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ABSTRACT 

One of the main components of the next generation pro-
tected military satellite communication systems is Dynamic 
Bandwidth Resource Allocation (DBRA).  A centralized 
DBRA algorithm on the satellite dynamically grants termi-
nals time and frequency resources as their traffic demands 
and channel conditions change, leading to significant in-
crease in the overall system throughput. 

This paper address one potential issue associated with 
DBRA for the satellite uplink channel, which is a Multi-
Frequency Time-Division Multiple Access (MF-TDMA) 
channel.  As DBRA dynamically assigns time-frequency 
slots to terminals, there may be uneven temporal gaps in 
the assignment if special care were not taken. When this 
happens, even though average rate demands can be met, 
applications may experience larger than desired delay and 
jitter, which may reduce the quality of certain voice and 
video applications.   

This paper presents a novel algorithm for allocating and 
packing time-frequency slots in a jitter-aware fashion by 
using groups of evenly spaced slots. The achievable delay 
and jitter performance is evaluated using an OPNET simu-
lation.  

INTRODUCTION 

A satellite system employing multi-frequency time-
division multiple access (MF-TDMA) must efficiently al-
locate its available communication resources so that many 
terminals can be supported.  The satellite grants resources 
to the terminals periodically, in a time period that is known 
as an epoch.  Each terminal receives an assignment con-
sisting of a center frequency for transmission, a signal 
bandwidth, a communications mode, and a set of time in-
tervals in which transmission is allowed.  The fundamental 
unit of transmission time is known as an interleaver block 
(IB).  The communications mode consists of a modulation 
format and forward-error correction (FEC) code.   

The system’s frequency resources consist of several avail-
able bandwidths and center frequencies.  Each epoch con-
tains many IBs.  Thus, it is possible for a large number of 

terminals to be given a time-frequency assignment in an 
epoch.  Additionally, by varying the bandwidth, mode, and 
number of IBs assigned to a terminal, this MF-TDMA ap-
proach allows a wide range of data rates to be supported.   

The process of making time-frequency slot assignments 
for each terminal consists of an allocation step and a pack-
ing step.  The allocation step can depend on many factors, 
such as guaranteed rates, requested rates, their priority lev-
els, and the amount of available resources.  Once alloca-
tions in terms of mode and number of IBs are determined, 
a packing step assigns non-overlapping time-frequency 
slots to each terminal.   If the assigned slots have large 
temporal gaps, packets transmitted may experience larger 
then desired delay and jitter. 

Some user applications are sensitive to the amount of jitter 
in the received data, where jitter is defined to be the differ-
ence between the maximum (or 99% maximum, etc.) 
packet latency and the minimum packet latency.  For ex-
ample, a real-time IP voice application, such as voice-
over-IP (VoIP), may require a small jitter to ensure a cer-
tain voice quality.  Excess jitter could manifest itself by 
voice that is broken up from the end user’s point of view, 
or it could even cause the application to drop packets arriv-
ing with large delays.  Note that jitter is defined as a varia-
tion in latency, but we are concerned with reducing both 
jitter and latency.  For example, if a delay and jitter sensi-
tive application is provided with a large but constant la-
tency, it would be desirable to decrease the latency if pos-
sible, even though there is no jitter.   

The MF-TDMA system we consider introduces jitter into 
packet streams due to the TDMA nature of the allocation.  
For example, assume that a terminal is allocated three IBs 
which occur at time ti, at time ti+5, and at time ti+20, re-
spectively, and that the terminal is running an application 
that generates packets every 5 time units.  Figure 1 pro-
vides an illustration of this IB assignment.  If each IB can 
contain one voice packet, then the voice packets experi-
ence 15 time units of jitter due to the 15 time unit gap be-
tween the second and third IBs.  If each IB can contain 
multiple voice packets, then the third IB could deliver the 
three arriving voice packets simultaneously.  Thus, if hav-



 
 
 

 
2 of 6 

ing bounded jitter is important to an application that a ter-
minal is running, then the spacing of that terminal’s IBs is 
one important consideration.   

 
Figure 1: Example interleaver block allocation illustrating jitter 
due to assignments.  
 
In this paper, we consider two allocation and packing algo-
rithms that are designed to meet jitter constraints.  The Jit-
ter Reduction Algorithm (JRA), previously described in 
[1], statistically reduces jitter but does not strictly guaran-
tee bounded jitter.  The Jitter-Aware Algorithm (JAA) 
strictly guarantees bounded jitter but is more complex. We 
compare their performance using simulations.  

FRAMEWORK 

The MF-TDMA system we consider employs three pri-
mary time divisions.  The system is similar to the one de-
scribed in [1].  As mentioned previously, the epoch is the 
time unit over which terminal assignments are valid.  
Thus, the payload makes assignments for all of its termi-
nals one epoch at a time.  Modes, center frequencies, and 
communications bandwidths are not allowed to change 
during an epoch, but they can change from epoch to epoch.   

The next time interval, the frame, is the fundamental unit 
of time employed by the terminal’s and satellite’s link lay-
ers.  This means that data that is received during a frame 
cannot be passed to the decoder until the end of that frame.  
In our system, each epoch contains 32 frames, and epoch 
boundaries also coincide with frame boundaries.   

Finally, an IB is the time unit employed by the FEC en-
coders and decoders.  Specifically, each IB contains an 
integer number of FEC code words.  No code word is re-
ceived in its entirety until the final bit of the IB is fully 
received.  In our system, each epoch contains 72 IBs. 
Since 72 is not an integer multiple of 32, IB boundaries do 
not necessarily coincide with frame boundaries.  When an 
IB is fully contained in a single frame, the IB is called a 
non-spanning IB.  Otherwise, the IB is known as a span-
ning IB.  Figure 2 provides an illustration of the epoch, 
frame, and IB time divisions.  Note that the four frames 
shown contain a total of six non-spanning IBs and three 
spanning IBs.  An epoch of 32 frames contains eight such 
four-frame patterns.  

The distinction between spanning and non-spanning IBs is 
an important one in our system.  This is because each code 
word must be fully received to be decoded.  By definition, 
all code words of a non-spanning IB are fully received by 
the end of the frame in which the IB is transmitted, so 
these code words are immediately passed to the decoder.  
On the other hand, a spanning IB takes at least two frames 
to be fully received, so none the code words it contains can 
be passed to the decoder until the end of the frame contain-
ing the final bits of the IB. Therefore, we wish to avoid, if 
possible, the use of spanning IBs for delay sensitive appli-
cations, since spanning IBs always cause additional trans-
mission delay compared with non-spanning IBs.    

 
Figure 2: Epochs, frames, IBs, and spanning IBs. 
 
The frame-based aspects of the system mean that even if a 
terminal were to be granted all of the non-spanning IBs of 
an epoch, code blocks and thus packets can only be formed 
at the end of each frame, implying that egress can only 
occur 32 times in each epoch (i.e., at the end of each frame 
of the epoch).  Thus, our system always adds jitter to 
streams whose interarrival times are not multiples of the 
frame duration.  If the stream’s interarrival time is exactly 
a multiple of the frame duration and the assignment pro-
vides a sufficient rate, then there exists an IB assignment 
that adds no jitter to the stream.      

JITTER REDUCTION ALGORITHM 

The JRA is a relatively simple algorithm that statistically 
reduces jitter but does not strictly guarantee bounded jitter.   
With the JRA, first, resources are allocated to each user 
such that the Bandwidth Time Product (BTP) of the alloca-
tions does not exceed the total amount of system resources.  
Whenever possible, users are placed in narrower band-
width modes requiring more IBs to meet the same rate de-
mand.  As more IBs are assigned, jitter is naturally re-
duced.   

The next step is the packing of these IB allocations to each 
user into the system’s available time-frequency resource.  
The packing algorithm is described in more detail in [1].  
The basic concept is that larger bandwidth users are 
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packed first.  Of the users with the same bandwidth, pack-
ing is done in decreasing order of the number of IBs as-
signed.  Each user is packed contiguously at the topmost 
slot (in frequency) available.  If multiple slots at this fre-
quency are available, the leftmost IB in time is selected.  
This algorithm has been shown to pack very efficiently but 
does not evenly space assignments within the epoch; 
rather, it intentionally bunches assignments together.  Fig-
ure 3 shows the user assignments after packing and how an 
individual user’s assignment is bunched together.  Note 
that such bunched assignments actually maximize jitter.   

Figure 3: Standard Packing 

 

To reduce jitter, a time-shuffling of the packing space is 
performed.  Taking advantage of the fact that the initial 
packing step typically creates contiguous time assignments 
for each user, the shuffling step attempts to shuffle the as-
signments in time such that assignments that were close 
together are now far apart. 

The shuffling is defined as 

                                            (1) 

where, m is the time index after shuffling, n is the time 
index before shuffling, β is the spreading factor, and T  is 
the total amount of time per epoch measured in IBs.   

To illustrate assume the packing shown in Figure 3 is com-
posed of 12 IBs along the time axis.  Then we can use (1) 
with β = 5 to yield the shuffled packing shown in Figure 4. 
In this example, assignments that were contiguous and 
bursty are now spaced at least 1 IB apart.  Selection of a 
good spreading factor is very important in this approach.   

For our system of interest with 72 IBs along the time axis, 
a spreading factor of 11 is used.  This algorithm can guar-
antee that contiguous assignments can be evenly shuffled 
and thus jitter can be bounded.  However, it is possible that 
assignments from the initial packing algorithm will not al- 

Figure 4: Shuffling of Standard Packing 

 

ways be contiguous.  In such cases, the shuffling step 
could take two of a user’s noncontiguous IBs and shuffle  

them so they are back to back, which could increase jitter.  
This case is infrequent, but it cannot be guaranteed to be 
avoided.  As a result, bounded jitter cannot be guaranteed.  
The probability of noncontiguous IBs being assigned is 
dependent on the distribution of user bandwidths and de-
mand.   

JITTER-AWARE ALGORITHM 

The second algorithm discussed in this paper is the Jitter-
Aware Algorithm (JAA).  The JAA strictly guarantees 
bounded jitter by assigning IBs in groups, referred to as IB 
groups or IBG. Within each IBG, IBs are uniformly 
spaced, thereby efficiently guaranteeing a certain mini-
mum IB spacing and jitter. For example, taking one non-
spanning IB from each frame forms a 1-frame IBG with 32 
IBs. Assignment of one such 1-frame IBG guarantees IB 
spacings of one frame, and would allow a jitter equivalent 
to one frame to be achieved. Similarly, taking one non-
spanning IB from every other frame forms a 2-frame IBG 
with 16 IBs. Other IBGs used in this algorithm are 4-frame 
IBG, 8-frame IBG, and 16-frame IBG, each with 8, 4, and 
2 IBs, respectively. Spanning IBs are not used to form 
IBGs, and are assigned as single units of IBs.  

Within each frequency band, there are a limited number of 
IBGs.  As described in Figure 2, our system of interest 
contains a repeating pattern of 2,1,1,2 non-spanning IBs 
and 1,1,1,0 spanning IBs. Because some frames have only 
one non-spanning IB, there can be only one 1-frame IBG 
per frequency band. This one 1-frame IBG may also be 
split into two 2-frame IBGs or four 4-frame IBGs, and so 
on, or in combinations. In addition to these 32 non-
spanning IBs, one from each frame, there are another 16 
non-spanning IBs. These can be used to form two 4-frame 
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IBGs, four 8-frame IBGs, and so on, or in combinations. 
Finally, there are 24 spanning IBs.  The number of each 
IBG available and how they can be exchanged is described 
in Figure 5. Generally, the 32 IBs that form a 1-frame IBG 
are considered the most valuable, since they can be used to 
form any type of IBG; the 24 spanning IBs are the least 
valuable.   

 

Figure 5: IB Group Relationships 

 

Similar to the JRA, the JAA consists of an allocation step 
and a packing step. In the allocation step, the algorithm not 
only makes sure that the total BTP allocated does not ex-
ceed the total amount of system resources, but it also en-
sures that the allocation of IBGs at different jitter levels 
does not exceed the amount available. In particular, the 
algorithm ensures that the total amount of 1-frame and 2-
frame IBGs allocated do not exceed the equivalent of 32 
IBs per frequency band and that the total amount allocated 
for all IBGs of all jitter levels do not exceed the equivalent 
of 48 IBs per frequency band.  

At the end of the allocation step, each terminal is allocated 
a number of different IBGs. For example, a terminal may 
be allocated one 2-frame IBG, two 4-frame IBGs, and four 
spanning IBs.  In the event that a terminal’s desired jitter 
cannot be met, the next-best assignment available is given. 
For example, if a terminal desires one 2-frame IBG, but 
there are not enough resources available, it may be given 
two 4-frame IBGs or even just 16 single IBs. The motiva-
tion is that when the desired jitter cannot be achieved, the 
allocation algorithm would at least try to meet the de-
manded rate and give the best jitter possible for that rate. 

To efficiently utilize resources, excess allocations to meet 
a tighter jitter bound are salvaged by demands with looser 
jitter bounds. For example, assume a terminal requires an 
allocation of 80 kbps with 1-frame jitter to support a voice 
call and 300 kbps with no jitter requirement to support a 
data transfer, totaling 380 kbps. Also suppose each IB as-
signed supports 10 kbps, so one 1-frame IBG with 32 IBs 
can support 320kbps. This terminal would then be as-

signed one 1-frame IBG and just 6 single IBs to support 
both the voice and data transfer. The 320-80=240 kbps 
excess allocation with 1-frame jitter is salvaged by the data 
transfer demand.   

The next step is to pack the IBG and IB allocations into the 
available time-frequency space. While the allocation step 
ensures that the total amount of allocation does not exceed 
the available amount, it is not guaranteed that all the allo-
cations can be packed. Additional constraints that some-
times prevent complete packing include the terminal must 
be assigned the same IB in different frequency bands and a 
wideband assignment must occupy contiguous frequency 
bands.   

To ensure that as much of the allocation as possible gets 
packed, the general philosophy of the packing algorithm is 
to pack the bigger, more constraint pieces first, in three 
stages. The algorithm first packs all of the largest band-
width terminals, just as in JRA.  Secondly, within one 
bandwidth, the algorithm first packs the largest IBGs with 
the tightest jitter bound, meaning all allocations of 1-frame 
IBGs of a particular bandwidth are packed first, and then 
the 2-frame IBGs, then the 4-frame IBGs, so on, and fi-
nally allocations of single IBs. Note that each terminal 
may have IBGs of different jitter levels assigned, so a ter-
minal with a 1-frame IBG allocated only gets that alloca-
tion packed first, and the rest of its allocation has to wait 
until all other 1-frame IBG allocations to other terminals 
are packed.  Finally, within one bandwidth and jitter level, 
allocations of more IBGs or IBs are packed first, just as in 
the JRA. When packing single IBs, the 24 spanning IBs 
are used first, since they can not be used to form IBGs. 
When packing IBGs or IBs, the 32 IBs that form a 1-frame 
IBG are used last, since packing any looser jitter IBGs 
there would prevent a 1-frame IBG from being packed. 
This corresponds to using IBs from right to left in Figure 
5.  In the event that an allocation of an IBG cannot be 
packed, it is broken up minimally so that it can be packed. 
For example, if a 2-frame IBG can not be packed, it is bro-
ken into two 4-frame IBGs or even just 16 single IBs. 

When a terminal is allocated multiple IBGs or IBs, the al-
gorithm also attempts to make the assignments well 
spaced, similar to the shuffling in JRA as shown in Figure 
4. While this does not affect the 1-frame and 2-frame 
IBGs, it is significant for the smaller IBGs. For example, if 
one terminal is allocated two 16-frame IBGs, each with 
two IBs, the algorithm attempts to make the two pairs of 
IBs well spaced to resemble an 8-frame IBG. This is done 
by a simple table-lookup mapping such that the IBGs with 
neighboring indexes map to groups of IBs that are rela-
tively well spaced.  
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An additional feature of the JAA is that it attempts to limit 
epoch-to-epoch changes in a user’s IB locations if the 
user’s mode has not changed.  To illustrate a potential 
problem with epoch-to-epoch changes, consider a user 
who is assigned a single IB in each of two consecutive ep-
ochs.  In the first epoch, the IB is contained in the 
first frame after packing.  In the next epoch, however, 
the IB is contained in the last frame after packing.  
The spacing between these two IBs is nearly two ep-
ochs long.  A better packing would be to place the IBs 
in the same location in each epoch, which limits the 
spacing to approximately one epoch long and causes 
less delay and jitter.  To avoid unfavorable epoch-to-
epoch spacing, the algorithm assigns the same IB lo-
cations when possible.  Finally, when a user is as-
signed additional or new IBs, the packing strategy 
described earlier is used to pack the IBs. 

Given the complexity of assigning and packing with 
bounded jitter, this algorithm is significantly more 
complex than the JRA shuffling technique. 
 

RESULTS 

The numerical results presented here were obtained via 
OPNET simulation of a system with approximately 100 
users, each with dynamic traffic demands, including 
bounded-jitter applications and non-bounded-jitter applica-
tions.  Each epoch contains 32 frames and 72 IBs.  We 
focus on one of the users who, in addition to its dynamic 
traffic, also has a bounded-jitter application whose start 
and end times have been scripted.  This allows each of the 
algorithms to be evaluated under controlled traffic condi-
tions at a common reference point.      

Results for the jitter-reducing and jitter-aware algorithms 
are presented in Figure 6 and Figure 7.  The packet latency 
for the bounded-jitter application is presented as a function 
of the packet number.  Note that the latency values in Fig-
ures 6 and 7 are offset by a fixed value due to unmodeled 
effects (e.g., propagation delays).  In Figure 6 we show the 
results for a scenario in which the traffic for the bounded-
jitter application arrives at a rate of one 320-byte packet 
every 20 milliseconds (ms). Figure 6(a) includes results for 
the JRA.  For this algorithm, the packet-to-packet jitter is 
typically less than 40ms, but at times it reaches 60 ms and 
even 80ms.  The average number of non-spanning and 
spanning IBs assigned per epoch is 14.38 and 7.15, respec-
tively. The maximum IB spacing is 100 ms.  The results 
for the JAA for the same traffic scenario are shown in Fig-

ure 6 (b).  Compared with the results in Figure 6 (a) for the 
JRA, the JAA provides much better performance.  The 
maximum jitter is 20 ms.  This is due not only to the ex-
clusive use of non-spanning IBs, but the IB spacing is also 
allocated intelligently by this algorithm. Specifically, the 
average number of IBs (all non-spanning) assigned by the 
jitter-aware algorithm is 24. The maximum IB spacing is 
40 ms, which implies a much more uniform spacing than 
the spacing produced by the JRA.  

Figure 6: Experimental simulation results comparing the jitter 
performances of the JRA (a) and JAA (b) algorithms 

In Figure 7 we show the results for the traffic scenario 
where the packets arrive at a rate of one 640-byte packet 
every 40 ms. Note that the maximum jitter is typically 40 
ms for the  JRA (Figure 7(a)), but the jitter is zero for the 
JAA (Figure 7(b)). The average number of non-spanning 
and spanning IBs for the JRA are 14.27 and 7.22, respec-
tively. The maximum IB spacing is 40 ms. For the JAA, 
the average number of non-spanning IBs, average number 
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of spanning IBs, and maximum IB spacing are the same as 
in Figure 6. 

The reduced jitter, however, is obtained at the expense of 
system resources.  Recall that for the JAA, the best jitter 
bound achieved with a 1-frame IBG can only be given to a 
single terminal per frequency band.  In a typical operation 
scenario, there are many more terminals than frequency 
bands, which implies that only a few terminals are able to 
achieve the best jitter bound.  In fact, resource overalloca-
tions for a few terminals may be so large that other termi-
nals are left with insufficient resources to satisfy their re-
quired rate, let alone jitter.  It is important to choose a 
reasonable jitter bound to balance jitter performance and 
system efficiency.   

CONCLUSION 

Two dynamic resource allocation techniques that also at-
tempt to reduce or bound jitter have been described.  The 
jitter-reducing algorithm is a simple technique that pro-
vides good TDMA spacing for interleaver blocks, but this 
algorithm cannot guarantee that jitter bounds will be met 
in all cases of interest.  The jitter-aware algorithm is a 
much more complex algorithm, but it can provide 
bounded-jitter guarantees as long as sufficient resources 
are available.   
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Figure 7: Experimental simulation results comparing the jitter 
performances of the JRA (a) and JAA (b) algorithms in which 
voice packets arrive at rate of one 640-byte packet every 40 mil-
liseconds. 

 

 

 

 

 

 


