
MIT Open Access Articles

MacWilliams identities for codes on graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Forney, G. David, Jr. (2009). "MacWilliams identifies for codes on graphs." IEEE
Information Theory Workshop, 2009 (Piscataway, N.J.: IEEE): 120-124. © 2009 IEEE

As Published: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5351248

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59361

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59361

MacWilliams Identities for Codes on Graphs
G. David Forney, Jr.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: forneyd@comcast.net

Abstract—The MacWilliams identity for linear time-invariant
convolutional codes that has recently been found by Gluesing-
Luerssen and Schneider is proved concisely, and generalized to
arbitrary group codes on graphs. A similar development yields
a short, transparent proof of the dual sum-product update rule.

I. INTRODUCTION

Finding a MacWilliams-type identity for convolutional
codes is a problem of long standing. Recently Gluesing-
Luerssen and Schneider (GLS) have formulated [1] and proved
[2] such an identity involving the (Hamming) weight adja-
cency matrix (WAM) of a linear time-invariant convolutional
code over a finite field and the WAM of its orthogonal code.

The purpose of this note is to provide a concise group-
theoretic proof of this identity, and to generalize it to arbitrary
group codes defined on graphs. We use first the general duality
result that, given a “normal” graphical realization of a group
code C, the dual (orthogonal) code C⊥ is realized by the
dual graph, in which the “constraint code” corresponding to
each node is replaced by its orthogonal code [3]. A more or
less standard development (following [4]), using the Poisson
summation formula, then proves an appropriate MacWilliams
identity between the complete or Hamming WAM of a con-
straint code and the complete or Hamming WAM of its dual.

In the special case of a state-space (trellis) realization of
a linear time-invariant convolutional code over a finite field,
all constraint codes are identical, and our result reduces to
the GLS result. Our formulation generalizes the GLS result
to arbitrary group codes defined on graphs; e.g., linear time-
varying convolutional codes, linear tail-biting codes, or trellis
codes over finite abelian groups.

We use a similar argument to provide a concise and trans-
parent proof of the dual sum-product update rule stated in [3].

II. CODES, REALIZATIONS AND GRAPHICAL MODELS

We follow the development and notation of [3].
Let {Ak, k ∈ IA} be a set of symbol variables Ak indexed

by a discrete index set IA, where each Ak is a finite abelian
group. We will mostly consider symbol variables Ak that are
vector spaces over a finite field F, but all of our results and
proofs generalize to arbitrary finite abelian groups.

A group code C is a subgroup of the Cartesian-product
group A = Πk∈IAAk. If A is actually a vector space over
a finite field F, then a linear code C is a subspace of A. From
now on, all codes will be assumed to be group or linear codes.

A generalized state realization of a code C ⊆ A is defined
by a set of state variables {Sj , j ∈ IS}, and a set of constraint
codes {Ci, i ∈ IC}, where IS and IC are two further discrete
index sets. Each state variable Sj is a finite group, or in the
linear case a vector space over F. Each constraint code Ci is
a group or linear code involving certain subsets of the symbol
and state variables. The full behavior of the realization is
the set B = (a, s) of all configurations of symbol variables
a ∈ A and state variables s ∈ S = Πj∈IS

Sj such that all
constraints are satisfied. The code generated by the realization
is the projection C = B|A of B onto A; i.e., the set of all
symbol configurations a ∈ A that appear in some (a, s) ∈ B.

For example, in a conventional state realization of a linear
code C over a finite field F, the symbol index set IA is a
conventional discrete time axis, namely the set of integers Z,
or a subinterval of Z. The state index set IS may be thought
of as the set of times that occur between consecutive pairs of
times in IA, and the state time preceding symbol time k ∈ IA
is conventionally also denoted by k ∈ IS . The constraint codes
{Ck, k ∈ IA} are linear codes indexed by the symbol index set
IA, and specify the set of all valid (sk, ak, sk+1) transitions;
i.e., for each k ∈ IA, Ck is a subspace of the Cartesian product
vector space Sk × Ak × Sk+1. The full behavior B of the
realization is the set of all symbol/state trajectories (a, s) such
that (sk, ak, sk+1) is a valid transition in Ck for all k ∈ IA.
The code C generated by the realization is the set of all symbol
trajectories a that appear in some (a, s) ∈ B.

A normal realization is defined as a generalized state real-
ization in which every symbol variable is involved in precisely
one constraint code, and every state variable is involved in
precisely two constraint codes. Thus a conventional state
realization is normal. It is shown in [3] that any generalized
state realization may be straightforwardly converted to a nor-
mal realization by introducing replication constraints, without
essentially increasing the complexity of the realization.

A normal realization has a natural graphical model, in which
each constraint code Ci corresponds to a vertex, each state
variable Sj (which by definition is involved in two constraints)
corresponds to an edge connecting the two corresponding
constraint vertices, and each symbol variable Ak (which by
definition is involved in one constraint) corresponds to a leaf or
“half-edge” connected to the corresponding constraint vertex.

For example, Figure 1 shows the graph corresponding to a
conventional state realization, which is a simple chain graph.
Here vertices are represented by square boxes, and the “half-

2009 IEEE Information Theory Workshop

978-1-4244-4983-5/09/$25.00 © 2009 IEEE 120

. . . Sk Sk+1 Sk+2 Sk+3 . . .

Ak Ak+1 Ak+2

Ck Ck+1 Ck+2

Fig. 1. Graph of a conventional state realization.

edges” corresponding to symbol variables are represented by
special “dongle” symbols.

III. DUAL NORMAL REALIZATIONS

The central duality result of [3] is the following: given a
normal realization of a code C, the dual normal realization
generates the dual code C⊥. For simplicity of exposition, we
will explain this result only for the case where C is a linear
code over a finite field F, but it holds also in the group case; see
[3]. In the linear case, the dual code C⊥ is the usual orthogonal
code to C under the usual symbolwise inner product.

We have seen that a normal realization for C is defined by a
set of symbol variables {Ak, k ∈ IA}, a set of state variables
{Sj , j ∈ IS}, and a set of constraint codes {Ci, i ∈ IC}, where
each symbol variable is involved in one constraint code, and
each state variable is involved in two constraint codes.

The definition of a dual normal realization is slightly simpler
in the case of a linear code C over the binary field F2 than in
the general case, so we discuss the binary case first. Then the
dual normal realization is defined by the same sets of symbol
and state variables, and by the set of orthogonal constraint
codes {C⊥i , i ∈ IC}, each involving the same variables as in
the primal realization. The graph of the dual realization is
thus the same as the graph of the primal realization, except
that each constraint code Ci is replaced by its orthogonal code
C⊥i .

Example 1. Consider the rate-1/2 binary linear time-invariant
convolutional code C generated by the degree-2 generators (1+
D2, 1 + D + D2), in standard D-transform notation. In other
words, C is the set of all output sequences of the single-input,
two-output linear time-invariant system over F2 whose impulse
response is (11, 01, 11, 00, . . .). This system has a conventional
four-state realization as in Figure 1 in which each symbol
variable Ak may be taken as (F2)2, each state variable Sk may
also be taken as (F2)2, and each constraint code Ck is the (6, 3)
binary linear block code generated by the three generators

00 11 10;
10 01 01;
01 11 00,

which represent the three nontrivial (state, symbol, next-
state) transitions in the impulse response of the system. The
orthogonal code C⊥k may easily be seen to be the (6, 3) binary
linear block code generated by the three generators

00 11 01;
01 10 10;
10 11 00,

. . . Sk −Sk+1 Sk+1 −Sk+2 . . .

Ak Ak+1

C⊥k C⊥k+1∼

Fig. 2. Graph of dual of a conventional state realization, with sign inverter.

which represent the three nontrivial (state, symbol, next-state)
transitions in the impulse response of a system with impulse
response (11, 10, 11, 00, . . .), or (1 + D + D2, 1 + D2) in D-
transform notation. This is indeed the generator of the orthog-
onal convolutional code C⊥ under the symbolwise definition
of the inner product that we are using here. (For the more
usual sequencewise definition of the inner product, we need
to take the time-reversal of C⊥,1 which in this case is again
the code generated by (1 + D + D2, 1 + D2).

For a linear code C over a nonbinary field F, one further
trick (originally introduced by Mittelholzer [6] to dualize
conventional state realizations over groups) is needed to define
the dual normal realization: namely, in terms of the graph of
the realization, insert a sign inverter in the middle of every
edge. In other words, invert the sign of each state variable Sk

in one of the two constraint codes in which it is involved. This
is illustrated in Figure 2 for a conventional state realization.

Example 2 (cf. [1], [2]). Consider the rate-2/3 linear time-
invariant convolutional code C over F3 with g1(D) = (1 +
D2, 2 + D, 0) and g2(D) = (1, 0, 2). In other words, C is the
set of all output sequences of the two-input, three-output linear
time-invariant system over F3 whose impulse responses are
(120, 010, 100, 000, . . .) and (102, 000, . . .). This system has
a conventional nine-state realization as in Figure 1 in which
each symbol variable Ak may be taken as (F3)3, each state
variable Sk may be taken as (F3)2, and each constraint code
Ck is the (7, 4) ternary linear block code generated by the four
generators

00 120 10;
10 010 01;
01 100 00;
00 102 00,

which represent the four nontrivial (sk, ak, sk+1) transitions
in the two impulse responses of the system. The orthogonal
code C⊥k is the (7, 3) ternary linear block code generated by
the three generators

00 010 12;
21 202 11;
22 111 00,

which represent the three nontrivial (s′k, a′k,−s′k+1) transitions

1The symbolwise inner product of two sequences a,b ∈ A is
P

k akbk ,
and that of a and a shift of b by j time units is

P
k akbk−j . The product

of the corresponding D-transforms a(D) =
P

k akDk and b(D−1) =P
k bkD−k is

P
j(

P
k akbk−j)D

j , so a is orthogonal to all shifts of b

if and only if a(D)b(D−1) = 0, or equivalently if a(D)b̃(D) = 0, where
b̃(D) is the D-transform of the time-reversed sequence b̃ = {b−k, k ∈ IA}.

121

in the impulse response of a conventional state realization
of a single-input, three-output linear system over F3, with
sign inverters as in Figure 2, whose impulse response is
(010, 202, 111, 000, . . .), or (2D + D2, 1 + D2, 2D + D2)
in D-transform notation. (Note the unconventional basis of
the dual state space.) This is indeed the generator of the
orthogonal convolutional code C⊥ under our symbolwise def-
inition of the inner product. (For the more usual sequence-
wise definition of the inner product, we need to take the time-
reversal of C⊥, which in this case is the code generated by
(1 + 2D, 1 + D2, 1 + 2D).)

IV. MACWILLIAMS IDENTITIES

Given these duality results, various MacWilliams-type iden-
tities may be obtained in a more or less standard manner. We
follow the development in [4].

Every finite abelian group T is a direct product of cyclic
groups. In particular, every finite field F has q = pm elements
for some prime p and is isomorphic as an additive group
to (Zp)m, and every vector space over a finite field Fpm of
dimension d is isomorphic to (Zp)md. Thus, for some integer
n, we may take T = (Zp)n, the set of n-tuples of elements
of Zp.

Given a complex-valued function {x : T → C, t 7→ x(t)}
defined on T = (Zp)n, its (Fourier) transform is the complex-
valued function {X : F → C, f 7→ X(f)} defined on F =
(Zp)n by

X(f) =
∑
T

x(t)ωf ·t, f ∈ F ,

where ω is a primitive complex pth root of unity, and f ·t ∈ Zp

is the ordinary dot product between the n-tuples f ∈ (Zp)n

and t ∈ (Zp)n over Zp. If we view x = {x(t), t ∈ T } as a
vector indexed by T , and similarly X = {X(f), f ∈ F} as a
vector indexed by F , then the transform can be expressed in
matrix form as

X = Hx,

where the transform matrix is H = {ωf ·t, f ∈ F , t ∈ T }.
Note that HT = H, where HT denotes the transpose of H.

From the orthogonality relation∑
F

ωf ·t =
{
|F|, t = 0;
0, t 6= 0,

we obtain the matrix equation

HH∗ = |F|I|F|,

where H∗ = {ω−f ·t, f ∈ F , t ∈ T }, |F| = |T | = pn,
and I|F| is the |F| × |F| identity matrix. In other words, the
inverse of H is H−1 = |F|−1H∗. Thus we obtain the inverse
transform

x = H−1X =
H∗X
|F|

.

We say that x and X are a transform pair.

We may extend these definitions to a set of indeterminates
z = {z(t), t ∈ T } indexed by T , rather than a complex-
valued function. The transform of this set is then a set of
indeterminates Z = {Z(f), f ∈ F} indexed by F , where

Z = Hz.

Again, we have the inverse transform relationship

z = H−1Z =
H∗Z
|F|

,

and we say that z and Z are a transform pair.
For example, if T = Z2, then Z(0) = z(0) + z(1) and

Z(1) = z(0) − z(1); similarly, z(0) = 1
2 (Z(0) + Z(1)), and

z(1) = 1
2 (Z(0)− Z(1)).

Now let us consider weight enumerators, initially for the
case of a conventional state realization over a finite field F as
in Figure 1. We define the complete weight adjacency matrix
(CWAM) of each constraint code Ck ⊆ Sk × Ak × Sk+1 as
follows.

If Ak = Fn, then define the complete weight enumerator
of the n-tuple a = (a1, . . . , an ∈ Fn) as the product
w(a) = Π1≤i≤nw(ai), where w = {w(a), a ∈ F} is a set
of indeterminates indexed by F. Then the CWAM of Ck is the
matrix Λ(w) = {Λ(sk, sk+1)(w), (sk, sk+1) ∈ Sk × Sk+1}
defined by

Λ(sk, sk+1)(w) =
∑

C(sk,sk+1)

w(ak),

where C(sk, sk+1) = {ak | (sk,ak, sk+1) ∈ Ck}. Thus each
entry Λ(sk, sk+1)(w) is a homogeneous integer polynomial
of degree n in the |F| indeterminates w = {w(a), a ∈ F}.

Now let y = {y(sk), sk ∈ Sk} and z = {z(sk+1), sk+1 ∈
Sk+1} be sets of indeterminates indexed by the state variables
Sk and Sk+1, respectively, and define a generating function
gΛ(w)(y, z), a polynomial in the sets of indeterminates y and
z, as follows:

gΛ(w)(y, z) = yT Λ(w)z

=
∑

Sk×Sk+1

y(sk)Λ(sk, sk+1)(w)z(sk+1).

From the definition C(sk, sk+1) = {ak | (sk,ak, sk+1) ∈ Ck},
it follows that

gΛ(w)(y, z) =
∑

(sk,ak,sk+1)∈Ck

y(sk)w(ak)z(sk+1).

Example 1 (cont.). The constraint code of Example
1 has the eight codewords 00|00|00, 00|11|10, 10|01|01,
10|10|11, 01|11|00, 01|00|10, 11|10|01, 11|01|11, correspond-
ing to the eight possible (state, symbol, next-state) transitions.
Writing {w0, w1} instead of {w(0), w(1)}, we see that we
may write the CWAM of this constraint code in matrix form

122

as

Λ(w) =

sk/sk+1 00 10 01 11
00 w2

0 w2
1 0 0

10 0 0 w0w1 w0w1

01 w2
1 w2

0 0 0
11 0 0 w0w1 w0w1

Equivalently, its generating function gΛ(w)(y, z) is

gΛ(w)(y, z) = w2
0(y00z00 + y01z10) + w2

1(y00z10 + y10z00)
+ w0w1(y01z01 + y01z11 + y11z01 + y11z11).

The key duality relation for MacWilliams identities is the
Poisson summation formula, which says that “the sum of a
function over a linear space is equal to the sum of the Fourier
transform of the function over the dual space” [5]. For our
case, this formula may be stated as follows:

Poisson summation formula. Let x and X be a transform pair
defined on T = (Zp)n and F = (Zp)n, respectively, and let
C and C⊥ be orthogonal subgroups of T and F , respectively.
Then ∑

t∈C
x(t) =

1
|C⊥|

∑
f∈C⊥

X(f).

Now, applying this formula to the equation above for
gΛ(w)(y, z), we obtain

gΛ(w)(y, z) =
∑
Ck

y(sk)w(ak)z(sk+1)

=
1
|C⊥k |

∑
C⊥k

Y (ŝk)W (âk)Z(−ŝk+1).

Here we use the fact that the transform of a product is the
product of their transforms, where Y = Hyy, W = Hww,
and Z = Hzz. Note that W is itself a product transform.
Also, since the elements of Hz are Hz(sk+1,−ŝk+1) =
ω−sk+1·ŝk+1 , the matrix Hz is the conjugate of the usual
transform matrix over Sk+1.

If we define the CWAM Λ̂(W) of C⊥k and its generating
function gΛ̂(W)(Y,Z) similarly to the analogous quantities for
Ck, then we obtain

gΛ̂(W)(Y,Z) =
∑
C⊥k

Y (ŝk)W (âk)Z(−ŝk+1).

Using inverse transforms, we thus obtain

gΛ̂(W)(Y,Z) = |C⊥k |gΛ(w)(y, z)

= |C⊥k |gΛ(H−1
w W)(H

−1
y Y,H−1

z Z).

This MacWilliams identity shows how the generating function
for the CWAM Λ̂(W) of C⊥k may be obtained from that for
Ck, or vice versa.

Alternatively, since

gΛ̂(W)(Y,Z) = YT Λ̂(W)Z

and

gΛ(w)(y, z) = yT Λ(w)z = YTH−1
y Λ(H−1

w W)H−1
z Z,

we may simply write

Λ̂(W) = |C⊥k |H−1
y Λ(H−1

w W)H−1
z ,

a MacWilliams identity that shows how the CWAM of C⊥k
may be obtained from the CWAM of Ck.

Example 1 (cont.). Given the CWAM Λ(w) of the constraint
code Ck of Example 1, the CWAM Λ̂(W) of the orthogonal
constraint code C⊥k is given by the matrix equation at the
top of the next page, where we have substituted the dual
indeterminates W0 and W1 for w0 + w1 and w0 − w1.

The Hamming weight adjacency matrix (HWAM) ΛH of a
constraint code Ck is obtained by substituting 1 for w(0) and
w for each w(a), a 6= 0. Thus each element ΛH(sk, sk+1)(w)
becomes a polynomial of degree n in the single indeterminate
w. The dual indeterminates become W (0) = 1 + (|F| − 1)w
and W (a) = 1 − w, a 6= 0, which scale to 1 and W =
(1 − w)/(1 + (|F| − 1)w), respectively. Substituting in the
above MacWilliams-type identities for CWAMs, we obtain
MacWilliams-type identities for HWAMs. This yields the main
result of [1], [2].2

Example 2 (cont.). For a worked-out example of the HWAM
Λ̂(W) of the orthogonal code C⊥k to the constraint code of
Example 2, see [2].

Although our development has focussed on conventional
state realizations of linear time-invariant convolutional codes,
it may be straightforwardly extended to obtain MacWilliams
identities for any generalized state realization of any finite
abelian group code defined on an arbitrary graph, because
constraint code duality holds in the general case.

V. DUALIZING THE SUM-PRODUCT UPDATE RULE

Another duality result in [3] is a general method for dual-
izing the sum-product update rule, which among other things
yields the “tanh rule” of APP decoding. The approach of this
paper yields a cleaner derivation of this result.

Again, for simplicity we restrict attention to conventional
state realizations, in which each constraint code Ck specifies
the state transitions in Sk×Ak×Sk+1 that can possibly occur.
Let the (right-going) message be any real- or complex-valued
function mk = {mk(sk), sk ∈ Sk} of the state variable Sk,
and let fk = {fk(ak), ak ∈ Ak} be any real-or complex-
valued weight function of the symbol variable Ak. Then the
sum-product update rule associated with constraint code Ck is

mk+1(sk+1) =
∑

Ck(sk+1)

mk(sk)fk(ak),

2The MacWilliams identity of [1], [2] is stated in terms of the HWAM
for a minimal realization of a linear time-invariant convolutional code C in
controller canonical form, and the HWAM of some minimal encoder for the
orthogonal code C⊥. Our results apply to the CWAM or HWAM of any state
realization, and the CWAM or HWAM of its dual realization, because in our
development, by constraint code duality, the basis of the dual state space
representation is fixed as soon as the basis of the primal state space is fixed.

123

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




w2
0 w2

1 0 0
0 0 w0w1 w0w1

w2
1 w2

0 0 0
0 0 w0w1 w0w1




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


W 2

0 0 W 2
1 0

W 2
1 0 W 2

0 0
0 W0W1 0 W0W1

0 W0W1 0 W0W1



where Ck(sk+1) = {(sk, ak) ∈ Sk × Ak | (sk, ak, sk+1) ∈
Ck}. In other words, if we define a set of indeterminates
x = {x(sk+1), sk+1 ∈ Sk+1}, then mk+1(sk+1) is the coef-
ficient of x(sk+1) in the homogeneous degree-1 multivariate
generating function gk+1(x) defined by

gk+1(x) = mT
k+1x =

∑
sk+1

mk+1(sk+1)x(sk+1).

From the definition of Ck(sk+1), it follows that

gk+1(x) =
∑
Ck

mk(sk)fk(ak)x(sk+1).

Using the Poisson summation formula, we obtain

gk+1(x) =
∑
Ck

mk(sk)fk(ak)x(sk+1)

=
1
|C⊥k |

∑
C⊥k

Mk(ŝk)Fk(âk)X(−ŝk+1)

=
ĝk+1(X)
|C⊥k |

,

where we again use the fact that the transform of a product
is the product of their transforms, and define transformed
functions or indeterminates by corresponding capitalized func-
tions or indeterminates. The left side of this equation is the
generating function gk+1(x) of the message {mk+1}, and the
right side is (up to scale) the generating function ĝk+1(X) of
the message Mk+1 obtained by performing the sum-product
update algorithm for C⊥k upon the message Mk and the weight
function Fk. Moreover, the messages mk+1 and Mk+1 form
a transform pair.

Consequently, we have the following recipe for performing
the sum-product update rule for Ck:

1) Transform the incoming messages mk and fk to Mk

and Fk;
2) Perform the sum-product update rule for C⊥k to generate

an output message Mk+1;
3) Inverse transform Mk+1 to obtain the message mk+1,

up to the scale factor |C⊥k |.

Since the complexity of performing the sum-product update
rule for Ck is proportional to |Ck|, this dual computation may
be attractive if |C⊥k | < |Ck|.

Example 3 (“tanh rule”). Let Sk, Ak and Sk+1 be bi-
nary variables taking values in F2, and let Ck be the (3, 2)
single-parity-check code consisting of the four codewords
(000, 011, 101, 110); then C⊥k is the (3, 1) repetition code
consisting of the two codewords (000, 111). Let the incom-
ing message and weight function be mk = (m0, m1) and
fk = (f0, f1); then the transformed message and weight
function are Mk = (M0 = m0 + m1, M1 = m0 −m1) and
Fk = (F0 = f0+f1, F1 = f0−f1). Using two multiplications,
the sum-product update equation then produces the message
Mk+1 = (Mk+1(0) = (m0 + m1)(f0 + f1), Mk+1(1) =
(m0 −m1)(f0 − f1)). Thus, up to scale, the message mk+1

is

mk+1(0) = Mk+1(0) + Mk+1(1) ∝ m0f0 + m1f1;
mk+1(1) = Mk+1(0)−Mk+1(1) ∝ m0f1 + m1f0;

which is evidently the message that would have been computed
by a direct computation of the sum-product update rule for Ck,
which requires four multiplications.

Again, although our development has focussed on a con-
straint code of a conventional linear state realization, it may
be straightforwardly extended to obtain a dual sum-product
update rule for an arbitrary constraint code over any finite
abelian group.

ACKNOWLEDGMENT

For comments on an earlier version of this paper, I am
grateful to H. Gluesing-Luerssen.

REFERENCES

[1] H. Gluesing-Luerssen and G. Schneider, “On the MacWilliams identity
for convolutional codes,” IEEE Trans. Inform. Theory, vol. 54, pp. 1536–
1550, April 2008. ArXiv: cs/0603013.

[2] H. Gluesing-Luerssen and G. Schneider, “A MacWilliams identity for
convolutional codes: The general case,” IEEE Trans. Inform. Theory, vol.
55, pp. 2920–2930, July 2009. ArXiv: 0805.3484v1 [cs.IT].

[3] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans.
Inform. Theory, vol. 47, pp. 520–548, Feb. 2001.

[4] G. D. Forney, Jr., “Transforms and groups,” in Codes, Curves and Signals:
Common Threads in Communications (A. Vardy, ed.), pp. 79–97. Boston:
Kluwer, 1998.

[5] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.
New York: Springer-Verlag, 1988.

[6] T. Mittelholzer, “Convolutional codes over groups: A pragmatic ap-
proach,” in Proc. 33d Allerton Conf. Commun. Contr. Comput. (Allerton,
IL), pp. 380–381, Sept. 1995.

124

