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Reactive Grasping Using Optical Proximity Sensors

Kaijen Hsiao, Paul Nangeroni, Manfred Huber, Ashutosh Saxena, Andrew Y Ng

Abstract—We propose a system for improving grasping using
fingertip optical proximity sensors that allows us to perform
online grasp adjustments to an initial grasp point without
requiring premature object contact or regrasping strategies.
We present novel optical proximity sensors that fit inside
the fingertips of a Barrett Hand, and demonstrate their use
alongside a probabilistic model for robustly combining sensor
readings and a hierarchical reactive controller for improving
grasps online. This system can be used to complement existing
grasp planning algorithms, or be used in more interactive
settings where a human indicates the location of objects. Finally,
we perform a series of experiments using a Barrett hand
equipped with our sensors to grasp a variety of common objects
with mixed geometries and surface textures.

I. INTRODUCTION

Grasping is a basic and important problem in robotic

manipulation. For robots to reliably grasp novel objects,

they must be able to sense the object geometry sufficiently

accurately to choose a good grasp. In this paper, we develop

an optical proximity sensor, embedded in the fingers of the

robot (see Fig. 1), and show how it can be used to estimate

local object geometries and perform better reactive grasps.

Conventional grasp planning strategies rely heavily on

long range vision sensors (such as cameras, LIDAR, and IR

range finders) to detect and model objects, and to determine

grasp configurations (e.g., [11], [15], [17]). While this has

led to a number of successful robot systems, errors and

uncertainty ranging from small deviations in the object’s

location to occluded surfaces have significantly limited the

reliability of these open-loop grasping strategies. Indeed,

in [15], we found that approximately 65% of the grasp

failures were because we used only long range sensors and

lacked a reactive controller with sufficient local surface pose

information.

Tactile sensing has been employed as a means to augment

the initial grasp and manipulation strategies by addressing

inconsistencies in the contact forces during object contact

and manipulation [20]. However, tactile sensors have to ac-

tually touch the object in order to provide useful information.

Because current sensor technologies are not sensitive enough

to detect finger contacts before causing significant object
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Fig. 1: Three-fingered Barrett Hand with our optical proximity
sensors mounted on the finger tips.

motion, their use is limited to either minor adjustments of

contact forces at pre-computed grasp configurations, or to

planning algorithms that require iterative re-grasping of the

object in order to grasp successfully [8], [19], [3]. While

the latter approach has shown substantial improvements in

grasp reliability, it requires a significant amount of time and

frequently causes lighter objects to be knocked over during

the repeated grasp attempts.

The limitations of tactile-sensing-augmented grasp plan-

ning can be overcome by ’pre-touch’ sensing. This modality

has recently become a popular means of bridging the gap

in performance between long range vision and tactile sen-

sors. In pre-touch sensing, gripper-mounted, short-range (0-

4cm) proximity sensors are used to estimate the absolute

distance and orientation (collectively called surface pose)

of a desired contact location without requiring the robot

to touch the object [18]. The vast majority of these pre-

touch proximity sensors use optical methods because of

their high precision [1], [7], [21], [9], [10]. Optical sensors,

however, are highly sensitive to surface reflection properties.

Alternatively, capacitive-based proximity sensors have also

been used [22]. While invariant to surface properties, these

capacitive-based sensors have difficulty detecting materials

with low dielectric contrast, such as fabrics and thin plastics.

Unfortunately, in both cases, present sensor calibration and

modeling techniques have yet to produce pose estimates

that are robust enough to be useful across the range of

surface textures, materials, and geometries encountered in

unstructured environments. Furthermore, the finger tips of

typical robotic grippers are too small to accommodate the
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Fig. 2: Normalized Voltage Output vs. Distance for a TCND5000
emitter-detector pair.

sensors used in previous work.

This paper presents an integrated approach that combines

sensor design, probabilistic data modeling, and a reactive

controller into a system that allows for on-line grasp adjust-

ments to an initial grasp configuration without the need for

premature object contact or re-grasping strategies. Specif-

ically, a design for a low cost, pose-estimating proximity

sensor is presented that meets the small form factor con-

straints of a typical robotic gripper.

The data from these sensors is interpreted using empiri-

cally derived models and a robust, belief-state-based surface

pose estimation algorithm. The resulting pose estimates are

provided to a reactive grasp closure controller that regulates

contact distances even in the absence of reliable surface

estimates. This allows the robot to move the finger tip

sensors safely into configurations where sensor data for the

belief-state update can be gathered. Simultaneously, the pose

estimates of the sensor interpretation approach can provide

the necessary information to adjust the grasp configuration

to match the orientation of the object surface, increasing the

likelihood of a stable grasp.

We perform a series of grasping experiments to validate

the system using a dexterous robot consisting of a 7-DOF

Barrett arm and multi-fingered hand. In these tests, we

assume that an approximate location of the object to be

grasped has already been determined either from long range

vision sensors [14], or through human interaction [5]. From

the initial grasp positions, the system exhibits improved

grasping on a variety of household objects with varying

materials, surface properties, and geometries.

II. OPTICAL SENSOR HARDWARE

The purpose of the optical sensor hardware is to provide

data that can be used by the modeling algorithm to construct

pose estimates of nearby surfaces. The design is driven by

a series of constraints, including size, sensor response, and

field of view, which are detailed in the following section.

A basic optical sensor consists of an emitter, photo-

receiver, and signal processing circuitry. The light from the

emitter is reflected by nearby surfaces and received by the

Fig. 3: Possible fingertip sensor configurations.

photo-receiver. The amplitude and phase of the light vary as

a function of the distance to the surface, its orientation, and

other properties of the surface material (reflectance, texture,

etc.) [1]. In amplitude-modulated proximity sensor design,

the most commonly preferred method, these variations in

amplitude can be converted into pose estimates by measuring

the response from constellations of at least three receivers

focused at the same point on the target surface [1], [12],

[21].

Although conceptually simple, modeling the pose of un-

known surfaces is difficult because of the non-monotonic

behavior of the proximity sensor receivers. The response of

a single sensor is a function of the distance to the target

surface and the baseline between the emitter and receiver, as

shown in Fig. 2. While the response in the far-field varies

as the inverse square of the distance [6], the response of the

sensor in the near field is far more complex. The decrease

in received light energy in the near field is governed not

only by the reflective properties of the surface, but also

by the geometric baseline between the emitter and receiver.

As distance approaches zero in the near field, the amount

of energy that can be reflected between the emitter and

receiver decreases because the overlap between the emitter

and receiver cones decreases. This results in a sharp drop-

off of received light intensity. To avoid complications in

modeling the sensor data, most approaches, including ours,

offset the sensors from the surface of the gripper to maximize

the far field sensor response. Although this sacrifices the

higher sensitivity of the near field, the longer range of the

far field is better suited to grasping applications [1].

The selection of specific sensor hardware and signal

processing electronics is severely constrained by the limited

space in typical robotic fingers (for instance, our Barrett

fingers have a 1cm x 2cm x 1cm cavity volume). Bonen and

Walker used optical fibers to achieve the desired geometric

arrangement of emitters and receivers in their respective

sensors. However, the bend radius and large terminations of
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Fig. 4: Front view of sensor constellation. Hatches show the
crosstalk between adjacent sensor pairs.

the fibers violate the space constraints in this application.

Instead, our design uses four low-cost, off-the-shelf infrared

emitter/receiver pairs (Vishay TCND50000) on each finger.

The small size (6 x 3.7 x 3.7 mm) meets the volume

requirements of the design and the range (2-40mm) is ideal

for pre-touch sensing.

The arrangement of these sensors represents yet another

design tradeoff between field of view and pose estimation

accuracy. Large fields of view, both out from and in front

of the face of the fingertip, as shown in Fig. 3a, are

advantageous for detecting oncoming objects. Unfortunately,

the sensor spacing needed to achieve this reduces the overlap

between adjacent sensor pairs and lowers the signal to noise

ratio. Conversely, arranging the sensors to focus the emitters

and maximize crosstalk, as shown in Fig. 3b, improves local

pose estimation accuracy at the expense of broader range

data to nearby objects. The final configuration, shown in

Fig. 3c, consists of three sensors arranged in a triangle on

the face of the finger to estimate pose with a fourth sensor

at a 45◦ angle to the finger tip to increase the field of view.

Although surface area exists for placing additional sensors,

the quantity is limited to four by the available space in the

Barrett finger cavity for pre-amplifier circuitry. The sensors

are inset into the finger to minimize near-field effects, and

the aluminum housing is matte anodized to decrease internal

specular reflection. The crosstalk between adjacent sensors

is illustrated by the hatched area in Fig. 4.1

1While the crosstalk between sensors 1-3 can be useful when the
primary sensor values saturate, which occurs on many light-colored surfaces,
experimental testing showed the crosstalk to be below the noise floor on
many of the object surfaces we encountered. Since this work assumes that
the nature of the surface is unknown a priori, our current work ignores the
crosstalk and only uses the primary sensor values.

The complete proximity sensing suite consists of twelve

total emitter-detector pairs, four on each finger. The emitters

are pulsed in sequence by a PIC 18F4550 micro-controller

located on the wrist of the robot (as shown in Fig. 1) so

that 16 readings are generated for each finger on each cycle.

The collected sensor data is pre-amplified by circuitry in

the finger tip and then sampled by a 10-bit A/D converter

before streaming the data back to the robot over a serial link.

In spite of the 950nm operating frequency, raw sensor read-

ings remain sensitive to ambient light effects. Background

subtraction was used to remove this ambient component and

increase the signal to noise ratio.

III. SENSOR MODEL

Given a series of observations from the sensors on each

finger, our goal is to estimate the surface pose (distance and

orientation) of the surface in front of the finger.

More formally, let o = (o1, o2, o3) ∈ R
3 be the readings

from the three sensors grouped in a triangle,2 and s =
(d, xrot, zrot) be the surface pose of the local surface (ap-

proximated as a plane). Here, d is the straight-line distance

from the center of the three sensors to the surface of the

object (along the vector pointing outwards from the finger

surface) sensors. xrot and zrot are the relative orientations

of the surface around the finger’s x-axis (pitch) and z-axis

(roll) respectively, as shown in Fig. 4. (They are equal to 90◦

when the object surface is parallel to the finger surface.)

One of the major challenges in the use of optical sensors is

that intrinsic surface properties (such as reflectivity, diffusiv-

ity, etc.) cause the relationship between the raw sensor signal

and the surface pose to vary significantly across different

surface types. For that reason, prior work using short-range

proximity sensors to find surface pose has focused on using

multiple direct models obtained by performing regression on

empirical data. This data is gathered by recording sensor

array readings for each relevant surface in turn, placed at a

comprehensive set of known surface poses [1]. In particular,

[1], [7], [21] both use a least-squares polynomial fit of data

taken for a known surface or group of similar surfaces

to directly estimate surface pose given sensor readings.

However, acquiring enough data to successfully model a

new surface is extremely time-consuming, and having to

do so for every potential surface that might be encountered

is prohibitive. In practical grasping scenarios, we need to

be able to deal with unknown and never-before-encountered

surfaces.

A. Calibration Data and Reference Forward Model

As opposed to fully characterizing every surface with a

separate model, we use a single reference model that is scaled

with an estimate of the object’s IR reflectivity parameter in

2Sensor 4, which is offset by 45◦ to increase the field of view, is
not included in this sensor model because it rarely focuses on the same
flat surface as the other three. As a stand-alone sensor, it is nevertheless
independently useful, particularly when the peak expected value (object
surface reflectivity) is known. For instance, it can be used to prevent
unexpected collisions with objects while moving, or even to move to a
fixed distance from a table or other surface with known orientation.
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Fig. 6: Locally weighted linear regression on calibration data.
The plot shows energy values for one sensor at a fixed distance
and varying x and z orientation. Green points are recorded data;
red points show the interpolated and extrapolated estimates of the
model.

order to obtain an approximate forward model for the specific

object of interest. 3 By scaling with the estimated peak value,

the model becomes roughly invariant to surface brightness.

For this work, the calibration data was taken using a Kodak

grey card, which is a surface often used to adjust white

balance in photography. The data consists of 1904 samples

of o taken at distance values ranging from 0.5 cm to 3.4
cm, xrot values ranging from 30◦ to 110◦, and zrot values

ranging from 40◦ to 140◦. Fig. 5 shows the calibration data.

B. Direct Model Using Polynomial Fit

We first tried using a least-squares polynomial fit on the

calibration data to estimate s given o, as in [1]. While the

resulting polynomial function was a reasonable fit to the

calibration data, its performance on estimating s on different

surfaces was extremely poor. This is because even small

changes in the true underlying function (caused by different

brightness or reflection properties) results in large shifts in

estimates for s for the same o, making the direct model

very brittle in the context of different, unknown objects, and

limiting its applicability to contexts where the precise object

characteristics are known a priori.

C. Belief State Model

In order to address the sensitivity of the direct model

to the object surface characteristics, we use an empirical

forward sensor model and a probabilistic estimation process

to derive the current best estimate for s. In our setting, as

our robot hand is executing a grasp trajectory, we take many

3Estimation of the surface reflectivity value is not particularly onerous
to collect, as a single grasp of the object, particularly with the use of raw
values to attempt to align at least one finger with the surface of the object,
is sufficient to collect the required value. Alternatively, an estimate of the
peak value could be obtained by observing the object with an IR camera or
with a laser rangefinder that provides IR intensity values.

sensor readings with fingers at different (known) locations,

and use the sensor readings, the finger positions, and our

empirical sensor model to update a belief state (a probability

distribution over possible values of s) at each time step.

Here, we assume that the object is static during a grasp.

This is a reasonable assumption due to the fact that because

we are using proximity or ‘pre-touch’ sensors, the actual

grasp and sensing procedure does not make contact with the

object prior to complete closure of the grasp and thus does

not actively cause any object displacements. In addition, we

assume that the surface seen under each finger is locally

planar throughout the entire grasp process.4

For each finger, let S be the set of all possible states s, and

let st, ot and at be the state, sensor readings (observation),

and hand pose (actions) at time t, respectively. At all times,

we will track the belief state bt := P (s0|o1...ot, a1...at),
the probability distribution over all possible surface poses

in S seen at the first time step, given all observations and

hand poses since. We assume that our sensor observations

at different times are conditionally independent given the

surface pose:

P (s0|o1...oT , a1...aT ) =
T

∏

t=1

P (s0|ot, at) (1)

D. Observation Model

An essential part of finding the most likely surface pose

is having a model for how likely it is that we could have

seen the current sensor readings if that pose were true.

Specifically, the quantity we are looking for is P (ot|at, st),
the probability of seeing the sensor readings we obtained

at time t (ot) given the current hand configuration (at)

and a particular surface pose (st). For this, we need a

function mapping states to observations, C(s) = o. We use

locally weighted linear regression on our scaled calibration

data set to estimate o given s. An example of the values

obtained using locally weighted linear regression is shown

in Fig. 6, where the green points are actual data and the

red points are estimated values. Each estimated point uses

a plane derived from only the 8 closest actual data points.

Also, because extrapolation using locally weighted linear

regression is extremely poor, the estimated point is clipped

to be no greater than the highest of those 8 values, and no

less than the lowest.

We then assume that the estimated model values are

correct (for a given st, we expect to see the model-estimated

ot), and that any deviations we see in the actual sensor

readings, ε = ot − C(st), are due to Gaussian noise, ε ∼
N(0, σ2). This assumption is wildly inaccurate, as the errors
are in fact systematic, but this assumption nonetheless allows

one to find the closest alignment of the observed o points to

the scaled calibration model without any assumptions about

surface characteristics. For our experiments, sensor readings

4Even when the surface under the finger changes and the old data becomes
erroneous, the estimates would get progressively better as more data from
the new surface is observed. It is also simple to place a higher weight on
new data, to make the adjustment faster.
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Fig. 5: Calibration Data. (Top row) plots xrot vs. energy for all three sensors, with binned distances represented by different colors
(distance bin centers in mm: green=5, blue=9, cyan=13, magenta=19, yellow=24, black=29, burlywood=34). (Bottom row) shows zrot vs.
energy for all three sensors.

were scaled to vary from 1 to 100, and σ was set to be

25, since we expect significant deviations from our model

values.

E. Inference

At each time step, we wish to compute an estimate ŝt of

the current state. The states, S, are discretized to a uniform

grid. We can represent bt as a grid of probabilities that sum

to 1, and update the belief state probabilities at each time

step using our actions and observations as we would any

Bayesian filter.

More specifically, the belief state update is performed as

follows:

bt =P (s0|o1...ot, a1...at)

=
P (ot|a0, at, s0)P (s0|o1...ot−1, a1...at−1)

P (ot)

=
P (ot|at, st)bt−1

P (ot)
(2)

We assume a uniform prior on the sensor readings, and thus

the denominator can be normalized out. We then find the

expected value of the state s0 as follows:

ŝ0 = E(s0) =
∑

s0

P (s0|o1...ot, a1...at)s0 (3)

We can compute ŝt from ŝ0 using the hand kinematics and

the known hand positions at and a0.

The advantage of combining observations in this manner

is that, while the actual sensor readings we expect to see

vary greatly from surface to surface, readings across different

sensors in the array vary in a similar way with respect

to orientation changes for all surfaces. Thus, a number of

observations over a wide range of different values of s can

be used to align a new set of observations with a model that

is not quite right. The s with expected (model) observations

that align best with the actual observations is generally the

one with the highest likelihood, even with large model error.

IV. REACTIVE GRASP CLOSURE CONTROLLER

To verify the usefulness of our ‘pre-grasp’ proximity

sensors, a reactive grasp closure controller was designed

and implemented that uses the proximity data to move the

fingers such that: 1) they do not collide with the object,

and 2) they close simultaneously, forming a symmetric grasp

configuration around a pre-specified grasp point. This ability

is aimed at achieving successful grasps even in the presence

of significant uncertainty about the object geometry, and at

allowing the sensor interpretation approach to safely collect

data to improve the surface estimates.

The hierarchical control architecture used here composes

two reactive control elements that run asynchronously and

that control separate aspects of the grasp closure process.

At the bottom level, a finger distance controller controls

the fingers to maintain approximately equal distances to the

object surface. On top of this control element, a kinematic

conditioning controller controls the arm to center the object

within the hand and to cause the fingers to be parallel to the

surface.

2102



Fig. 7: A sequence showing the grasp trajectory chosen by our algorithm. Initially, the fingers are completely open; as more data comes,
the estimates get better, and the hand turns and closes the finger in such a way that all the fingers touch the object at the same time.

A. Finger Distance Controller

At the bottom level, the finger distance controller moves

just the fingers in an attempt to keep all fingers at a given

distance from the object surface while closing them around

the initial grasp pose. To avoid collisions even in the initial

stages of grasping, the finger distance controller starts out

using just raw proximity sensor values normalized for the

estimated object reflectivity (expected peak value). When

available, it switches to using distance information from

the belief estimation process. Either raw values or distance

estimates can be used to achieve and maintain a desired

proximity from the surface for all fingers, at the rate required

by the basic hand controller. This allows for the efficient

gathering of proximity sensor readings during the grasp,

which can be used to improve the surface pose belief state,

which in turn can improve the finger distance controller’s

ability to keep the fingers at a desired distance. Steadily

decreasing the desired surface distance allows one to close

the fingers such that they simultaneously touch the object

surface.

B. Kinematic Configuration Controller

Given the current grasp pose and finger configuration, the

kinematic configuration controller moves the arm and hand to

optimize the available kinematic workspace and contact force

capabilities of the grasping system. To achieve this, it selects

actions that locally minimize a kinematic configuration error

function, εK =
√

∑

i ε2Ki
, by descending the gradient, ∂εK

∂xj

of this metric with respect to the hand frame pose parameters

xj that determine the position and orientation of the hand.

εKi
is the kinematic error for finger i, which is a measure

of the distance from the preferred kinematic configuration

(which in our case is the middle of the finger joint range).

For the Barrett hand, the result of descending this gradient

is a hand/arm configuration in which all fingers are bent to

the same degree and the hand is centered over the current

contact configuration as determined by the finger distance

controller. When used in combination with the finger distance

controller, the result is that the two fingers on the same

side of the hand end up parallel to the surface under them

(assuming they see the same or a similar surface), and the

hand ends up centered around the object. For a completely

novel object, these two controllers together can be used to

perform an initial grasp to collect data identifying the object’s

reflectivity parameters, since the peak sensor value is only

seen when the finger is parallel to the object surface.

TABLE I: Model Test Experiment Error

DIST(CM) xrot(
◦) zrot(

◦)
BROWN WOOD BOWL .35 4.4 13.5
BEIGE PLASTIC BOWL .34 4.4 23.0
BLACK PLASTIC BOX .49 10.3 16.5
BLUE PLASTIC BOX .59 5.3 21.7
CARDBOARD BOX .20 3.8 14.4
YELLOW BOX .43 3.6 17.3

AVERAGE .40 5.3 17.7

Given a correctly chosen initial grasp point, this two-

element controller hierarchy provides robustness to the grasp-

ing process and can significantly increase the success rate

for grasping tasks. However, it still relies heavily on a good

choice of initial grasp pose. To alleviate this and to fully

utilize the capabilities of the sensors, the presented reactive

grasp closure hierarchy could be augmented with a reactive

grasp configuration controller that uses the surface normal

estimates provided by the sensors’ belief state estimation

system. Having normal estimates would allow such a con-

troller to adjust the grasp configuration to optimize the local

grasp geometry. In particular, one could add a reactive local

control component based on wrench residuals [2] to the grasp

closure controller using a hierarchical control composition

approach [4]. Such a component would use the local surface

normal information to optimize the contact configuration,

allowing one to achieve reliable force and moment closure

grasps of objects even when no two fingers see the same

planar face [13], [2].

V. EXPERIMENTS

We will first evaluate the ability of our algorithm to model

sensor data in Section V-B. Then we will use the model to

perform grasping experiments in Section V-C.

A. Robot Hand

The sensors described in Section II were mounted onto the

finger tips of a Barrett hand. This manipulator has a total of

4 degrees of freedom (three fingers each with one degree of

freedom, and a finger “spread”). The hand was attached to a

7-dof arm (WAM, by Barrett Technologies) mounted on the

STAIR (STanford AI Robot) platform.

B. Prediction Model

As a test of our estimation method, we placed the Barrett

hand at known positions relative to a number of commonly
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Fig. 8: Different objects on which we present our analysis of the model predictions. See Section V-B for details.

found objects of various materials. (See Fig. 8 for their pic-

tures.) Our test data consisted of three different orientations

for each object: parallel to the fingers, +10◦ rotation, and

−20◦ rotation. The fingers were then made to close slowly

around the object until each finger nearly touched the surface.

Sets of 100 raw sensor readings were taken every 1.2 degrees

of finger base joint bend, and for every 1.2 degrees of finger

spread (up to at most 17 degrees) and averaged. Results

showing errors in the final estimates of (d, xrot, zrot) are

in Table I.

Table I shows that our model is able to predict the

distances with an average error of 0.4cm. We are also able

to estimate xrot reasonably accurately, with an average error

of 5.3◦. The high error in xrot in the case of the black

plastic box can be attributed to the fact that the first finger

in one run did not see the same surface the entire time,

which is a requirement for reasonable predictions with our

model. Note that these objects have significantly different

surface properties, and other than the peak sensor value, no

other surface characteristics were assumed. High-reflectance

surfaces tended to do worse than matte surfaces due to sig-

nificant deviation from the calibration model. Nonetheless,

our experiments show that we are able to make reasonable

predictions by the time the fingers touch the surface.

The higher errors in zrot are a consequence of the

movements used during the data collection and estimation

process. Since the sensor interpretation approach uses belief

updates to determine the maximum likelihood orientation, the

quality of the resulting estimates depends on the proximity

data encountered along the fingers’ trajectories, with larger

variations in the local geometry resulting in more accurate

estimates. In the procedure used here to gather the test data,

a wide range of xrot angles was encountered within the

useful range of the sensors due to the strong curling of

the Barrett fingers. On the other hand, only a very limited

range of zrot angles were correctly observed due to the

significantly smaller variation available using the hand’s

spread angle. Furthermore, most spread actions moved the

fingers to positions significantly further from the object, often

resulting in sensor readings that were no longer observable.

While this is a problem in the test data and illustrates the

advantage of active sensing strategies, its cause should be

largely alleviated when using the grasp closure controller to

establish the initial grasp, due to the ability of the finger

distance controller to maintain the fingers at a distance that

provides usable results throughout the finger spread opera-

tion. Additionally, the inclusion of arm motions through the

use of the kinematic conditioning controller should further

enhance the range of zrot angles encountered during a grasp,

and thus allow for somewhat better zrot estimates.

C. Grasping Experiments

Our goal was to focus on the final approach of grasping

using proximity sensors. Our system could be used in a

variety of settings, including the point-and-click approach

of [5], where a laser pointer is used to highlight an object

for a robot to pick it up, or combined with long range vision

sensors that select optimal grasp points [14].

In this experiment, we placed a variety of objects (weigh-

ing less than 3 pounds) in known locations on a table (see

Fig. 10), with some objects flush against each other. These

objects are of a variety of shapes, ranging from simple boxes

or bowls, to more complicated shapes such as a ski boot.

The robot moves the hand to the approximate center of the

object and executes a grasp strategy,5 using our controller

to move the hand and the fingers in response to estimated

distances from the sensors and the pose estimation algorithm.

The robot then picks up the object and moves it to verify

that the grasp is stable. (See Fig. 7 and Fig. 10 for some

images of the robot picking up the objects.)

Fig. 9: Failure cases: (a) Shiny can, (b) Transparent cup

Note that our objects are of a variety of shapes and made of

a variety of materials. Out of the 26 grasping trials performed

on 21 unique objects,6 our grasping system failed three times.

Two of these failures were due to extreme surface types: a

5One could envision using better strategies, such as those based on vision-
based learning [15], [16], for moving the hand to a grasping point on the
object.

6Procedure used to choose the objects: We asked a person not associated
with the project to bring objects larger than about 8 inches in length and
less than 3 pounds from our lab and different offices. No other selection
criterion was specified, and therefore we believe that our objects represented
a reasonably unbiased sample of commonly found objects.
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Fig. 10: Snapshots of the robot picking up different objects.

transparent cup and a highly reflective aluminum can (Fig. 9).

To address these cases, our optical-based proximity sensors

could be combined with a capacitive-based system that is

good at detecting metallic or glass surfaces. The third object

was a ski-boot, for which our approach worked perfectly;

however, due to the object’s weight, our robot was unable to

lift it up.

A video of the grasp experiments is available at the

following url:

http://stair.stanford.edu/proximitygrasping/

In the video, the hand rotates the fingers in many cases to

be approximately parallel to the object surface and causes the

fingers to contact at nearly the same time, thereby improving

the grasp.

VI. CONCLUSION

In this paper, we presented a system that enables stable

grasping of common objects using pre-touch pose estimation.

We designed a novel low-cost optical proximity sensor to

meet the space constraints of typical robot grippers using

off-the-shelf components. We converted the data provided

by these sensors into pose estimates of nearby surfaces

by a probabilistic model that combines observations over a

wide range of finger/hand configurations. We also created

a hierarchical reactive controller to perform the grasp while

optimizing finger locations to maintain distance and improve

the estimation model. Finally, we validated the system by ex-

periments with a Barrett hand, which showed improvements

in reactive grasping.
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