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Abstract— The Virtual Autonomous Navigation Environment
(VANE) is a high fidelity, physics-based simulation process
that produces realistic simulated sensor output for use in the
development and testing of Autonomous Mobility Systems (AMS).
The VANE produces simulated sensor output for ranging and
camera sensors that are characterized by a few easily deter-
mined input parameters. This flexibility allows for the efficient
characterization of a sensor interaction with a particular AMS.
This paper presents the development of these models and some
initial results.

I. INTRODUCTION

The VANE is currently being developed by the U.S. Army

Engineer Research and Development Center. The VANE is

intended to provide a realistic simulated environment for

testing AMS on unmanned ground vehicles. Physics-based

sensor, thermal, vehicle-terrain interaction, groundwater, and

reflectance models will be incorporated into the VANE. Fig.

1 shows the VANE simulation concept, with the sensor model

piece shown in the bottom middle box.

Fig. 1. The VANE simulation concept.

While VANE must produce high fidelity simulated sensor

data, the sensor models must also be efficient and flexible be-

cause of the intended use of the VANE. As shown in the right

side of Fig. 1, the primary customers of the VANE are AMS

developers. To make the VANE tools open and accessible to

these customers, the sensor models should not require a highly

detailed characterization of each sensor. Instead, the model

should take a few easily measurable parameters as input.

Furthermore, since a typical VANE simulation may produce

hundreds or even thousands of images, as well as perhaps

tens of thousands of LIDAR pulses, the software models

should be developed with a minimum level of computational

requirements.

With these goals and limitations in mind, Light Detection

and Ranging (LIDAR) and Charge Coupled Device (CCD)

models have been developed to serve as the primary sensor

models in the VANE. Both models are somewhat generic

in that they take simple parameters describing the geometry

and/or optics of the system, as well as the sensor responses

and electronic processing, as input. Both the LIDAR and CCD

models are described in this work.

II. THE QUICK CASTER

Ideal images of scenes in the VANE are produced with a

ray caster, called the Quick Caster (QC), that was developed

to provide input to a variety of sensor applications within

the framework of a large scale computational test bed [1].

The QC program uses ray casting techniques to provide the

necessary scene information to the visual CCD camera models

and the LIDAR sensor models. The QC uses the triangular

facets from the meshes used by the various physics-based

models to define the scene geometry. Other material properties

(color, temperature, reflectance, etc.) can be assigned by either

node or facet. Since highly detailed scenes can potentially

exceed several billion facets, the QC program is parallelized

by facet rather than the typical parallelization by ray, and

is fully distributed and scalable on large distributed memory

computers.

III. CCD MODEL

The CCD sensor model used in VANE is similar to that

outlined by [2] in that the image is processed in a sequen-

tial manner to account for the camera filter, optical system,

vignetting, field stop, CCD response function, and exposure

time. However, while [2] calculate the point spread function

to characterize the optical system, the VANE sensor model

uses a geometrical optics ray-tracing method to trace each ray

through the optical system. In principle, these methods should

produce identical results as long as the spatial sampling of

the geometrical method has a high resolution. Each of the
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sequential operations that map the ideal image from the QC

to a synthetic sensor image is described below.

A. Filter Functions and CCD Spectral Response

The QC can track up to six unique user defined spectral

bands during a simulation. For a red-green-blue (RGB) color

camera, the width and center of the red, green, and blue bands

are defined by the properties of the CCD color filters. The

CCD filter functions are applied to the input light in pre-

processing. The power density of the input light spectrum is

integrated over the filter function for each band. The filter

functions shown in Fig. 2 are for the Point Grey Bumblebee

CCD camera, which uses a Sony ICX204 color CCD sensor.

The filter function and the spectral response for this camera

are given as one curve in the data sheet. However, if they

were separate, the integral for each band would simply be

integrated with both the filter and the spectral response as

weighting functions.
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Fig. 2. Example of filter functions for the Bumblebee RGB cameras.

B. Geometrical Optical Model

For a pinhole camera model with a given focal length f , it

is straightforward to create an ideal image for an unaberrated

system. If the imaging system is not ideal (as is always the case

to some degree), then there will be some defocus and possibly

other aberrations that must be accounted for in the aberration

function. For an object at (xo,yo,zo), where the origin is at

the center of the camera pupil and +z is in the direction of

the object and perpendicular to the pupil plane, the general

aberration function can be expanded in even powers of the

coordinates (xo,yo) and (xp,yp), where (xp,yp) are the pupil

coordinates. Discarding terms of order six and higher gives

the aberration function with the primary Seidel aberrations,

defined by [3]

W (xo,yo;xp,yp)= Aρ2 +Bρ4 +Cκ4 +Dr2ρ2 +Er2κ2 +Fρ2κ2

(1)

where

r2 = x2
o + y2

o, ρ2 = x2
p + y2

p, κ2 = xoxp + yoyp (2)

and A=defocus, B=spherical aberration, C=astigmatism,

D=curvature, E=distortion, and F=coma. According to [4], the

defocus parameter, A can be estimated by

A =
a2

2ro

ro − s

s
(3)

where a is the radius of the exit pupil, r0 is the object distance,

and s is the in-focus distance, given by

s =
( 1

f
−

1

d

)

−1
(4)

where d is the distance from the exit pupil to the image plane.

Given the Seidel parameters, the deviation from the ideal

image coordinates, (xi,yi) can be approximated from the

aberration function by

∆x = xi − xo = −Ri

∂W

∂xp

, ∆y = yi − yo = −Ri

∂W

∂yp

(5)

where Ri is approximated as the distance from the exit

pupil to the ideal image plane. To be exact, Ri should be

taken as the distance from the image plane to the aberrated

wavefront emerging from the exit pupil, but the error in this

approximation is small if the aberrations are small compared

to the distance Ri, as is the case for commercially available

cameras. Furthermore, (5) assumes the image space is filled

with air, for which the index of refraction is ≈1.

According to (1), input for the sensor model consists of not

only an ideal image but also the geometry of the scene in

question. Therefore, the QC calculates a 2000×2000 array of

the distance to the object from each pixel. From this, (∆x,∆y)

values are calculated and applied to the ideal image. The

(xi,yi) locations of the transformed points are interpolated to

a grid representing the CCD pixel array with nearest neighbor

interpolation, and the points that fall outside the field stop are

disregarded. The virtual grid can be equal to the resolution of

the pixel grid or greater than the resolution by a factor of an

integer. For a typical CCD array of 1024×768 (for example,

the Sony ICX204), a sample factor of 3 or more is possible

from a 2000×2000 ideal image. The energy falling on each

pixel is determined by integrating the irradiance over the area

of the pixel, with the number of integration steps equal to the

square of the sample factor.

C. Pixel Vignetting, Gain, and Gamma setting

Pixel vignetting, which is unique to CCD cameras, is caused

by the lower incident angle of the light on pixels near the edge

of the array, resulting in a darkening of the image near the

edges. The vignetting function, V (xi,yi) used for this model

is given by [5]

V (xi,yi) = (1−αr)

(

f
√

f 2 + x2
i + y2

i

)4

(6)

with α as a parameter describing the optical properties of

the multi-lens system. Note that tilt term from [5] has been

neglected in this model because it is not relevant for imaging

scenes with great variations in depth. After the vignetting
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function is applied to the image, all the pixels are multiplied

by the gain setting and raised to the gamma. The real numbers

are rounded to integers to produce the final RGB image.

D. Inputs to the CCD model

The CCD model requires an input file with a few relatively

easily determined parameters. The parameters describing the

geometry of the physical camera are the distance from the exit

pupil to the CCD array, the dimensions of the CCD array, and

the number of pixels in the CCD array. The optical system

is described by the focal length, the radius of the entrance

pupil, the exposure time, the gamma setting, the vignetting

parameter, and the five primary Seidel aberrations. Finally, the

CCD electronics are described by a gain factor, which may or

may not have a chromatic dependence. Therefore, there are 16

independent parameters required to fully describe the model.

IV. LIDAR MODEL

As mentioned above, the geometric optics model takes an

array of distances to facets in the scene as input. This distance

array can also be used as input for the LIDAR model. In

this model, the beam is represented by the diverging rays

passing from a virtual focal point located several meters behind

the sensor, through an image plane, and into the scene. The

intersections of these rays with facets in the scene are found,

and a return signal is calculated for each ray based on the solid

angle of the detector relative to the facet and the reflectance

properties of the facet. The contribution of each ray to the

final signal is put into a time histogram, with the bins size

determined by the time resolution of the sensor electronics.

The model presented here is roughly representative of the

Sick LMS-291, for which mathematical models have previ-

ously been developed by [6] and [7], although the parameters

of our model are variable and somewhat arbitrary since we

have not fully characterized the sensor. Our model differs from

these in that we use ray-tracing through an ideal-image plane

to define the laser pulse shape and emittance by using a virtual

focal length and detector dimensions.

A. Beam Divergence

The divergence of a circular beam can be simulated by

tracing rays from a focal point through an ideal image plane

and finding intersections of the rays with facets. A circular

beam with a radius r at the aperture and a divergence Θ, the

beam is simulated as a collection of rays passing through an

2r×2r image plane with a focal length, f , given by

f =
r

tan(Θ
2
)

(7)

For a circular beam, the rays in the square image plane that

lie outside the beam radius are ignored, yielding a circular

diverging beam. The example shown in this paper is for a

beam with a divergence of 10 mrad and a spot diameter of

2.5 cm at the exit aperture. This gives a focal length of 2.5 m.

The ray tracing method through an ideal image plane

approximates the divergence of a continuous beam as a set

of discrete rays. The reflected intensity of each ray is added

to the resulting pulse to reproduce the signal made by a

continuous beam. The number N of discrete rays in one

dimension necessary to realistically reproduce a continuous

signal depends on the spatial resolution of the beam at the

target x, the aperture radius r, the maximum range Rmax, and

the divergence of the beam Θ

N =
2(r +R tan(Θ

2
))

x
(8)

The necessary spatial resolution has been determined empir-

ically through repeated trials using several geometries. The

pulse vs time signals were compared for varying spatial

resolutions at the target. The shape of the return pulse varied

as the number of pixels was increased up to a certain point;

beyond that point increases to the resolution did not affect the

pulse shape. Therefore, this characteristic resolution, which is

about 1 cm at a distance of 80 m, is the lowest threshold

on resolution for simulating a laser pulse with the ideal

image method. The characteristic spatial resolution threshold

is obviously dependent on the time resolution; the detector

tested in this example was assumed to have a 0.5 ns time

step.

B. Beam Profile

The LIDAR model presented here assumes a Gaussian beam

profile, for which the intensity as a function of radius r from

the center of the beam spot and distance z from the aperture

is

I(r,z) = I0

( ω0

ω(z)

)2

exp
(

−2r2

ω2(z)

)

(9)

where zr = πω2
0 /λ and ω0 = λ/(πΘ), where λ is the wave-

length of the laser. The value of I0 is found by integrating 9

over r and setting the result equal to the laser power, P.

I0 =
2P

πω2
0

(10)

and ω(z) is given by

ω(z) = ω0

√

1+
( z

zr

)2

(11)

The maximum intensity of the Gaussian profile decreases as

≈ 1/(1+z2), so the intensity of the return decreases drastically

with increasing distance.

C. Inputs to the LIDAR model

The LIDAR model takes twelve parameters as input, similar

to the parameterization used by [8]. The parameters describing

the laser pulse are the peak laser power, the beam radius at

the exit aperture, the wavelength of the laser, and the pulse

duration. The receiver is characterized by its length, width,

and spectral response curve. Finally, the electronics of the

system are parameterized by a start time, a stop time, a time

resolution, and gain factor. Additional parameters may be

incorporated as the model is extended and validated against

real data.
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V. RESULTS

The results are presented in this section and discussed

qualitatively. Validation experiments are being planned to

quantitatively evaluate both the CCD and LIDAR models.

A. CCD model

An image produced by the sensor model described in the

first section is shown in Fig. 3 and compared to the real image

in Fig. 4. Several features of the camera model are evident in

these images, including the vignetting near the lower left and

right corners of the simulated image, the detailed shadows

produced by a gamma setting of 0.5 in the camera model,

and the slight distortion of the shape of the horizon due to

optical effects. The qualitative agreement between the images

gives a good indication that the basic features of the model

are correct.

Fig. 3. Simulated image taken with a software model of the Bumblebee.

Fig. 4. Real image taken with the Point Grey Bumblebee RGB camera with
Sony ICX204 CCD.

B. LIDAR model

An example of a pulse vs time curve as produced by the

LIDAR model is shown in Fig. 5. These pulses are simulated

by using the geometry depicted in Fig. 6, which is a bush in

front of a solid wall. The top figure is a single pulse taken

at 6 m, while the bottom shows a pulse from 86 m. Both

signals show an initial return from the bush, followed by a

small amount of scattering from the wall behind the bush.
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(a) LIDAR return pulse from the bush at 6 m.
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(b) LIDAR return pulse from the bush at 86 m.

Fig. 5. Example of LIDAR returns at 6 m and 86 m from the bush shown
in Fig. 6.

There are several interesting points of comparison between

Fig. 5(a) and Fig. 5(b). First, there is roughly a factor of 104

decrease in signal strength from 6 m to 86 m, which is to be

expected from (9). Second, the signal from the more distant

scan is also relatively more complex. This complexity is due

to the much increased beam spot size at this distance. With

a divergence of 10 mrad, the beam has a diameter of 88 cm

for the 86 m scan, nearly covering the entire bush. The beam

diameter for the pulse from 6 m is only 8.5 cm, covering only

a small portion of the bush.

VI. CONCLUSION AND FUTURE WORK

We have developed a semi-generic model of both a LIDAR

and a CCD camera. These sensor models will be used to

provide input for autonomous mobility systems as part of the

VANE. A signal processing algorithm to extract distance from

the LIDAR pulse will be added to the model, and validation

of both the LIDAR and CCD models against real sensor data

is being initiated.
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Fig. 6. Geometry of the bush and wall used to test the LIDAR model. Note
that this image is an ideal image from the ray caster.
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