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Distributed anonymous function computation in
information fusion and multiagent systems

Julien M. Hendrickx, Alex Olshevsky, John N. Tsitsiklis

Abstract—We propose a model for deterministic distributed
function computation by a network of identical and anonymous
nodes, with bounded computation and storage capabilities that
do not scale with the network size. Our goal is to characterize
the class of functions that can be computed within this model. In
our main result, we exhibit a class of non-computable functions,
and prove that every function outside this class can at least
be approximated. The problem of computing averages in a
distributed manner plays a central role in our development.

I. INTRODUCTION

The goal of many multi-agent systems, distributed compu-
tation algorithms and decentralized data fusion methods is to
have a set of nodes compute a common value based on initial
values or observations at each node. Towards this purpose, the
nodes, which we will sometimes refer to as agents, perform
some internal computations and repeatedly communicate
with each other. Let us consider some examples.

(a) Quantized consensus: Suppose that each agent begins
with an integer value xi(0)∈ {0, . . . ,K}. We would like the
agents to end up, at some later time, with values yi that are
almost equal, i.e., |yi − yj | ≤ 1, for all i, j, while preserving
the sum of the values, i.e.,

∑n
i=1 xi(0) =

∑n
i=1 yi. This is the

so-called quantized averaging problem which has received
considerable attention recently; see [16], [9], [3], [20]. It
may be viewed as the problem of computing the function
(1/n)

∑n
i=1 xi, rounded to the nearest integer.

(b) Distributed hypothesis testing: Consider n sensors
interested in deciding between two hypotheses, H0 and H1.
Each sensor collects measurements and makes a preliminary
decision xi ∈ {0, 1} in favor of one of the hypotheses. The
sensors would like to make a final decision by majority
vote, in which case they need to compute the indicator
function of the event

∑n
i=1 xi ≥ n/2, in a distributed way.

Alternatively, in a weighted majority vote, they may be
interested in computing the indicator function of the event
∑n

i=1 xi ≥ 3n/4.
(c) Solitude verification: This is the problem of verifying
that at most one node in the network has a given state.
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This problem is of interest if we want to avoid simultaneous
transmissions over a common channel [13], or if we want
to maintain a single leader (as in motion coordination —
see for example [15]) Given K possible states, so that
xi ∈ {1, . . . ,K}, solitude verification is equivalent to the
problem of computing the binary function which is equal to
1 if and only if |{i : xi = 1}| = 1.

There are numerous methods that have been proposed for
solving problems such as the above. (See for example the vast
and growing literature on consensus and averaging methods.)
Oftentimes, different algorithms involve different computa-
tional capabilities on the part of the agents, which makes it
hard to talk about “the best” algorithm. At the same time,
simple algorithms (such as setting up a spanning tree and
aggregate information by progressive summations over the
tree) are often “disqualified” because they require too much
coordination or global information. One then realizes that a
sound discussion of such issues requires the specification of
a precise model of computation, followed by a systematic
analysis of fundamental limitations under any given model.
This is precisely the objective of this paper: to propose a
particular model, and to characterize the class of computable
functions under this model.
Our model provides an abstraction for the most common

requirements for distributed algorithms in the sensor network
literature. It is somewhat special because (i) it does not allow
for randomization; (ii) it does not address the case of time-
varying interconnection graphs; such extensions are left for
future research. Qualitatively speaking, our model includes
the following features.
Identical agents: Any two agents with the same number of
neighbors must run the same algorithm.
Anonymity: An agent can distinguish its neighbors using its
own, private, local identifiers. However, agents do not have
global identifiers.
Absence of global information: Agents have no global
information, and do not even have an upper bound on the total
number of nodes. Accordingly, the algorithm that each agent
is running is independent of the network size and topology.
Convergence: Agents hold an estimated output, and this
estimate must converge to a desired value which is generally
a function of all agents’ initial observations or values. In
particular, for the case of discrete outputs, all agents must
eventually settle on the desired value. On the other hand, the
agents do not need to be aware of such termination, which is
anyway impossible in the absence of any global information
[6].
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A. Goal and Contribution
We provide in this paper a general model of decentralized

anonymous computation with the above described features,
and characterize the type of functions of the initial values
that can be computed. To keep our model simple, we only
consider deterministic and synchronized agents exchanging
messages on a fixed bi-directional network, with no time-
delays or unreliable transmissions. Agents are modelled as
finite automata, so that their individual capabilities remain
bounded as the number of agents increases.
We prove that if a function is computable under our model,

then its value only depends on the frequencies of the different
possible initial values. For example, if the initial values xi

only take values 0 and 1, a computable function necessarily
only depends on p0 := |{i : xi = 0}|/n and p1 := |{i :
xi = 1}|/n. In particular, determining the number of nodes,
or whether at least two nodes have an initial value of 1 is
impossible.
Conversely, we prove that if a function only depends on

the frequencies of the different possible initial values (and
is measurable), then the function can at least be approxi-
mated with any given precision, except possibly on a set of
frequency vectors of arbitrarily small volume. Moreover, if
the dependence on these frequencies can be expressed by a
combination of linear inequalities with rational coefficients,
then the function is computable exactly. In particular, the
functions involved in the quantized consensus and distributed
hypothesis testing examples are computable, whereas the
function involved in solitude verification is not. Similarly,
statistical measures such as the standard deviation and the
kurtosis can be approximated with arbitrary precision.
Finally, we show that with infinite memory, the frequencies

of the different values (i.e., p0, p1 in the binary case) are
computable.

B. Overview of previous work
There is a large literature on distributed function computa-

tion in related models of computation. A common model in
the distributed computing literature involves the requirement
that all processes terminate when the desired output is
produced. A consequence of the termination requirement is
that nodes typically need to know the network size n (or an
upper bound on n) to compute any non-constant functions.
We refer the reader to [1], [6], [31], [17], [26] for some
fundamental results in this setting, and to [10] for an excellent
summary of known results.
Similarly, the biologically-inspired “population algorithm”

model of distributed computation has some features in com-
mon with our model, namely finite-size agents and lack of
a termination condition; see [2] for a very nice summary of
known results. However, these models involve a somewhat
different type of agent interactions from the ones we consider.
We note that the impossibility of computing p1 without any

memory was shown in [21]. Some experimental memoryless
algorithms were proposed in the physics literature [12].
Randomized algorithms for computing particular functions

were investigated in [16], [7]. We also point the reader to
the literature on “quantized averaging,” which often tends to
involve similar themes [9], [20], [3], [8].
Several papers quantified the performance of simple

heuristics for computing specific functions, typically in ran-
domized settings. We refer the reader to [14] and [29], which
studied simple heuristics for computing the majority function.
A deterministic algorithm for computing the majority func-
tion (and some more generalized functions) was proposed in
[23].
Semi-centralized versions of the problem, in which the

nodes ultimately transmit to a fusion center, have often be
considered in the literature, e.g., for distributed statistical
inference [25] or detection [19]. The papers [11], [18], and
[22] consider the complexity of computing a function and
communicating its value to a sink node. We refer the reader
to the references therein for an overview of existing results
in such semi-centralized settings.
Our results differ from previous works in several key

respects: (i) Our model, which involves totally decentralized
computation, deterministic algorithms, and constraints on
memory and computation resources at the nodes, but does
not require the nodes to know when the computation is over,
does not seem to have been studied before. (ii) Our focus
is on identifying computable and non-computable functions
under our model, and we achieve a nearly tight separation.

II. FORMAL DESCRIPTION OF THE MODEL

The system consists of (i) a communication graph G =
(V,E), which is bidirectional (i.e., if (i, j) ∈ E, then (j, i) ∈
E); (ii) a port labeling whereby edges outgoing from node i
are labeled by port numbers in the set {1, 2, . . . ,degree(i)};
(iii) a family of finite automata (Ad)d=1,2,3,.... (The automa-
ton Ad is meant to describe the behavior of a node with
degree d.)
The state of the automaton Ad is a tuple

(x, z, y,m1, . . . ,md); we will call x ∈ X= {0, 1, . . . ,K}
the initial value, z ∈ Zd the internal memory state, y ∈ Y
the output or estimated answer, and m1, . . . ,md ∈ M the
messages. The sets X,Y, Zd,M are assumed finite, unless
there is a statement to the contrary. Furthermore, we assume
that the number of bits that can be stored at a node is
proportional to the node’s degree; that is, log |Zd| ≤ Cd,
for some absolute constant C. (Clearly, at least this much
memory would be needed to be able to store the messages
received at the previous time step.) We will also assume
that ∅ is an element of the above defined sets Y , Zd, and
M . The transition law Ad maps X × Zd × Y × Md to
X × Zd × Y × Md: [x, z, y; (m1, . . . ,md)] is mapped to
[x, z′, y′; (m′

1, . . . ,m
′
d)] . In words, the automaton creates a

new memory state, output, and (outgoing) messages at each
iteration, but does not change the initial value.
We construct a dynamical system out of the above ele-

ments as follows. Let d(i) be the degree of node i. Node
i begins with an initial value xi ∈ X; it implements
the automaton Ad(i), initialized with x = xi, and with
z = y = m1 = . . . = md = ∅. We use Si(t) =
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[xi, yi(t), zi(t),mi,1(t), . . . ,mi,d(i)(t)] to denote the state
of the automaton implemented by agent i at round t. Let
j1, . . . , jd(i) be an enumeration of the neighbors of i, and let
pk be the port number of the link (jk, i). The evolution of
the system is then described by

[

xi, zi(t + 1), yi(t + 1);mi,1(t + 1), . . . ,mi,d(i)(t + 1)
]

= Ad(i) [x, zi(t), yi(t);mj1,p1
(t), . . . ,mjd,pd

(t)] .

In words, the messages “sent” by the neighbors of i into
ports leading to i are used to transition to a new state and
create new messages that i “sends” to its neighbors at the
next round. We say that y∗ ∈ Y is the final output of this
dynamical system if there is a time t′ such that yi(t) = y∗

for every i and t ≥ t′.
Consider now a family of functions (fn)n∈N : Xn →

Y . We say that such a family is computable if there exists
a family of automata (Ad)d=1,2,... such that for any n, for
any connected graph G = (V,E) with n nodes, any port
labelling, and any set of initial conditions x1, . . . , xn, the
final output of the above system is always fn(x1, . . . , xn).
In some results, we will also refer to function families

(fn)n∈N computable with infinite memory, by which we
mean that the internal memory sets Zd and output set Y
are countable, the rest of the model being unaffected.
We study in the sequel the general function computation

problem: What families of functions are computable, and how
can we design the automata Ad to compute them?

III. NECESSARY CONDITION FOR COMPUTABILITY

Let us first state the following lemma which can easily be
proved by induction on time.

Lemma III.1. Suppose that G = ({1, . . . , n}, E) and
G′ = ({1, . . . , n}, E′) are isomorphic, that is, there ex-
ists a permutation π such that (i, j) ∈ E if and only if
(π(i),π(j)) ∈ E′. Further, suppose that the port label at
node i for the edge leading to j in G is the same as the port
label at node π(i) for the edge leading to π(j) in G′. Then,
the state Si(t) resulting from the initial values x1, . . . , xn

with the graph G is the same as the state Sπ(i)(t) resulting
from the initial values xπ(1), . . . , xπ(n) with the graph G′.

Proposition III.1. Suppose that the family
{f1(x1), f2(x1, x2), f3(x1, x2, x3), . . .} is computable
with infinite memory. Then, each fi is invariant under
permutations of its arguments.

Proof: Let πij be permutation that swaps i with j; with a
slight abuse of notation, we also denote by πij the mapping
from Xn to Xn that swaps the ith and jth elements of a
vector. We show that for all x ∈ Xn, fn(x) = fn(πij(x)).
We run our distributed algorithm on the n-node com-

plete graph. Consider two different initial configurations:
(i) starting with the vector x; (ii) starting with the vector
πij(x). Let the way each node enumerates his neighbors
in case (i) be arbitrary; in case (ii), let the enumeration be
such that the conditions in Lemma III.1 are satisfied, which
is easily accomplished. Since the limiting value of yi in

one case is f(x) and in the other is f(πij(x)), we obtain
f(x) = f(πij(x)). Since the permutations πij generate the
group of permutations, permutation invariance follows.
Let x ∈ Xn. We will denote by x2 the concatenation of x

with itself, and, generally, xk the concatenation of k copies
of x. We now prove that self-concatenation does not affect
the value of a computable family of functions.

Proposition III.2. Suppose that the family
{f1(x1), f2(x1, x2), f3(x1, x2, x3), . . .} is computable
with infinite memory. Then, for every m ≥ 2, every sequence
x ∈ Xm, and every positive integer k,

fm(x) = fkm(xk).

Proof: Consider a ring of agents of size m, where
the ith agent counterclockwise begins with the ith element
of x; and consider a ring of size km where the agents
i, i + m, i + 2m, . . . (counterclockwise) begin with the ith
element of x. Suppose further that each node enumerates its
two neighbors so that the neighbor on the left is labelled 1,
while the neighbor on the right is labelled 2. See Figure 1
for an example with m = 3, k = 2 and xi = i.

Fig. 1. Example of two situations that are indistinguishable by the nodes.

Initially, the state of node i in the first ring is exactly the
same as the state of the nodes j = i, i+m, i+2m, . . . in the
second ring. We show by induction that this property must
hold at all times t. (To keep notation simple, we assume,
without any real loss of generality, that i (= 1 and i (= m.)
Indeed, suppose this property holds up to time t. At time

t, node i in the first ring receives a message from node
i − 1 and a message from node i + 1; and in the second
ring, node j satisfying j (mod m) = i receives one message
from j − 1 and j + 1. Since j − 1 (mod m) = i − 1 and
j + 1 (mod m) = i + 1, the states of j − 1 and i − 1 are
identical at time t, and similarly for and j+1 and i+1. Thus
the messages received by i (in the first ring) and j (in the
second ring) at time t are identical. Since i and j were in the
same state at time t, they must be in the same state at time
t + 1. This proves that they are in the same state forever.
It follows that yi(t) = yj(t) for all t, whenever

j (mod m) = i, and therefore fm(x) = fkm(xk).
We can now prove our main negative result, stating that

if a family of functions is computable, then the value of
the function only depends on the frequencies of the different
possible initial values. We define D = {(p1, . . . , pK) ∈
[0, 1]K :

∑K
k=1 pk = 1}, which we call the proportion set.

We say that a function h : D → Y corresponds to a family
(fn : Xn → Y ) if for every x ∈ Xn,

f(x1, . . . , xn) = h (p1(x1, . . . , xn), . . . , pK(x1, . . . , xn)) ,
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where
pk(x1, . . . , xn) = |{i | xi = k, }|/n,

so that pk(x1, . . . , xn) is the frequency of occurrence of the
initial value k. In this case, we say that the family (fn) is
proportion-based.

Theorem III.1. Suppose that the family (fn) is com-
putable with infinite memory. Then, this family is proportion-
based.

Proof: Let x and y be two sequences of n and
m elements, respectively, such that pk(x1, . . . , xn) =
pk(y1, . . . , ym) =: p̂k for k = 1, . . . ,K, that is, the number
of occurrences of k in x and y are np̂k andmp̂k, respectively.
Observe that for any k ∈ X , the vectors xm and yn

have the same number mn of elements, and both contain
mnp̂k occurrences of k. The sequences yn and xm can
thus be obtained from each other by a permutation, which
by Proposition III.1 implies that fnm(xm) = fnm(yn). It
then follows from Proposition III.2 that fnm(xm) = fn(x)
and fmn(yn) = fm(y), so that fn(x) = fm(y). This
proves that the value of fn(x) is determined by the vector
(p1(x), . . . , pn(x)).
The following examples illustrate this result.
(a) The parity function

∑n
i=1 xi (mod k) is not com-

putable, for any k > 0.
(b) In a binary setting (X = {0, 1}), checking whether the

number of nodes with xi = 1 is at least 10 plus the
number of nodes with xi = 0 is not computable.

(c) Solitude verification, i.e. checking whether |i : {xi =
0}| = 1, is not computable.

(d) An aggregate difference functions such as
∑

i<j |xi −
xj | is not computable, even calculated modulo k.

IV. REDUCTION OF GENERIC FUNCTIONS TO THE
COMPUTATION OF AVERAGES

In this section, we show that the computability question
for large classes of functions reduces to the computability
question for a particular averaging-like function. Namely, we
will make use of the following theorem.

Theorem IV.1. Let X = {0, . . . ,K} and define Y to be
following set of single-point sets and intervals:

Y = {{0}, (0, 1), {1}, (1, 2), . . . , {K−1}, (K−1,K), {K}}

(or equivalently, an indexing of this finite collection of
intervals). Let (fn) be the following family of functions: fn

maps (x1, x2, . . . , xn) to the element of Y which contains
the average

∑

i xi/n. Then, the family (fn) is computable.

The proof of Theorem IV.1 is fairly involved and too long
to be included in this extended abstract; however, we give
an informal description of the algorithm for computing fn

in Section V. In this section, we show that Theorem IV.1
implies the computability of a large class of functions. We
will say that a function h on the proportion set is computable
if it it corresponds to a proportion-based computable family

(fn). The level sets of h are defined as the sets L(y) = {p ∈
D | h(p) = y}, for y ∈ Y .

Theorem IV.2 (Sufficient condition for computability). Let
h be a function from the proportion set D to Y . Suppose that
every level set L(y) can be written as a finite union,

L(y) =
⋃

k

Ci,k,

where each Ci,k can in turn be written as a finite intersection
of linear inequalities of the form

α1p1 + α2p2 + · · · + αKpK ≤ α,

or
α1p1 + α2p2 + · · · + αKpK < α,

with rational coefficients α,α1, . . . ,αK . Then, h is com-
putable.

Proof: Consider one such linear inequality. Let P be
the set of indices i for which αi ≥ 0. Since all coefficients
are rational, we can clear the denominators and rewrite the
inequality as

∑

k∈P

βkpk −
∑

i∈P c

βkpk ≤ β, (IV.1)

for nonnegative integers βk and β. Let χk be the indicator
function associated with initial value k, i.e., χk(i) = 1 if
xi = k, and χk(i) = 0 otherwise, so that pk = 1

n

∑

i χk(i).
Then, (IV.1), becomes

1

n

n
∑

i=1

(

∑

k∈P

βkχk(i) +
∑

k∈P c

βk(1 − χk(i))

)

≤ β+
∑

k∈P c

βk,

or
1

n

∑

i

qi ≤ q∗,

where qi =
∑

k∈P βkχk(i)+
∑

k∈P c βk(1−χk(i)) and q∗ =
β +

∑

k∈P c βk.
To determine if the latter inequality is satisfied, each node

can compute qi and q∗, and then apply a distributed algorithm
that computes 1

n

∑n
i=1 qi, which is possible by virtue of

Theorem IV.1. To check any finite collection of inequalities,
the nodes can perform the computations for each inequality
in parallel.
To compute h, the nodes simply need to check which

set L(y) the frequencies p1, . . . , pK lie in, and this can be
done by checking the inequalities defining each L(y). All of
these computations can be accomplished with finite automata:
indeed, we do nothing more than run finitely many copies
of the automata provided by Theorem IV.1, one for each
inequality.
Theorem IV.2 shows the computability of functions h

whose level-sets can be defined by linear inequalities with
rational coefficients. On the other hand, it is clear that not
every function h can be computable. (This can be shown by
a counting argument: there are uncountably many possible
functions h, but for the special case of bounded degree
graphs, only countably possible algorithms.) Still, the next
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lemma shows that the set of computable functions is rich
enough, in the sense that such functions can approximate
any measurable function.
We will call a set of the form

∏K
k=1(ak, bk), with every

ak, bk rational, a rational open box, where
∏

stands for
Cartesian product. A function that can be written as a finite
sum

∑

i ai1Bi
, where the Bi are rational open boxes and the

1Bi
are the associated indicator functions, will be referred to

as a box function. Note that box functions are computable by
Theorem IV.2.

Corollary IV.3. If every level set of a function h : D → Y
on the proportion set is Lebesgue measurable, then, for every
ε > 0, there exists a computable box function hε : D → Y
such that the set {h (= hε} has measure at most ε.

Proof: The proof relies on the following elementary
result from measure theory. Given a Lebesgue measurable
set E ∈ [0, 1]K and some ε > 0, there exists a set E′ which
is a finite union of disjoint open boxes, and which satisfies

µ((E − E′) ∪ (E′ − E)) < ε,

where µ is the Lebesgue measure. By a routine argument,
these boxes can be taken to be rational. By applying this fact
to the level sets of the function h (assumed measurable), the
function h can be approximated by a box function hε. Since
box functions are computable, the result follows.
The following corollary states that quantizations of con-

tinuous functions are approximable.

Corollary IV.4. If a function h : D → [L,U ] ⊆ + is
continuous, then for every ε > 0 there exists a computable
function hε : D→ [L,U ] such that ‖h − hε‖∞ < ε

Proof: Since D is compact, f is uniformly continu-
ous. One can therefore partition D into a finite number
of subsets A1, A2, . . . , Aq , that can be described by linear
inequalities with rational coefficients, so thatmaxp∈Aj

h(p)−
minp∈Aj

h(p) < ε holds for all Aj . The function hε is
then built by assigning to each Aj an appropriate value in
{L,L + ε, L + 2ε, . . . , U}.
Finally, we show that with infinite memory, it is possible to

recover the exact frequencies pk. (Note that this is impossible
with finite memory, because n is unbounded, and the number
of bits needed to represent pk is also unbounded.)

Theorem IV.5. The vector (p1, . . . , pK) is computable
with infinite memory.

Proof: We show that p1 is computable exactly,
which is sufficient to prove the theorem. Consider
the following algorithm, parametrized by a positive in-
teger m. The initial set Xm will be {0, 1, . . . ,m}
and the output set Ym will be as in Theorem IV.1:
Ym = {{0}, (0, 1), {1}, (1, 2), {2}, (2, 3), . . . , {m−1}, (m−
1,m), {m}}. If xi = 1, then node sets its initial value xi,m

to m; else, the node sets its initial value xi,m to 0. The
algorithm computes the function family (fn) which mapsXn

m

to the element of Ym containing (1/n)
∑n

i=1 xi,m, which is

possible, by Theorem IV.1. We will call this algorithm Qm.
Let ym be its final output.
The nodes run the algorithms Qm for every positive integer

value of m, in an interleaved manner. Namely, at each time
step, a node runs one step of a particular algorithm Qm,
according to the following order:

Q1, Q1, Q2, Q1, Q2, Q3, Q1, Q2, Q3, Q4, Q1, Q2, . . .

At each time t, let mi(t) be the smallest m (if it
exists) such that the output yi,m(t) of Qm at node i is
a singleton (not an interval). We identify this singleton
with the numerical value of its single element, and we set
yi(t) = yi,mi(t)(t)/mi(t). If mi(t) is undefined, then yi(t)
is set to some default value.
It follows from the definition of Qm and from Theorem

IV.1 that there exists a time after which the outputs yi,m

of the algorithms Q1, . . . , Qn do not change, and are the
same for every node, denoted ym. Moreover, at least one
of these algorithms has an integer output ym. Indeed observe
that Qn computes (1/n)

∑n
i=1 n1xi=1 =

∑n
i=1 1xi=1, which

is clearly an integer. In particular, mi(t) is eventually well-
defined and bounded above by n. We conclude that there
exists a time after which the output of our overall algorithm
is fixed, shared by all nodes, and different from the default
value.
We now argue that this value is indeed p1. Let m∗ be the

smallest m for which the eventual output of Qm is a single
integer ym. Note that ym∗ is the exact average of the xi,m∗ ,
i.e. ym∗ = 1

n

∑n
i=1 m∗1xi=1 = m∗p1. For large t, we have

yi(t) = yi,m∗(t)/m∗ = p1.
Finally, it remains to argue that the algorithm described

here can be implemented with a sequence of automata. All
the above algorithm does is run a copy of all the automata
implementing Q1, Q2, . . . with time-dependent transitions.
This can be accomplished with an automaton whose state
space is the countable set N ×∪∞

m=1

∏m
i=1 Qi, where Qi is

the state space of Qi, and the set N of integers is used to
keep track of time.
To illustrate the results of this section, let us consider again

some examples.
(a) Majority testing between two options is equivalent to

checking whether p1 ≤ 1/2, with alphabet {0, 1}, and
is therefore computable.

(b) Majority testing when some nodes can “abstain”
amounts to checking whether p1 − p2 ≥ 0, with
alphabet {0, 1, abstain}. This function family is com-
putable.

(c) We can ask for the second most popular value out of
four, for example. In this case, the sets Ai can be de-
composed into constituent sets defined by inequalities
such as p2 ≤ p3 ≤ p4 ≤ p1, each of which obviously
has rational coefficients.

(d) For any subsets I, I ′ of {1, . . . ,K}, the indicator
function of the set where

∑

i∈I pi ≥
∑

i∈I′ pi is
computable. This is equivalent to checking whether
more nodes have a value in I than do in I ′.
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(e) The indicator functions of the sets defined by p2
1 ≤

1/2 and p1 ≤ π/4 are measurable, so they are
approximable. We are unable to say whether they are
computable.

(f) The indicator function of the set defined by p1p2 ≤ 1/8
is approximable, but we are unable to say whether it
is computable.

V. A SKETCH OF THE PROOF OF THEOREM IV.1
In this section, we sketch an algorithm for computing

the average of integer initial values, but omit the proof of
correctness. We start with an important subroutine that tracks
the maximum (over all nodes) of time-varying inputs at each
node.

A. Distributed maximum tracking
Suppose that each node i has a time-varying input ui(t)

stored in memory at time t, belonging to a finite set of
numbers U . We assume that, for each i, the sequence ui(t)
must eventually stop changing, i.e., that there exists some T ′

such that

ui(t) = ui(T
′), for all t ≥ T ′.

(However, the nodes need not be ever aware that ui(t)
has reached its final value.) Our goal is to develop a dis-
tributed algorithm whose output eventually settles on the
valuemaxi ui(T ′). More precisely, each node i is to maintain
a number Mi(t) which must satisfy the following constraint:
for every connected graph and any allowed sequences ui(t),
there exists some T ′′ with

Mi(t) = max
i=1,...,n

ui(t), for all t ≥ T ′′.

Moreover, node i must also maintain a pointer Pi(t) to
a neighbor or to itself. We will use the notation P 2

i (t) =
PPi(t)(t), P 3

i (t) = PP 2

i (t)(t), etc. We require the following
additional property, for all t larger than T ′′: for each node i
there exists a node j and a power K such that for all k ≥ K
we have P k

i = j; moreover, Mi(t) = uj(t). In other words,
by successively following the pointers Pi(t), one can arrive
at a node with the maximum value.

Theorem V.1. An algorithm satisfying the above condi-
tions exists and can be implemented at each node with a
finite automaton whose state can be stored using at most
C(log |U| + d(i)) bits, for some absolute constant C.

We briefly summarize the algorithm guaranteed by this
theorem. Each node i initially setsMi(0) = ui(0), Pi(0) = i.
Nodes exchange their values ui(t) and forward the largest
value they have seen; every node sets its estimated maximum
Mi(t) equal to that largest value, and sets its pointer Pi

to the node that forwarded that value to i. When some ui

changes, the corresponding node sends out a reset message,
which is then forwarded by all other nodes. The details of
the algorithm and its analysis are somewhat involved because
we need to make sure that the reset messages do not cycle
forever.

B. The averaging algorithm
We continue with an intuitive description of the averaging

algorithm. Imagine the initial integer values xi as represented
by xi pebbles. Our algorithm attempts to exchange pebbles
between nodes with unequal number of pebbles so that the
overall distribution becomes more even. Eventually, either all
nodes will have the same number of pebbles, or some will
have a certain number and others just one more. We let ui(t)
be the current number of pebbles at node i; in particular,
ui(0) = xi. An important property of the algorithm is that
the total number of pebbles is conserved.
To match nodes with unequal number of pebbles we use

the maximum tracking algorithm of Section V-A. Recall that
the algorithm provides nodes with pointers which attempt to
track the location of the maximal values. When a node with
ui pebbles comes to believe in this way that a node with at
least ui +2 pebbles exists, it sends a request in the direction
of the latter node to obtain one or more pebbles. This request
follows a path to a node with a maximal number of pebbles,
until the request either gets denied, or gets accepted by a
node with at least ui + 2 pebbles.
More formally, the algorithm uses two types of messages:
(a) (Request, r): This is a request for a transfer of value.

Here, r is an integer that represents the current number
of pebbles at the emitter.

(b) (Accept, w): This corresponds to acceptance of a
request, and subsequent transfer of w pebbles to the
requesting node. A request with a value w = 0
represents a request denial.

As part of the algorithm, the nodes run the maximum
tracking algorithm of Section V-A, as well as a minimum
tracking counterpart. In particular, each node i has access
to the variables Mi(t) and Pi(t) of the maximum tracking
algorithm (recall that these are, respectively, the estimated
maximum and a pointer to a neighbor). Furthermore, each
node maintains three additional variables.
(a) “mode”∈ {free,blocked}. Initially, the mode of every

node is free. Nodes become blocked when they are
handling requests.

(b) “Rini(t)”, “Routi(t)” are pointers to a neighbor of
i or to itself. They represent, respectively, the node
from which i has received a request, and the node to
which i has transmitted a request. Initially, Rini(0) =
Routi(0) = ∅.

The algorithm is described in Figure 2.
A key step in the proof of Theorem IV.1 is the following

proposition, whose proof is omitted.

Proposition V.1. There is a time t′ such that ui(t) =
ui(t′), for all i and t ≥ t′. Moreover,

∑

i

ui(t
′) =

∑

i

ui(0) =
∑

i

xi,

|ui(t
′) − uj(t

′)| ≤ 1, for all i, j.

We now conclude our sketch of the proof of Theorem
IV.1. Let u∗

i be the value that ui(t) settles on. It follows
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Fig. 2. Representation of the average computation algorithm

from Proposition V.1 that if the average x̄ of the inputs xi is
integer, then ui(t) = u∗

i = x̄ will eventually hold for every
i. If x̄ is not an integer, then some node will eventually have
u∗

i = -x̄. and others u∗
i = /x̄0. Using the maximum and

minimum computation algorithm, nodes will eventually have
a correct estimate of maxi u∗

i and mini u∗
i , because each

ui(t) converges to u∗
i . This allows the nodes to determine

if the average is exactly x̄ (integer average), or if it lies in
(ū∗

i , ū
∗
i + 1), or (ū∗

i − 1, ū∗
i ), which is the property asserted

by Theorem IV.1.
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