector spaces can be
readily applied. Moreover, we discuss the intrinsic con-
nections between the Lie algebra and the Linear dynamical
processes, showing that our model induces spatially vary-
ing fields that can be estimated from local motions without
continuous tracking. Following this, we further develop a
statistical framework to robustly learn the flow models from
noisy and partially corrupted observations. The proposed
methodology is demonstrated on real world phenomenon,
inferring common motion patterns from surveillance videos
of crowded scenes and satellite data of weather evolution.

1. Introduction
Dynamical analysis plays a crucial role in the under-

standing and interpretation of visual phenomena. Of partic-
ular interest are representations that capture underlying dy-
namics in a parsimonious manner while enabling tractable
analysis. Figure 1 illustrates two applications where mod-
eling of visual dynamics has important utility. While seem-
ingly different, they share a common embedded problem at
their core: inferring a model of dynamics that govern the
scene from observations. In the rail station scene, common
motion patterns of individual persons are of primary inter-
est, while in the weather data we are interested in dynamic
changes in intensity patterns. With these aims in mind, we
develop a method for probabilistic modeling of motions in
which we adopt the formalism of Lie groups and Lie alge-
bras. As a result, the use of well known probabilistic models
is made simpler. While the existing literature devoted to the
study of Lie Groups [2] in disciplines like control and sys-

(a) people motion pattern analysis

(b) Weather evolution modeling

Figure 1. (a) is a video frame captured in a rail station. From the
video, we can find out that there are only a small number of mo-
tion patterns that most people follow, which may contain useful
information for surveillance, anomaly detection, and station man-
agement. (b) illustrates an infrared satellite picture of atmosphere,
and the corresponding optical flow. The dynamic information of
the flow would be useful in weather modeling and prediction.

tem identification is extensive, we focus on statistical mod-
eling of collective motions for describing image sequences.

There has been much work in dynamic modeling in
computer vision in the past decade. Most approaches fall
roughly into one of two categories. The first category makes
use of graphical models and their associated Markov struc-
ture to describe temporal dependency across frames for con-
tinuous tracking of individual objects [1,3,6,14,17,19,22].
Such methods suffer in multi-object tracking scenarios such
as in Figure 1(a). The second category explicitly in-
corporates multiple objects into the tracking framework
[7, 12, 13, 23]. These methods typically rely on analysis of
full trajectories rather than local temporal motions and as
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such are susceptible to incorrect measurement-to-track as-
sociation as well as combinatorial complexity.

Recent methods exploit local motions in which tem-
porally local changes are extracted as features and then
grouped by proximity-based clustering algorithms [15] or
generative models [17, 20]. These methods have the advan-
tage of circumventing difficulties of full trajectory analysis
by avoiding the measurement-to-track association problem,
but their proximity-based strategy tends to divide the space
into local clusters while missing global scene regularities.
Additionally, they assume a single prototypical motion for
each group precluding spatial variation in group behavior.
As we shall show in subsequent analysis, spatial variation
in common group behavior is not unusual.

Motivated by the analysis above, we propose a new ap-
proach to dynamic modeling. Rather than grouping objects
by proximity, we instead group them by common flow fields
parameterized by geometric transformations. The objects
subjected to the same flow field may have (and typically do
have) substantially different locations and velocities, but are
consistent in a geometric sense.

One difficulty in developing statistical models of pa-
rameterized geometric transformations is that their inherent
group structure, which complicates the application of statis-
tical methods that rely on underlying vector spaces. While
one may ignore the multiplicative nature of the underlying
group structure, treating transform matrices as if they lie in
a linear space, this leads to undesired effects and complex-
ities when incorporating geometric constraints. Lie alge-
bra theory mitigates many of these issues. Its main utility
is to construct equivalent representation in a vector space
while maintaining connections to the geometric transform
group. Thereby, we acquire a vector representation of each
transform to which many widely used statistical models can
readily be applied.

Furthermore, we consider the theoretical relations be-
tween Lie algebraic representations and linear dynamical
processes, resulting in a velocity field perspective con-
strained by the group structure. Thus, we develop a statisti-
cal approach for flow-field estimation utilizing observations
of local motions that avoids the complications associated
with trajectory maintenance. As we will show, robustness
as well as outlier motion identification is also attained as a
consequence. We test the methodology in two candidate ap-
plications. The first involves analysis of motion patterns of
people in Grand Central Station from overhead video while
the second infers motions within satellite weather image se-
quences.

The use of geometric transforms is not a new devel-
opment in computer vision. However, most prior work
[4,11,18] utilizes geometric transformations and associated
Lie group analysis in rigid body tracking or alignment. Our
use of geometric transformations is novel in a variety of

ways. Transformations are used to describe the collective
motion of separate objects, many of whom, though bound
by a common motion descriptor, are moving independently
of each other. Consequently, (possibly overlapping) flows
are associated with regions rather than objects. Addition-
ally, flow fields may persist in a region despite objects en-
tering and leaving. Finally, the geometric characterization
of the Lie algebraic representation and its relation to a lin-
ear dynamical process, which plays an essential role in our
approach, has not been explored.

2. Lie Algebraic Representation
We provide a brief discussion of the groups structure of

affine transformations. While the discussion is restricted
to two-dimensional affine transformations, we note that the
methodology is straightforwardly extended to higher di-
mensions as well as to other families of transforms. Two-
dimensional affine deformations, however, represent a suf-
ficiently rich class for purposes of discussion and to demon-
strate the methodology in two candidate applications.

2.1. Lie Algebra of Affine Transforms

Affine transforms, parameterized by A and b, have the
following form

x′ = Ax + b. (1)

and can be expressed in homogeneous coordinates as

x̄′ =
[
x′

1

]
=

[
A b
0 1

] [
x
1

]
= Tx̄. (2)

All matrices in this form comprise the elements of an alge-
braic structure known as a Lie group. While widely used
in many vision applications, its use in statistical methods
presents some difficulties. It is not a vector space, and thus
is not closed under vector addition nor scalar multiplica-
tion, complicating the use of statistical learning methods
with implicit vector space assumptions. Moreover, it is of-
ten the case that one would like to impose geometric con-
straints upon the transformation. For example, restriction
to volume-preserving deformations corresponds to a deter-
minant constraint, i.e. det(T) = 1. This and a variety of
geometric constraints are nonlinear and can be difficult to
incorporate into statistical models. The difficulty essentially
arises from the fact that the affine group has a multiplicative
rather than additive structure. It is desirable to establish a
mapping from the multiplicative structure to an equivalent
vector space representation. This is precisely what the Lie
algebra accomplishes in a local sense. There is rich the-
ory of Lie groups and Lie algebras. Interested readers are
referred to [8, 10] for an elaborated introduction.

The Lie algebraic representation of a 2D affine transform
is a 3 × 3 matrix with all zeroes on the bottom row. It is
related to the homogeneous matrix representation through
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matrix exponentiation and the matrix logarithm. If X de-
notes the Lie algebra representation of T then

T = exp(X) = I +

∞
X

k=1

1

k!
Xk, (3)

X = log(T) =

∞
X

k=1

(−1)k+1

k
(T − I)k. (4)

As we shall see, by working with this representation, the
algebraic structure becomes additive and as a consequence
many statistical learning methods may be readily applied.

2.2. Geometric Characterization and Constraints
One advantage of the Lie algebraic representation is that

transformation subgroups are mapped to linear subspaces.
Within the 2D affine group, there are many subgroups that
correspond to particular families of transforms. This gives
rise to a linear parameterization of them. Consider rotations
by an angle θ of which the transform matrix TR(θ) and the
corresponding Lie algebraic representation XR(θ) are

TR(θ) =

2

4

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

3

5 , XR(θ) =

2

4

0 −θ 0
θ 0 0
0 0 0

3

5 (5)

It can be easily seen that the Lie algebraic representation
of all rotations lies in a one dimensional subspace. Simi-
larly, the Lie algebraic representations of many other im-
portant transforms such as scaling, shearing, and transla-
tion, correspond to subspaces of the Lie algebra, as well.
This property in turn allows for linear characterization of
a variety of geometric constraints. Consider the volume-
preserving constraint discussed above. Since the composi-
tion of two volume-preserving transforms is also volume-
preserving. All volume-preserving transforms constitute a
subgroup of the affine group. Consequently, their Lie alge-
braic representations form a subspace. The associated con-
straint is captured by the simple expression

tr(X) = 0 ⇔ X11 + X22 = 0. (6)

2.3. The Perspective of Processes and Field

We are interested in describing transformations as a
continuous-time process. Assuming that the transformation
occurs over a unit of time, the motion of each point can then
be expressed as a function of time x̄(t) such that x̄(0) = x̄0

and x̄(1) = Tx̄0 = exp(X)x̄0.
Two ways to parameterize the process lead to very dif-

ferent transformation sequences. A common approach, us-
ing the homogeneous representation, is to define x̄(t) =
x̄0 + t(T − I)x̄0. Alternatively, utilizing the Lie algebraic
representation one can define x̄(t) = exp(tX)x̄0. Figure 2
compares the effect of these two approaches, in which the
terminal transformation is a translation plus rotation, i.e.

(a) Traditional way (b) Lie algebraic way

Figure 2. This illustrates the sequence of intermediate transforms
in the continuous time process from initial one to terminal one.

(a) with noiseless processes (b) with noisy processes

Figure 3. Illustration of velocity field of an affine transform.

a rigid transformation. In contrast to the conventional ap-
proach, when using the Lie algebra representation, each in-
termediate transform is also a rigid transformation, i.e. the
elements of the sequence remain within the subgroup. Gen-
erally, when the process is parameterized using the Lie alge-
bra representation, if the initial and final transformations are
within a subgroup, then intermediate transformations along
the path will also lie in that subgroup. Moreover, the pro-
cess defined using the Lie algebra is optimal in the sense
that it corresponds to the shortest geodesics connecting the
two transforms on the affine manifold.

The process x̄(t) = etXx̄0 has intrinsic relations with
the Linear dynamical systems in control theory. It is the
solution to the following system of differential equations:

dx̄(t)
dt

= Xx̄(t), x̄(0) = x̄0. (7)

Therefore, a geometric transform can be equivalently repre-
sented as a dynamic process governed by the above differ-
ential equation. The Lie algebraic representation is in form

of X =
[
Y u
0 0

]
, hence equation (7) can be rewritten as

dx(t)
dt

= Yx + u, x(0) = x0. (8)

Since dx(t)
dt represents the velocity, this equation expresses

the velocity as a function of location, or in other words,
establishes the time-invariant velocity field, where there is
a unique velocity at each location. Figure 3(a) illustrates a
velocity field with several processes driven by it. In this sys-
tem, the entire trajectory of a point is uniquely determined
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(a) single-flow

(b) multi-flow

Figure 4. The graphical models of the statistical formulation.

by its initial position. This is too restrictive for our purposes
in which we assume that objects in the same flow may fol-
low different paths even when starting from the same loca-
tion. This issue can be addressed by adding a noise term to
the state equation as

dx(t)
dt

= Yx + u + εt, (9)

where ε is a white noise process. The introduction of the
noise term converts the ordinary differential equation to a
stochastic differential equation, which has remarkably dif-
ferent statistical characteristics. The stochastic nature of the
extended system offers substantially greater flexibility. Fig-
ure 3(b) shows several processes starting with the same ini-
tial position that end up with distinct trajectories.

3. Statistical Modeling and Inference
As a consequence of adopting the Lie algebra represen-

tation, a statistical method for inference of affine flow fields
can be developed. Importantly, we rely solely on local ve-
locity observations, avoiding the difficulties of trajectory
maintenance.

3.1. Statistical Formulation

In (9), the velocity of each point depends solely on its
location. While the equation can be used to synthesize full
trajectories, when the locations are observed the estimation
procedure only requires local velocity observations elimi-
nating the need for continuous tracking.

Observations are location-velocity pairs {xi,vi}N
i=1 that

can be acquired from an image sequence with a variety of
algorithms (e.g. image alignment, feature matching, and
optical flow estimation).

Figure 4(a) shows the graphical model of the above for-
mulation. The generative process is described as follows:

1) The i-th location is drawn from a Gaussian distribution
p(xi|S) = N (xi|µS ,ΣS) where S = (µS ,ΣS) is the mean and
covariance (sufficiently large to cover a region). From this we ob-
tain a noisy location x̃i drawn from p(x̃i|xi) = N (x̃i|xi;ΣX).

2) The i-th velocity vi is drawn from the flow model (the
core of our framework) utilizing the stochastic field equation
(9). Assuming Gaussian driving noise yields p(vi|xi; F ) =
N (vi|YF xi+uF ,ΣF ) where F = (YF ,uF ,ΣF ) is comprised
of a mean transformation and the covariance of the driving noise.

3) The measurement model of velocity accounts for two types
of errors, additive noise and incorrect matching (e.g. from frame-
to-frame). We introduce a hidden variable gi to account for the
latter (gi = 1 for correct matching and gi = 0 for incorrect match-
ing). The prior probability on gi is denoted ci and depends on the
data acquisition procedure. When gi = 1, ṽi is a noisy observa-
tion of vi; p(ṽi|vi, gi = 1) = N (ṽi|vi;ΣV ). When gi = 0, ṽi

is drawn from an uninformative uniform distribution Q accounting
for incorrect matches as p(ṽi|vi, gi = 0; Q) = Q(ṽi).

The formulation involves several covariance matrices:
ΣS ,ΣF ,ΣX and ΣV , which are set in the design phase,
rather than estimated from the data. Assuming that all
observations are independently sampled from the above
model, the joint probability is written as

N
Y

i=1

p(xi|S)p(gi|ci)p(vi|xi; F )p(x̃i|xi)p(ṽi|vi, gi; Q). (10)

To account for the scenes governed by multiple flows, we
extend the statistical formulation to a mixture model as
shown in figure 4(b). The multi-flow formulation comprises
M submodels. Each submodel contains a spatial model Sk

and a flow model Fk such that each flow covers a particular
region in the scene and where regions may overlap, result-
ing in a region-dependent mixture model. Accordingly, we
introduce an additional hidden variable zi with multinomial
distribution π to indicate which sub-model the observation
is generated from. The joint probability of the multi-flow
model is thus

N
Y

i=1

p(zi|π)p(xi|zi; S)p(vi|xi, zi; F )p(x̃i|xi)p(ṽi|vi, gi; Q),

(11)
where S = (S1, . . . , SM ) and F = (F1, . . . , FM ) refer to

a collection of models.

3.2. The Prior of Flow Model

As mentioned above, the Lie algebraic representation
lies in a vector space and geometric constraints can be ex-
pressed as systems of linear equations, simplifying the in-
corporation of domain-specific knowledge. If the transform
is in a particular Lie subgroup (e.g. due to some geometric
constraints), then the corresponding Lie algebra represen-
tation lies in a linear subspace of the full Lie algebra. We
denote the dimension of the representation space by L and
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its basis by{(Yl
B ,ul

B)}L
l=1. Any element in this space can

be expressed as a linear combination of its basis elements

(Y,u)α =
L∑

l=1

αl(Y
(l)
B ,u(l)

B ), (12)

where the coefficient vector α = (α1, . . . , αL)T parame-
terizes the transform. The estimation of the flows is thus
transformed to the estimation of the vector α.

As the parameters also lie in a vector space, we can
choose from a large group of well-studied models whose
underlying measure is Euclidean in nature for their prior
distribution. Here, we simply use a Gaussian distribution as
their prior: p(α) = N (α|α0,Σα). We emphasize that the
incorporation of prior probabilistic models and constraints
is a result of adopting the Lie algebraic representation.

3.3. Learning by Variational Inference
We would like to infer the flow models by maximizing

the following objective

Jmap(S, F, π) =
N
X

i=1

log p(x̃i, ṽi|S, F, Q, c) + log p(α). (13)

that is, via MAP estimation. Here, the corrupted measure-
ment model Q, prior probability on correct matches c are
assumed to be given. Exact evaluation of (13) is gener-
ally intractable as it involves marginalization of zi,xi,vi

and gi. This motivates approximate inference techniques
where there are two primary strategies MCMC sampling
and variational inference. As our formulation conforms to
the conjugate-exponential family, we use a variational in-
ference approach to maximizing the following lower bound
of Equation (13):

Jvar(S, F, π) =

N
X

i=1

Eqi log p(x̃i, ṽi,xi,vi, zi, gi|S, F, Q, c)

−
N
X

i=1

Eqi log qi(xi,vi, zi, qi) + log p(α). (14)

Here, qi is referred to as the variational distribution and is
chosen so as to incorporate hidden variables in a tractable
way. As is commonly done, we choose qi as a product dis-
tribution

qi(xi,vi, zi, gi) =N (xi|µxi
,Rxi)N (vi|µvi

,Rvi)
Mult(zi|τi)Bernoulli(gi|ρi). (15)

The procedure iterates between variational E-steps and M-
steps until convergence. In E-steps, we update the parame-
ters of the variational distributions as

R̂−1
xi

=

M
X

k=1

τik

“

Σ−1
Sk

+ YT
k Σ−1

Fk
Yk

”

+ Σ−1
X ;

R̂−1
xi

µ̂xi
=

M
X

k=1

τik

“

Σ−1
Sk

µSk
+ YT

k Σ−1
Fk

(µvi
− uk)

”

+ Σ−1
X x̃i;

R̂−1
vi

=

M
X

k=1

τikΣ
−1
Fk

+ ρiΣ
−1
V ;

R̂−1
vi

µ̂vi
=

M
X

k=1

τikΣ
−1
Fk

(Akµxi
+ bk) + ρiΣ

−1
V ṽi;

log τ̂ik = log πk + logN (µxi
|µSk

,ΣSk) + logN (µvi
|fk(µxi

),ΣFk)

− 1

2
tr(Σ−1

Sk
Rxi) −

1

2
tr(Σ−1

Fk
(Rxi + Rvi)) + const;

with
Pk

i=1 τ̂ik = 1 and fk(µxi
) = Ykxi + uk.

η(ρ̂i) = η(ci) + logN (ṽi|µvi
,ΣV ) − 1

2
tr(Σ−1

V Rvi) − log Q(ṽi);

ρ̂i =
eη(ρ̂i)

1 + eη(ρ̂i)
.

While the M-steps update the spatial models as

µ̂Sk
=

1

wk

n
X

i=1

τikµxi
;

Σ̂Sk =
1

wk

n
X

i=1

τik

“

Rxi + (µxi
− µ̂Sk

)(µxi
− µ̂Sk

)T
”

;

where wk =
∑n

i=1 τik and update the flow models as

α̂ =

 

Σα +

N
X

i=1

τik(GT
i Σ−1

F Gi + Hi)+

!−1

 

Σ−1
α α0 +

N
X

i=1

τik(GT
i Σ−1

F µvi
)

!

,

where Gi = [g(1)
i , . . . ,g(L)

i ] with g(l)
i = Y(l)xi+u(l), Hi

is a L × L matrix with Hi(l, k) = tr(Σ−1
F Y(l)Rxi

Y(l)).

4. Experiments
We present two applications of our method for statistical

modeling of transformations. The first analyzes the aggre-
gate motion fields of people moving in a busy train station,
while the second analyzes dense flow from weather data.

4.1. Analyzing People’s Motion Patterns

Figure 1(a) shows a single frame from an video sequence
captured in New York’s Grand Central station. The video
sequence is 15 minutes duration captured at 24 fps at an
image resolution of 1440 × 1080. The first 1000 frames
are used to initialize the model. The ensuing 18000 frames
are processed using the tracking algorithm of [16]. In such
scenes, one expects a degree of regularity of motion due to a
variety of factors including the movement of large crowds of
people negotiated in a confined space or common entrances
and exits. Our aim is to capture the aggregate motion pat-
terns solely from local motion observations.
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Figure 6. Three are three representative flows discovered by the Lie algebra based flow model. The region that is not covered by the flow
is masked. The blue arrows indicate the flow field, and a subset of persons governed by the flow is highlighted with red boxes.

Figure 5. The plot of all extracted local motions.

Figure 7. The performance comparison on people motion analysis.

Figure 8. An example of outlier detected by the flow model.

In such scenes, tracking errors commonly occur due to a
variety of issues such as occlusions and individuals crossing
paths. In Figure 5 we show roughly 10% of the extracted
local motions. It can be observed that, even in the pres-
ence of errors, there is observable structure in the motions.

Additionally, one can observe that structured motion fields
overlap with each other.

We apply our flow model in order to recover these flows,
setting the number of flows to M = 16. The noise covari-
ance matrices are all set to 32I (a rough estimation, final
performance is relatively insensitive to these settings). Fig-
ure 6 illustrates several of the learned flows, where affine
deformations are represented as flow fields (blue). Individ-
ual motions associated with this flow (red) demonstrate that
the affine model is able to capture aggregate motion over a
large region, despite the fact that individuals following these
patterns appear distinct locations and times and walk along
different paths to different locations.

We compare our results to the modeling strategy in other
work [9, 20, 21], which groups the locations and local mo-
tions based on their proximity and models each groups with
a prototypical motion. For conciseness, we refer to our
method as “LAB-FM” (Lie Algebra Based Flow Model)
and the comparison model as “JLV-GM”(Joint Location-
Velocity Group Model). In order to have a fair comparison,
JLV-GM is formulated similarly, so as to cope with noise
and outliers. The consequence being that the essential dif-
ference arises from exploiting the group structure in the Lie
Algebra space.

In order to mitigate the influence of outliers, we com-
pare their performance in terms of the fraction of samples
whose squared errors are below some thresholds. This mea-
sures the ability of the model in describing the observed mo-
tion in the scene. Setting the thresholds to 10−4 and 10−3,
and the number of mixing models M to different values,
we obtain the performance curve shown in figure 7. The
results clearly show that the performance increases as we
add more components, and our LAB-FM consistently out-
performs JLV-GM, that is at a given threshold, the fraction
of motions which is below this error threshold is higher for
the LAB-FM than for JLV-GM.

While outliers may be indicative of many things, they
primarily correspond to motions which differ from the typi-
cal behavior of individuals in the scene. Figure 8 shows one
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(a) The observed optical flow (b) The field yielded by LAB-FM (c) The field yielded by JLV-GM

Figure 9. The colorize visualization of velocity fields of the weather image. It uses red to to represent horizontal velocity and blue to
represent vertical velocity. The color of an arbitrary velocity is derived by combining red and blue with the their projection on x and y axes.

Figure 10. Comparison of the velocity fields at a local region.

Figure 11. The performance comparison on weather data.

of the outliers. There are three dominant flow fields in the
scene. The “outlier”, however, walks towards the escalator
(a converging destination for two of the flows from either
top or bottom of the scene) from a horizontal direction. The
implication is that during the observation period, the ma-
jority of individuals in this region either enter the escalator
from one of two directions or pass it by.

4.2. Modeling the Dynamics of Weather Data

Our second application considers analysis of dense opti-
cal flow derived from a sequence of satellite images avail-
able at NASA’s GOES website. The acquisition times are
separated by 30 minutes. We apply the optical flow algo-
rithms of [5] to the images which is shown in figure 1.

Here we have set the number of mixture models to be
M = 40 for both LAB-FM and JLV-GM, and all noise vari-
ances to 0.1. Whereas the dense flow algorithm computes
arbitrary flow fields, LAB-FM approximates the dense flow

Figure 12. The background image is the map of gradients of the
flow coefficients, upon which there are three graphs showing the
the optical flows at the high-contrast local regions. There may be
interesting weather phenomena in these regions.

as a collection of spatially varying fields. JLV-GM, on other
hand, groups flows using a homogeneous representation. In
both cases, the dense flow is described in a more parsimo-
nious manner (model order 40). For comparison, the results
are visualized in figure 9 using colorization. We can see
that for a large portion of the observed flow, the “color”
varies smoothly. LAB-FM captures smoothly varying fields
while JLV-GM approximates the flow with constant-value
blocks leading to noticeable artifacts. This can be seen more
clearly in figure 10, which compares the reconstruction re-
sults of a local region in detail.

As the dense optical flow are assumed to be free of
outliers, we can quantitatively compare the methods using
mean-square error of the approximation. This is shown in
figure 11 for 50 Monte-Carlo runs using a range of model
orders. LAB-FM clearly outperforms JLV-GM by a signifi-
cant factor (about 10).

Furthermore, the geometric information captured by the
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flow models provides insight at a high level. Here we are
interested in using the flow analysis to detect regions in
which the flow is changing dramatically. This analysis is
performed simply by examining the gradient of the α-vector
parameterizing the affine flow in the Lie Algebra space.
Large gradients indicate that the flow is changing abruptly
at a location. Figure 12 shows a map of the gradients where
high contrast regions are indicative of interfaces between
dynamic weather phenomenon.

5. Conclusion
We presented a new approach to modeling dynamic vi-

sual scenes comprised of two key aspects: the concept of
flow to unify the modeling of moving elements at different
locations with geometric consistency, and a Lie algebraic
representation that enables application of statistical infer-
ence techniques to geometric transforms residing in a group.
Furthermore, we developed a variational inference method
exploiting the Lie algebraic representation.

These models are evaluated on two applications and
compared with the joint location-velocity model widely
used in motion analysis. In both applications, the proposed
method exhibits superior performance. The experimental
results demonstrate that our approach is suitable for mod-
eling real phenomena typically involving spatially varying
motion fields, and that it is capable of discovering underly-
ing regularities governing the dynamics.

It should be emphasized that the notion of flow and the
Lie algebraic representation together constitute a general
methodology that can be incorporated into any algebraic
and statistical framework for dynamic modeling. In addi-
tion to affine transforms, it can also be extended to work
with other transforms including nonlinear families. We be-
lieve that with proper generalization, a broad spectrum of
applications can benefit from it.

Acknowledgement

This research was partially supported by HSN (Hetero-
geneous Sensor Networks), which receives support from
Army Research Office (ARO) Multidisciplinary Research
Initiative (MURI) program (Award number W911NF-06-1-
0076).

References
[1] V. Ablavsky, A. Thangali, and S. Sclaroff. Layered graphical

models for tracking partially-occluded objects. In Proc. of
CVPR’08, 2008.

[2] A. A. Agrachev and Y. L. Sachkov. Control Theory from the
Geometric Viewpoint. Springer, 2004.

[3] Bastian, K. Schindler, and L. V. Gool. Coupled detection
and trajectory estimation for multi-object tracking. In Proc.
of ICCV’07, 2007.

[4] E. Bayro-Corrochano and J. Ortegon-Aguilar. Lie algebra
approach for tracking and 3d motion estimation. Image and
Vision Computing, 25:907–921, 2007.

[5] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
In Proc. of ECCV’04, 2004.

[6] A. B. Chan and N. Vasconcelos. Modeling, clustering, and
segmenting video with mixtures of dynamic textures. IEEE
Trans. on PAMI, 30(5):909–926, May 2008.

[7] Y. Guo, S. Hsu, H. S. Sawhney, R. Kumar, and Y. Shan. Ro-
bust object matching for persistent tracking with heteroge-
neous features. IEEE Trans. on PAMI, 29(5):824–839, May
2007.

[8] B. C. Hall. Lie Groups, Lie Algebras, and Representations:
An Elementary Introduction. Springer, 2003.

[9] I. N. Junejo and H. Foroosh. Trajectory rectification and path
modeling for video surveillance. In Proc. of ICCV’07, 2007.

[10] J. M. Lee. Introduction to Smooth Manifolds. Springer,
2002.

[11] X. Miao and R. P. N. Rao. Learning the lie groups of visual
invariance. Neural Computation, 19:2665–2693, 2007.

[12] H. T. Nguyen, Q. Ji, and A. W. Smeulders. Spatio-temporal
context for robust multitarget tracking. IEEE Trans. on
PAMI, 29(1):52–64, Jan. 2007.

[13] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Seg-
menting, modeling, and matching video clips containing
multiple moving objects. IEEE Trans. on PAMI, 29(3):477–
491, Mar. 2007.

[14] V. Sharma and J. W. Davis. Integrating appearance and mo-
tion cues for simultaneous detection and segmentation of
pedestrians. In Proc. of ICCV’07, 2007.

[15] E. Shechtman and M. Irani. Space-time behavior-based cor-
relation or how to tell if two underlying motion fields are
similar without computing them? IEEE Trans. on PAMI,
29(11):2045–2056, Nov. 2007.

[16] C. Stauffer. Adaptive background mixture models for real-
time tracking. In Proc. of CVPR’99, 1999.

[17] A. Thayananthan, M. Iwasaki, and R. Cipolla. Principled fu-
sion of high-level model and low-level cues for motion seg-
mentation. In Proc. of CVPR’08, 2008.

[18] O. Tuzel, F. Porikli, and P. Meer. Learning on lie groups for
invariant detection and tracking. In Proc. of CVPR’08, 2008.

[19] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process
dynamical models for human motion. IEEE Trans. on PAMI,
30(2):283–298, Feb. 2008.

[20] X. Wang, K. T. Ma, G.-W. Ng, and E. Grimson. Trajectory
analysis and semantic region modeling using a nonparamet-
ric bayesian model. In Proc. of CVPR’08, 2008.

[21] X. Wang, X. Ma, and E. Grimson. Unsupervised activ-
ity perception by hierarchical bayesian models. In Proc. of
CVPR’07, 2007.

[22] T. Xiang and S. Gong. Beyond tracking: Modeling activity
and understanding behavior. Int’l. J. Comp. Vision, 67(1):21–
51, 2006.

[23] T. Zhao, R. Nevatia, and B. Wu. Segmentation and tracking
of multiple humans in crowded environments. IEEE Trans.
on PAMI, 30(7):1198–1211, July 2008.

754


