
MIT Open Access Articles

Jitter-aware time-frequency resource
allocation and packing algorithm

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Huan Yao et al. “Jitter-aware time-frequency Resource Allocation and packing
algorithm.” Military Communications Conference, 2009. MILCOM 2009. IEEE. 2009. 1-6. ©
Copyright 2010 IEEE

As Published: http://dx.doi.org/10.1109/MILCOM.2009.5379805

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59391

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59391

1 of 6

JITTER-AWARE TIME-FREQUENCY RESOURCE ALLOCATION AND PACKING ALGORITHM
Huan Yao, Thomas Royster IV, Jeffrey McLamb, Mehmet Mustafa, Navid Yazdani 1

MIT Lincoln Laboratory
Lexington, MA

1 This work is sponsored by United States Air Force under Air Force contract #FA8721-05-C-0002. Opinions, interpretations, recom-
mendations and conclusions are those of the author and are not necessarily endorsed by the United States Government.

ABSTRACT

One of the main components of the next generation pro-
tected military satellite communication systems is Dynamic
Bandwidth Resource Allocation (DBRA). A centralized
DBRA algorithm on the satellite dynamically grants termi-
nals time and frequency resources as their traffic demands
and channel conditions change, leading to significant in-
crease in the overall system throughput.

This paper address one potential issue associated with
DBRA for the satellite uplink channel, which is a Multi-
Frequency Time-Division Multiple Access (MF-TDMA)
channel. As DBRA dynamically assigns time-frequency
slots to terminals, there may be uneven temporal gaps in
the assignment if special care were not taken. When this
happens, even though average rate demands can be met,
applications may experience larger than desired delay and
jitter, which may reduce the quality of certain voice and
video applications.

This paper presents a novel algorithm for allocating and
packing time-frequency slots in a jitter-aware fashion by
using groups of evenly spaced slots. The achievable delay
and jitter performance is evaluated using an OPNET simu-
lation.

INTRODUCTION

A satellite system employing multi-frequency time-
division multiple access (MF-TDMA) must efficiently al-
locate its available communication resources so that many
terminals can be supported. The satellite grants resources
to the terminals periodically, in a time period that is known
as an epoch. Each terminal receives an assignment con-
sisting of a center frequency for transmission, a signal
bandwidth, a communications mode, and a set of time in-
tervals in which transmission is allowed. The fundamental
unit of transmission time is known as an interleaver block
(IB). The communications mode consists of a modulation
format and forward-error correction (FEC) code.

The system’s frequency resources consist of several avail-
able bandwidths and center frequencies. Each epoch con-
tains many IBs. Thus, it is possible for a large number of

terminals to be given a time-frequency assignment in an
epoch. Additionally, by varying the bandwidth, mode, and
number of IBs assigned to a terminal, this MF-TDMA ap-
proach allows a wide range of data rates to be supported.

The process of making time-frequency slot assignments
for each terminal consists of an allocation step and a pack-
ing step. The allocation step can depend on many factors,
such as guaranteed rates, requested rates, their priority lev-
els, and the amount of available resources. Once alloca-
tions in terms of mode and number of IBs are determined,
a packing step assigns non-overlapping time-frequency
slots to each terminal. If the assigned slots have large
temporal gaps, packets transmitted may experience larger
then desired delay and jitter.

Some user applications are sensitive to the amount of jitter
in the received data, where jitter is defined to be the differ-
ence between the maximum (or 99% maximum, etc.)
packet latency and the minimum packet latency. For ex-
ample, a real-time IP voice application, such as voice-
over-IP (VoIP), may require a small jitter to ensure a cer-
tain voice quality. Excess jitter could manifest itself by
voice that is broken up from the end user’s point of view,
or it could even cause the application to drop packets arriv-
ing with large delays. Note that jitter is defined as a varia-
tion in latency, but we are concerned with reducing both
jitter and latency. For example, if a delay and jitter sensi-
tive application is provided with a large but constant la-
tency, it would be desirable to decrease the latency if pos-
sible, even though there is no jitter.

The MF-TDMA system we consider introduces jitter into
packet streams due to the TDMA nature of the allocation.
For example, assume that a terminal is allocated three IBs
which occur at time ti, at time ti+5, and at time ti+20, re-
spectively, and that the terminal is running an application
that generates packets every 5 time units. Figure 1 pro-
vides an illustration of this IB assignment. If each IB can
contain one voice packet, then the voice packets experi-
ence 15 time units of jitter due to the 15 time unit gap be-
tween the second and third IBs. If each IB can contain
multiple voice packets, then the third IB could deliver the
three arriving voice packets simultaneously. Thus, if hav-

2 of 6

ing bounded jitter is important to an application that a ter-
minal is running, then the spacing of that terminal’s IBs is
one important consideration.

Figure 1: Example interleaver block allocation illustrating jitter
due to assignments.

In this paper, we consider two allocation and packing algo-
rithms that are designed to meet jitter constraints. The Jit-
ter Reduction Algorithm (JRA), previously described in
[1], statistically reduces jitter but does not strictly guaran-
tee bounded jitter. The Jitter-Aware Algorithm (JAA)
strictly guarantees bounded jitter but is more complex. We
compare their performance using simulations.

FRAMEWORK

The MF-TDMA system we consider employs three pri-
mary time divisions. The system is similar to the one de-
scribed in [1]. As mentioned previously, the epoch is the
time unit over which terminal assignments are valid.
Thus, the payload makes assignments for all of its termi-
nals one epoch at a time. Modes, center frequencies, and
communications bandwidths are not allowed to change
during an epoch, but they can change from epoch to epoch.

The next time interval, the frame, is the fundamental unit
of time employed by the terminal’s and satellite’s link lay-
ers. This means that data that is received during a frame
cannot be passed to the decoder until the end of that frame.
In our system, each epoch contains 32 frames, and epoch
boundaries also coincide with frame boundaries.

Finally, an IB is the time unit employed by the FEC en-
coders and decoders. Specifically, each IB contains an
integer number of FEC code words. No code word is re-
ceived in its entirety until the final bit of the IB is fully
received. In our system, each epoch contains 72 IBs.
Since 72 is not an integer multiple of 32, IB boundaries do
not necessarily coincide with frame boundaries. When an
IB is fully contained in a single frame, the IB is called a
non-spanning IB. Otherwise, the IB is known as a span-
ning IB. Figure 2 provides an illustration of the epoch,
frame, and IB time divisions. Note that the four frames
shown contain a total of six non-spanning IBs and three
spanning IBs. An epoch of 32 frames contains eight such
four-frame patterns.

The distinction between spanning and non-spanning IBs is
an important one in our system. This is because each code
word must be fully received to be decoded. By definition,
all code words of a non-spanning IB are fully received by
the end of the frame in which the IB is transmitted, so
these code words are immediately passed to the decoder.
On the other hand, a spanning IB takes at least two frames
to be fully received, so none the code words it contains can
be passed to the decoder until the end of the frame contain-
ing the final bits of the IB. Therefore, we wish to avoid, if
possible, the use of spanning IBs for delay sensitive appli-
cations, since spanning IBs always cause additional trans-
mission delay compared with non-spanning IBs.

Figure 2: Epochs, frames, IBs, and spanning IBs.

The frame-based aspects of the system mean that even if a
terminal were to be granted all of the non-spanning IBs of
an epoch, code blocks and thus packets can only be formed
at the end of each frame, implying that egress can only
occur 32 times in each epoch (i.e., at the end of each frame
of the epoch). Thus, our system always adds jitter to
streams whose interarrival times are not multiples of the
frame duration. If the stream’s interarrival time is exactly
a multiple of the frame duration and the assignment pro-
vides a sufficient rate, then there exists an IB assignment
that adds no jitter to the stream.

JITTER REDUCTION ALGORITHM

The JRA is a relatively simple algorithm that statistically
reduces jitter but does not strictly guarantee bounded jitter.
With the JRA, first, resources are allocated to each user
such that the Bandwidth Time Product (BTP) of the alloca-
tions does not exceed the total amount of system resources.
Whenever possible, users are placed in narrower band-
width modes requiring more IBs to meet the same rate de-
mand. As more IBs are assigned, jitter is naturally re-
duced.

The next step is the packing of these IB allocations to each
user into the system’s available time-frequency resource.
The packing algorithm is described in more detail in [1].
The basic concept is that larger bandwidth users are

3 of 6

packed first. Of the users with the same bandwidth, pack-
ing is done in decreasing order of the number of IBs as-
signed. Each user is packed contiguously at the topmost
slot (in frequency) available. If multiple slots at this fre-
quency are available, the leftmost IB in time is selected.
This algorithm has been shown to pack very efficiently but
does not evenly space assignments within the epoch;
rather, it intentionally bunches assignments together. Fig-
ure 3 shows the user assignments after packing and how an
individual user’s assignment is bunched together. Note
that such bunched assignments actually maximize jitter.

Figure 3: Standard Packing

To reduce jitter, a time-shuffling of the packing space is
performed. Taking advantage of the fact that the initial
packing step typically creates contiguous time assignments
for each user, the shuffling step attempts to shuffle the as-
signments in time such that assignments that were close
together are now far apart.

The shuffling is defined as

 (1)

where, m is the time index after shuffling, n is the time
index before shuffling, β is the spreading factor, and T is
the total amount of time per epoch measured in IBs.

To illustrate assume the packing shown in Figure 3 is com-
posed of 12 IBs along the time axis. Then we can use (1)
with β = 5 to yield the shuffled packing shown in Figure 4.
In this example, assignments that were contiguous and
bursty are now spaced at least 1 IB apart. Selection of a
good spreading factor is very important in this approach.

For our system of interest with 72 IBs along the time axis,
a spreading factor of 11 is used. This algorithm can guar-
antee that contiguous assignments can be evenly shuffled
and thus jitter can be bounded. However, it is possible that
assignments from the initial packing algorithm will not al-

Figure 4: Shuffling of Standard Packing

ways be contiguous. In such cases, the shuffling step
could take two of a user’s noncontiguous IBs and shuffle

them so they are back to back, which could increase jitter.
This case is infrequent, but it cannot be guaranteed to be
avoided. As a result, bounded jitter cannot be guaranteed.
The probability of noncontiguous IBs being assigned is
dependent on the distribution of user bandwidths and de-
mand.

JITTER-AWARE ALGORITHM

The second algorithm discussed in this paper is the Jitter-
Aware Algorithm (JAA). The JAA strictly guarantees
bounded jitter by assigning IBs in groups, referred to as IB
groups or IBG. Within each IBG, IBs are uniformly
spaced, thereby efficiently guaranteeing a certain mini-
mum IB spacing and jitter. For example, taking one non-
spanning IB from each frame forms a 1-frame IBG with 32
IBs. Assignment of one such 1-frame IBG guarantees IB
spacings of one frame, and would allow a jitter equivalent
to one frame to be achieved. Similarly, taking one non-
spanning IB from every other frame forms a 2-frame IBG
with 16 IBs. Other IBGs used in this algorithm are 4-frame
IBG, 8-frame IBG, and 16-frame IBG, each with 8, 4, and
2 IBs, respectively. Spanning IBs are not used to form
IBGs, and are assigned as single units of IBs.

Within each frequency band, there are a limited number of
IBGs. As described in Figure 2, our system of interest
contains a repeating pattern of 2,1,1,2 non-spanning IBs
and 1,1,1,0 spanning IBs. Because some frames have only
one non-spanning IB, there can be only one 1-frame IBG
per frequency band. This one 1-frame IBG may also be
split into two 2-frame IBGs or four 4-frame IBGs, and so
on, or in combinations. In addition to these 32 non-
spanning IBs, one from each frame, there are another 16
non-spanning IBs. These can be used to form two 4-frame

4 of 6

IBGs, four 8-frame IBGs, and so on, or in combinations.
Finally, there are 24 spanning IBs. The number of each
IBG available and how they can be exchanged is described
in Figure 5. Generally, the 32 IBs that form a 1-frame IBG
are considered the most valuable, since they can be used to
form any type of IBG; the 24 spanning IBs are the least
valuable.

Figure 5: IB Group Relationships

Similar to the JRA, the JAA consists of an allocation step
and a packing step. In the allocation step, the algorithm not
only makes sure that the total BTP allocated does not ex-
ceed the total amount of system resources, but it also en-
sures that the allocation of IBGs at different jitter levels
does not exceed the amount available. In particular, the
algorithm ensures that the total amount of 1-frame and 2-
frame IBGs allocated do not exceed the equivalent of 32
IBs per frequency band and that the total amount allocated
for all IBGs of all jitter levels do not exceed the equivalent
of 48 IBs per frequency band.

At the end of the allocation step, each terminal is allocated
a number of different IBGs. For example, a terminal may
be allocated one 2-frame IBG, two 4-frame IBGs, and four
spanning IBs. In the event that a terminal’s desired jitter
cannot be met, the next-best assignment available is given.
For example, if a terminal desires one 2-frame IBG, but
there are not enough resources available, it may be given
two 4-frame IBGs or even just 16 single IBs. The motiva-
tion is that when the desired jitter cannot be achieved, the
allocation algorithm would at least try to meet the de-
manded rate and give the best jitter possible for that rate.

To efficiently utilize resources, excess allocations to meet
a tighter jitter bound are salvaged by demands with looser
jitter bounds. For example, assume a terminal requires an
allocation of 80 kbps with 1-frame jitter to support a voice
call and 300 kbps with no jitter requirement to support a
data transfer, totaling 380 kbps. Also suppose each IB as-
signed supports 10 kbps, so one 1-frame IBG with 32 IBs
can support 320kbps. This terminal would then be as-

signed one 1-frame IBG and just 6 single IBs to support
both the voice and data transfer. The 320-80=240 kbps
excess allocation with 1-frame jitter is salvaged by the data
transfer demand.

The next step is to pack the IBG and IB allocations into the
available time-frequency space. While the allocation step
ensures that the total amount of allocation does not exceed
the available amount, it is not guaranteed that all the allo-
cations can be packed. Additional constraints that some-
times prevent complete packing include the terminal must
be assigned the same IB in different frequency bands and a
wideband assignment must occupy contiguous frequency
bands.

To ensure that as much of the allocation as possible gets
packed, the general philosophy of the packing algorithm is
to pack the bigger, more constraint pieces first, in three
stages. The algorithm first packs all of the largest band-
width terminals, just as in JRA. Secondly, within one
bandwidth, the algorithm first packs the largest IBGs with
the tightest jitter bound, meaning all allocations of 1-frame
IBGs of a particular bandwidth are packed first, and then
the 2-frame IBGs, then the 4-frame IBGs, so on, and fi-
nally allocations of single IBs. Note that each terminal
may have IBGs of different jitter levels assigned, so a ter-
minal with a 1-frame IBG allocated only gets that alloca-
tion packed first, and the rest of its allocation has to wait
until all other 1-frame IBG allocations to other terminals
are packed. Finally, within one bandwidth and jitter level,
allocations of more IBGs or IBs are packed first, just as in
the JRA. When packing single IBs, the 24 spanning IBs
are used first, since they can not be used to form IBGs.
When packing IBGs or IBs, the 32 IBs that form a 1-frame
IBG are used last, since packing any looser jitter IBGs
there would prevent a 1-frame IBG from being packed.
This corresponds to using IBs from right to left in Figure
5. In the event that an allocation of an IBG cannot be
packed, it is broken up minimally so that it can be packed.
For example, if a 2-frame IBG can not be packed, it is bro-
ken into two 4-frame IBGs or even just 16 single IBs.

When a terminal is allocated multiple IBGs or IBs, the al-
gorithm also attempts to make the assignments well
spaced, similar to the shuffling in JRA as shown in Figure
4. While this does not affect the 1-frame and 2-frame
IBGs, it is significant for the smaller IBGs. For example, if
one terminal is allocated two 16-frame IBGs, each with
two IBs, the algorithm attempts to make the two pairs of
IBs well spaced to resemble an 8-frame IBG. This is done
by a simple table-lookup mapping such that the IBGs with
neighboring indexes map to groups of IBs that are rela-
tively well spaced.

5 of 6

An additional feature of the JAA is that it attempts to limit
epoch-to-epoch changes in a user’s IB locations if the
user’s mode has not changed. To illustrate a potential
problem with epoch-to-epoch changes, consider a user
who is assigned a single IB in each of two consecutive ep-
ochs. In the first epoch, the IB is contained in the
first frame after packing. In the next epoch, however,
the IB is contained in the last frame after packing.
The spacing between these two IBs is nearly two ep-
ochs long. A better packing would be to place the IBs
in the same location in each epoch, which limits the
spacing to approximately one epoch long and causes
less delay and jitter. To avoid unfavorable epoch-to-
epoch spacing, the algorithm assigns the same IB lo-
cations when possible. Finally, when a user is as-
signed additional or new IBs, the packing strategy
described earlier is used to pack the IBs.

Given the complexity of assigning and packing with
bounded jitter, this algorithm is significantly more
complex than the JRA shuffling technique.

RESULTS

The numerical results presented here were obtained via
OPNET simulation of a system with approximately 100
users, each with dynamic traffic demands, including
bounded-jitter applications and non-bounded-jitter applica-
tions. Each epoch contains 32 frames and 72 IBs. We
focus on one of the users who, in addition to its dynamic
traffic, also has a bounded-jitter application whose start
and end times have been scripted. This allows each of the
algorithms to be evaluated under controlled traffic condi-
tions at a common reference point.

Results for the jitter-reducing and jitter-aware algorithms
are presented in Figure 6 and Figure 7. The packet latency
for the bounded-jitter application is presented as a function
of the packet number. Note that the latency values in Fig-
ures 6 and 7 are offset by a fixed value due to unmodeled
effects (e.g., propagation delays). In Figure 6 we show the
results for a scenario in which the traffic for the bounded-
jitter application arrives at a rate of one 320-byte packet
every 20 milliseconds (ms). Figure 6(a) includes results for
the JRA. For this algorithm, the packet-to-packet jitter is
typically less than 40ms, but at times it reaches 60 ms and
even 80ms. The average number of non-spanning and
spanning IBs assigned per epoch is 14.38 and 7.15, respec-
tively. The maximum IB spacing is 100 ms. The results
for the JAA for the same traffic scenario are shown in Fig-

ure 6 (b). Compared with the results in Figure 6 (a) for the
JRA, the JAA provides much better performance. The
maximum jitter is 20 ms. This is due not only to the ex-
clusive use of non-spanning IBs, but the IB spacing is also
allocated intelligently by this algorithm. Specifically, the
average number of IBs (all non-spanning) assigned by the
jitter-aware algorithm is 24. The maximum IB spacing is
40 ms, which implies a much more uniform spacing than
the spacing produced by the JRA.

Figure 6: Experimental simulation results comparing the jitter
performances of the JRA (a) and JAA (b) algorithms

In Figure 7 we show the results for the traffic scenario
where the packets arrive at a rate of one 640-byte packet
every 40 ms. Note that the maximum jitter is typically 40
ms for the JRA (Figure 7(a)), but the jitter is zero for the
JAA (Figure 7(b)). The average number of non-spanning
and spanning IBs for the JRA are 14.27 and 7.22, respec-
tively. The maximum IB spacing is 40 ms. For the JAA,
the average number of non-spanning IBs, average number

6 of 6

of spanning IBs, and maximum IB spacing are the same as
in Figure 6.

The reduced jitter, however, is obtained at the expense of
system resources. Recall that for the JAA, the best jitter
bound achieved with a 1-frame IBG can only be given to a
single terminal per frequency band. In a typical operation
scenario, there are many more terminals than frequency
bands, which implies that only a few terminals are able to
achieve the best jitter bound. In fact, resource overalloca-
tions for a few terminals may be so large that other termi-
nals are left with insufficient resources to satisfy their re-
quired rate, let alone jitter. It is important to choose a
reasonable jitter bound to balance jitter performance and
system efficiency.

CONCLUSION

Two dynamic resource allocation techniques that also at-
tempt to reduce or bound jitter have been described. The
jitter-reducing algorithm is a simple technique that pro-
vides good TDMA spacing for interleaver blocks, but this
algorithm cannot guarantee that jitter bounds will be met
in all cases of interest. The jitter-aware algorithm is a
much more complex algorithm, but it can provide
bounded-jitter guarantees as long as sufficient resources
are available.

REFERENCES

1. N. Yazdani, "Multi-Frequency Time-Division Multi-
ple-Access (MF-TDMA) Resource Packing," Pro-
ceedings of the 2008 IEEE Military Communica-
tions Conference (MILCOM), November 2008.

Figure 7: Experimental simulation results comparing the jitter
performances of the JRA (a) and JAA (b) algorithms in which
voice packets arrive at rate of one 640-byte packet every 40 mil-
liseconds.

