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Abstract—We show how good quantum error-correcting codes
can be constructed using generalized concatenation. The inner
codes are quantum codes, the outer codes can be linear or
nonlinear classical codes. Many new good codes are found,
including both stabilizer codes as well as so-called nonadditive
codes.

Index Terms—Generalized concatenated codes, quantum error
correction, stabilizer codes, nonadditive codes

I. INTRODUCTION

The idea of concatenated codes, originally described by
Forney in a seminal book in 1966 [10], was introduced to
quantum computation three decades later [1], [12], [18], [19].
These concatenated quantum codes play a central role in fault
tolerant quantum computation (FTQC) as well as in the study
of constructing good degenerate quantum codes.

Blokh and Zyablov [3], followed by Zinoviev [25] intro-
duced the concept of generalized concatenated codes. These
codes improve the parameters of conventional concatenated
codes for short block lengths [25] as well as their asymptotic
performance [4]. Many good classical codes, linear and non-
linear, can be constructed using this method.

In [17] we, together with Smith and Smolin, have introduced
generalized concatenated quantum codes (GCQC). It is shown
that GCQC in its simplest form, i. e., two level concatenation,
is already a powerful tool to produce good nonadditive quan-
tum codes which outperform any stabilizer codes.

This paper focuses on the multilevel concatenation for
quantum codes. We use the framework of stabilizer codes and
the generalization to codeword stabilized (CWS) codes [6],
[7] and union stabilizer codes [15], [16]. This allows to use
classical codes as outer codes. We further extend our multilevel
concatenation technique to the case of different inner codes,
which allows us to construct codes of various lengths.

II. BACKGROUND AND NOTATIONS

A general quantum error-correcting code (QECC), denoted
by C = ((n,K, d))q , is a K-dimension subspace of the Hilbert
space H⊗nq of dimension qn that is the tensor product of n
complex Hilbert spaces Hq = Cq of dimension q. Here we
restrict q = pm to be a prime power. A QECC with minimum

distance d allows to correct arbitrary errors that affect at most
(d− 1)/2 of the n subsystems.

Most of the known QECCs are so-called stabilizer codes
introduced independently by Gottesman [11] and Calderbank
et al. [5]. The code is defined as the joint eigenspace of a set
of commuting operators [11]. Equivalently, the code can be
described by a classical additive code C over GF (q2) that is
self-orthogonal with respect to a symplectic inner product [2],
[5]. Denoting the symplectic dual code by C∗, the minimum
distance of the quantum code is given by

d = min{wgt(c) : c ∈ C∗ \ C} ≥ dmin(C∗).

If d = dmin(C∗), the quantum code is called pure or non-
degenerate. The corresponding stabilizer (or additive) code is
denoted by C = [[n, k, d]]q and has dimension K = qk.

The first nonadditive code ((5, 6, 2))2 which has a higher
dimension than any stabilizer code of the same length correct-
ing one erasure can be explained as the union of six locally
transformed copies of the stabilizer code [[5, 0, 3]]2 (see [14],
[22]). A one-dimensional stabilizer code [[n, 0, d]] can also be
described by a graph with n vertices [23]. The corresponding
quantum states are referred to as graph states. Combining
locally equivalent graph states, the first one-error-correcting
nonadditive quantum code ((9, 12, 3))2 with higher dimension
than any stabilizer code has been found [24]. The theoretical
ground for these codeword stabilized (CWS) quantum codes
has been laid in [6], [7].

In [15], [16], the framework of union stabilizer codes
has been introduced. Starting with a stabilizer code C0 =
[[n, k, d0]]q , a union stabilizer code is given by

C =
⊕
t∈T0

tC0,

where T0 = {t1, . . . , tK} is a set of tensor products of (gener-
alized) Pauli matrices such that the spaces tiC0 are mutually
orthogonal. Then the dimension of the union stabilizer code
C is Kqk, and we will use the notation C = ((n,Kqk, d))q .
Similar to stabilizer codes, a union stabilizer code can be
described in terms of classical codes. Given the symplectic
dual C∗0 of the additive code C0 associated to the stabilizer



code C0, the union normalizer code is the union of cosets of
C∗0 given by

C∗ =
⋃
t∈T0

C∗0 + t = {c+ tj : c ∈ C∗0 , j = 1, . . . ,K}. (1)

Here T0 is the set of vectors ti ∈ Fnq2 corresponding to the
generalized Pauli matrices ti ∈ T0.

Proposition 1 (cf. [16]): The minimum distance of a union
stabilizer code with union normalizer code C∗ is given by

d = min{wgt(v) : v ∈ (C∗ − C∗) \ C̃0}
≥ dmin(C∗)
= min{dist(c+ ti, c

′ + ti′) : ti, ti′ ∈ T0, c, c′ ∈ C∗0
c+ ti 6= c′ + ti′},

where C∗ − C∗ := {a − b : a, b ∈ C∗} denotes the set of all
differences of vectors in C∗, and C̃0 ≤ C0 is the symplectic
dual of the additive closure of the (in general nonadditive)
union normalizer code C∗.

Hence in order to construct a union stabilizer code with
distance d, it suffices to find a large classical code C∗ with
minimum distance d that can be decomposed into cosets of
an additive code C∗0 that contains its symplectic dual. Two
extremal cases are stabilizer codes where only one coset is
used, and CWS codes for which C∗0 = C0 is a symplectic
self-dual code.

III. GENERALIZED CONCATENATION

The basic idea of generalized concatenated quantum codes
[17] uses just two levels of concatenation. Here we first present
multilevel concatenation for quantum codes. Then we discuss
a special case that can be described by classical codes only.

A. Multilevel Concatenation for Quantum Codes
The inner quantum code B(0) = ((n, q1q2 · · · qr, d1))q is

first partitioned into q1 mutually orthogonal subcodes B
(1)
i1

(0 ≤ i1 ≤ q1 − 1), where each B(1)
i1

is an ((n, q2 · · · qr, d2))q
code. Then each B

(1)
i1

is partitioned into q2 mutually or-
thogonal subcodes B

(2)
i1i2

(0 ≤ i2 ≤ q2 − 1), where B
(2)
i1i2

has parameters ((n, q3 · · · qr, d3))q , and so on. Finally, each
B

(r−2)
i1i2...ir−2

is partitioned into qr−1 mutually orthogonal sub-

codes B(r−1)
i1i2...ir−1

= ((n, qr, dr))q for 0 ≤ ir−1 ≤ qr−1 − 1.
Thus

B(0) =
q1−1⊕
i1=0

B
(1)
i1
, B

(1)
i1

=
q2−1⊕
i2=0

B
(2)
i1i2

, . . . , (2)

and d1 ≤ d2 ≤ . . . ≤ dr. A typical basis vector of B(0) will be
denoted by |ϕi1i2...ir 〉 (0 ≤ i1 ≤ q1−1, . . . , 0 ≤ ir ≤ qr−1),
with subscripts chosen such that |ϕi1i2...ir 〉 is a basis vector
of all B(1)

i1
, B

(2)
i1i2

, . . . , B
(r−1)
i1i2...ir−1

.
In addition, we take as outer codes a collection of r quantum

codes A1, . . . , Ar, where Aj is an ((N,Mj , δj))qj code over
the Hilbert space H⊗Nqj . Denote the standard basis of each
H⊗Nqj by

{|i(j)1 〉 ⊗ . . .⊗ |i
(j)
N 〉 : 0 ≤ i(j)ν ≤ qj − 1, 1 ≤ ν ≤ N}

(where j runs from 1 to r), and the bases of the codes Aj are
denoted by {|φ(j)

lj
〉 : 0 ≤ lj ≤ Mj − 1}. Expanding the basis

vectors of Aj with respect to the standard basis of H⊗Nj we
obtain

|φ(j)
lj
〉 =

∑
i
(j)
1 i

(j)
2 ...i

(j)
N

α
(j)

lj ,i
(j)
1 i

(j)
2 ...i

(j)
N

|i(j)1 〉 ⊗ |i
(j)
2 〉 ⊗ . . .⊗ |i

(j)
N 〉.

(3)

The basis vectors of the tensor product of all outer codes are
given by

|φ(1)
l1
〉 ⊗ |φ(2)

l2
〉 ⊗ . . .⊗ |φ(r)

lr
〉,

where lj runs from 0 to Mj−1. Expanding these basis vectors
with respect to the standard bases we obtain

|φ(1)
l1
〉 ⊗ |φ(2)

l2
〉 ⊗ · · · ⊗ |φ(r)

lr
〉 = ∑

i
(1)
1 i

(1)
2 ...i

(1)
N

α
(1)

l1,i
(1)
1 i

(1)
2 ...i

(1)
N

|i(1)1 〉 ⊗ |i
(1)
2 〉 ⊗ . . .⊗ |i

(1)
N 〉


⊗

 ∑
i
(2)
1 i

(2)
2 ...i

(2)
N

α
(2)

l2,i
(2)
1 i

(2)
2 ...i

(2)
N

|i(2)1 〉 ⊗ |i
(2)
2 〉 ⊗ . . .⊗ |i

(2)
N 〉


. . .

⊗

 ∑
i
(r)
1 i

(r)
2 ...i

(r)
N

α
(r)

lr,i
(r)
1 i

(r)
2 ...i

(r)
N

|i(r)1 〉 ⊗ |i
(r)
2 〉 ⊗ . . .⊗ |i

(r)
N 〉

 .

(4)

The basis of the resulting generalized concatenated quantum
code Q is given by replacing the basis vectors in Eq. (4) using
the mapping

|i(1)ν 〉 ⊗ |i(2)ν 〉 ⊗ . . .⊗ |i(r)ν 〉 7→ |ϕi(1)ν i
(2)
ν ...i

(r)
ν
〉

for 1 ≤ ν ≤ N . Hence the basis of Q is given by

|ψl1l2...lr 〉 =
∑

α
(1)

l1,i
(1)
1 i

(1)
2 ...i

(1)
N

· · ·α(r)

lr,i
(r)
1 i

(r)
2 ...i

(r)
N

|ϕ
i
(1)
1 i

(2)
1 ...i

(r)
1
〉 ⊗ . . .⊗ |ϕ

i
(1)
N i

(2)
N ...i

(r)
N

〉.

So Q is a quantum code in the Hilbert space H⊗Nnq of
dimension M = M1M2 · · ·Mr. As already mentioned, the
construction given in [17] is a two-level construction with
r = 2, while the concatenation of quantum codes used in the
context of fault tolerant quantum computation (cf. [1], [12],
[18], [19]) is a one-level construction, i. e. r = 1.

B. Classical Outer Codes

From now on we restrict ourselves in constructing union sta-
bilizer codes. For simplicity we consider only nondegenerate
codes here.

We take the inner code B(0) to be an ((n,Kqk, d1))q nonde-
generate union stabilizer code, given by a classical symplectic
self-orthogonal additive code C0 ⊂ C∗0 = (n, qn+k, dr)q2 and



a set T (0) of K = q1q2 · · · qr−1 coset representatives. The
corresponding classical union normalizer code is

C∗ = B∗(0) =
⋃

t∈T (0)

C∗0 + t.

The decomposition (2) of the inner quantum code B(0) into
mutually orthogonal union stabilizer codes is based on the
decomposition of the union normalizer code B∗(0) that is
obtained by partitioning the coset representatives

T (0) =
q1−1⋃
i1=0

T (1)
i1

, T (1)
i1

=
q2−1⋃
i2=0

T (2)
i1i2

, . . .

This defines union normalizer codes B∗(j) given by

B∗(j)i1i2...ij−1
=

⋃
t∈T (j)

i1i2...ij−1

C∗0 + t.

The coset representatives in T (0) will be denoted by ti1i2...ir−1

with 0 ≤ i1 ≤ q1 − 1, . . . , 0 ≤ ir−1 ≤ qr−1 − 1.
The indices are chosen such that ti1i2...ir−1 belongs to all
T (1)
i1

, T (2)
i1i2

, . . . , T (r−2)
i1i2...ir−2

.
Here B∗(0) is a classical code over GF (q2) with parameters

(n, q1q2 · · · qr−1q
n+k, d1)q2 that is the union of q1 disjoint

codes B∗(1)i1
= (n, q2 · · · qr−1q

n+k, d2)q2 , and so on. Fi-
nally, each B∗(r−2)

i1i2...ir−2
is the union of qr−1 disjoint codes

B∗(r−1)
i1i2...ir−1

= (n, qn+k, dr)q2 , each of which is a single coset
of the additive code C∗0 .

In total we use r classical outer codes. For the first r − 1
outer codes we take Ai = (N,Mi, δi)qi , a classical code over
an alphabet of size qi with length N , size Mi, and distance
δi. The code Ar is a trivial code Ar = [N,N, 1]qr where
qr = |C∗0 | = qn+k.

Next we show how to construct the classical generalized
concatenated code using the inner code B∗(0) and the outer
codes A1, . . . ,Ar. What follows is an adaption of [20, Ch. 18,
§8.2]. The trivial classical code Ar = [N,N, 1]qr on level r is
concatenated with the additive normalizer code C∗0 , resulting
in the additive code (C∗0 )N which contains its symplectic
dual CN0 . Note that this corresponds to concatenating a trivial
quantum code Ar = [[N,N, 1]]qk with the stabilizer code
C0. As a technicality we note that the alphabet size of the
trivial classical outer code Ar is qn+k, while the trivial outer
quantum code Ar is over quantum systems of dimension qk.

The first r− 1 outer codes are used to define a set of coset
representatives. For this, form an N × (r − 1) array

a
(1)
1 a

(2)
1 · · · a

(r−1)
1

a
(1)
2 a

(2)
2 · · · a

(r−1)
2

...
...

. . .
...

a
(1)
N a

(2)
N · · · a

(r−1)
N

 ,
where the first column is a codeword of A1, the second is
in A2, etc. Then replace each row a

(1)
j , a

(2)
j , . . . , a

(r−1)
j by

the coset representative t
a
(1)
j ,a

(2)
j ,...,a

(r−1)
j

= Tj . (For this,

label the elements of the alphabet of size qi by the numbers
0, 1, . . . , qi−1 in some arbitrary, but fixed way.) The resulting
N × n arrays T = (T1, . . . , TN ) (considered as vectors of
length Nn) form the new set of coset representatives of the
generalized concatenated code

C∗gc =
⋃

(T1,...,TN )

(C∗0 × . . .× C∗0 ) + (T1, . . . , TN ). (5)

Clearly, this code C∗gc has the form of a union normalizer code
as specified in (1). Hence C∗gc defines a QECC. The properties
of this code are given by the following theorem.

Theorem 2: The minimum distance of the union normalizer
code

Cgc = ((nN,M1M2 · · ·Mr−1q
kN , d))q,

corresponding to C∗gc given in (5) is

d ≥ min{δ1d1, . . . , δr−1dr−1, dr}.

Proof: Let c and c̃ be two distinct codewords of C∗gc. If
they belong to the same coset, then c − c̃ ∈ (C∗0 )N . Hence
their distance is at least dr. Now assume that c and c̃ lie
in different cosets given by the arrays (a(i)

j ) and (ã(i)
j ). If

the arrays differ in the ν th column then they differ in at
least δν places in the ν th column. By definition ti1i2...iν−1α...

and ti1i2...iν−1β... (with α 6= β) both belong to T (ν−1)
i1i2...iν−1

.

Therefore the corresponding codewords of B∗(ν−1)
i1i2...iν−1

differ
in at least dν places. Hence c and c̃ differ in at least δνdν
places.

C. Additivity Properties

We know that if C∗gc is an additive code, then the correspond-
ing quantum code Cgc is a stabilizer code. So the question is
when does generalized concatenation yield an additive code.
The following is an adaption of a result from [9].

Proposition 3: Given additive, i. e., Fp-linear, outer codes
A1, . . . ,Ar−1 and an additive inner code B, the resulting
generalized concatenated code is additive if the mapping

(a(1)
i , a

(2)
i , . . . , a

(r−1)
i ) 7→ t

a
(1)
i ,a

(2)
i ,...,a

(r−1)
i

(6)

is Fp-linear.
Hence we can construct stabilizer codes from a sequence of
nested stabilizer codes yielding a decomposition of the inner
code and classical linear outer codes.

Theorem 4: Let

B(0) = [[n, k0, d1]]q ⊃ B(1) = [[n, k1, d2]]q ⊃ . . .
. . . ⊃ B(r−1) = [[n, kr−1, dr]]q

be a sequence of nested nondegenerate stabilizer codes. This
defines a decomposition of the inner code B(0). Using r − 1
additive outer codes Ai = (N,Mi, δi)qi where qi = qki−1−ki

together with the trivial code Ar = [N,N, 1]qr where qr =
qn+kr−1 , by generalized concatenation we obtain a stabilizer
code with parameters [[nN,K, d]]q where

d ≥ min{δ1d1, δ2d2, . . . , δr−1dr−1, dr}



and
K = kNr logq(M1M2 · · ·Mr−1).

Examples for this theorem are given in the next section.

IV. EXAMPLES

A. Stabilizer Codes

Example 5: Consider the following sequence of nested sta-
bilizer codes:

B(0) = [[6, 6, 1]]2 ⊃ B(1) = [[6, 4, 2]]2 ⊃ B(2) = [[6, 0, 4]]2.

The largest code B(0) can be decomposed into four mutually
orthogonal subspaces, each of which is a code [[6, 4, 2]]2.
Then each of these codes B(1) is decomposed into 16 one-
dimensional spaces [[6, 0, 4]]2. Hence we need nontrivial outer
codes with alphabet sizes 4 and 16, which we chose to be

A1 = [6, 3, 4]4 and A2 = [6, 5, 2]16,

together with A3 = [6, 6, 1]26 . The dimension of the resulting
code is |A1|×|A2| = 43165 = 26220 = 226, and the minimum
distance is at least min{4×1, 2×2, 4} = 4. Taking an additive
map (6), we obtain a stabilizer code. As all inner codes
are GF (4)-linear, we can even chose the mapping (6) to be
GF (4)-linear, resulting in a GF (4)-linear code [[36, 26, 4]]2.
This code improves the lower bound on the minimum distance
of a stabilizer code [[36, 26, d]]2 given in [13].

Our construction allows to adopt most of the known varia-
tions of generalized concatenation for classical codes. In [8] a
modified generalized concatenation has been introduced which
uses outer code Ai of different lengths ni as well as different
inner codes B(0)

j .
Example 6: Using the stabilizer code B(1) = [[21, 15, 3]]2,

we can decompose the full space B(0) = [[21, 21, 1]]2 into 64
mutually orthogonal codes [[21, 15, 3]]2. In order to construct
a generalized concatenated quantum code of distance three,
we need a classical distance-three code over an alphabet of
size 64, e. g., the classical MDS code A1 = [65, 63, 3]26 ,
as well as the trivial code A2 = [65, 65, 1]221+15 . Then by
generalized concatenation one obtains a perfect quantum code
[[1365, 1353, 3]]2. Instead of taking 65 copies of the inner
code of length 21, we can use any combination of inner codes
B

(1)
j = [[nj , nj − 6, 3]]2 with nj ∈ {7, . . . , 17, 21}. Note that

now the trivial outer code A2 has to be modified in such a
way that by concatenation we get the normalizer code of the
direct product of the various inner codes B(1)

j . Overall we
obtain quantum codes with parameters [[n, n − 12, 3]]2 for
n = 455, . . . , 1361 and n = 1365.

Note that for quantum codes, the existence of a code
[[n, k, d]]q does not necessarily imply the existence of a
shortened code [[n− s, k− s, d]]q . In general, one would have
to analyze the weight structure of an auxiliary code, the so-
called puncture code, introduced in [21]. Varying the length
of the inner quantum codes, we can directly construct shorter
codes.

B. Nonadditive Codes

In our construction, we can also use classical nonlinear
codes as outer codes. Good nonlinear codes can be obtained
as subcodes of a linear code over a larger alphabet (or one of
its cosets) by taking only those codewords whose symbols are
taken from a subset of the alphabet. The following result can
be found in [9, Lemma 3.1]):

Proposition 7: If there exists an (n,K, d)q code, then for
any s < q, there exists an (n′,K ′, d)s code with size at least
K(s/q)n.

Example 8 (cf. [17]): We start with the sequence of inner
codes

B(0) = [[5, 5, 1]]2 ⊃ B(1) = [[5, 1, 3]]2.

For the nontrivial outer code we take a code over an alphabet
of size 25−1 = 16 and distance three. From the linear MDS
code [18, 16, 3]17 over GF (17) we can derive a nonlinear
code A1 = (18, d 16

18

172 e, 3)16 over GF (16) using Proposition
7. The resulting generalized concatenated quantum code has
parameters ((90, 281.825, 3))2, while the best stabilizer code
has parameters [[90, 81, 3]]2.
In the final example, we use three levels of concatenation and
a nonlinear classical outer code.

Example 9: Decompose the code B(0) = [[8, 8, 1]]2 using
the sequence of nested stabilizer codes

B(0) = [[8, 8, 1]]2 ⊃ B(1) = [[8, 6, 2]]2 ⊃ B(2) = [[8, 3, 3]]2.

As outer codes we need a code with alphabet size 28−6 = 4
and distance three, a code with alphabet size 26−3 = 8 and
distance two, as well as a trivial code. We take the nonlinear
code A1 = (6, d46/52e, 3)4 derived from the linear MDS code
[6, 4, 3]5 over GF (5), the linear code A2 = [6, 5, 2]8 over
GF (8), and the linear code A3 = [6, 6, 1]28+3 . The dimension
of the generalized concatenated quantum code is |A1|×|A2|×
dim(B(2))6 = 164× 85 × 23×6. Hence we get a nonadditive
code ((48, 240.356, 3))2, which has a higher dimension than
the best possible additive code [[48, 40, 3]]2.

V. DECODING

One of the advantages of concatenated codes as well as
generalized concatenated codes is that decoding can be based
on decoding algorithms for the constituent codes [9], [10]. For
quantum codes, however, it is not possible to directly measure
the “code symbols”. Instead, decoding is based on measuring
an error syndrome.

For stabilizer codes, the error syndrome is obtained by
measuring the eigenvalues of generators of the stabilizer group.
The error syndrome can be defined in such a way that it
corresponds to the error syndrome of the underlying classical
code, and hence a classical decoding algorithm can be used.

For generalized concatenated quantum codes derived from
a sequence of nested stabilizer codes as in Theorem 4, the
corresponding stabilizer groups are nested as well, with the
stabilizer of the smallest code B(r) being the largest. It is
possible to choose its generators in such a way that stabilizers
of the larger codes are generated by appropriate subsets. Hence



the components of the syndrome vector reflect the nested
structure of the inner code.

Again, we may not directly measure the syndromes of
the N copies of the inner code. Instead, we compute the
eigenvalues using some auxiliary quantum systems. Then we
derive syndromes for the outer codes which will be measured.

Details of the quantum circuits for syndrome measurement
and iterative decoding algorithms are left to further work.
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