
MIT Open Access Articles

Modifications to the sliding-window kernel RLS algorithm for time-
varying nonlinear systems: Online resizing of the kernel matrix

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: http://dx.doi.org/10.1109/ICASSP.2009.4960352

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59418

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59418

MODIFICATIONS TO THE SLIDING-WINDOW KERNEL RLS ALGORITHM FOR
TIME-VARYING NONLINEAR SYSTEMS: ONLINE RESIZING OF THE KERNEL MATRIX

Brian J. Julian

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
Email: {bjulian}@mit.edu

ABSTRACT

A kernel-based recursive least-squares algorithm that imple-
ments a fixed size “sliding-window” technique has been recently
proposed for fast adaptive nonlinear filtering applications. We pro-
pose a methodology of resizing the kernel matrix to assist in system
identification of time-varying nonlinear systems. To be applicable
in practice, the modified algorithm must preserve its ability to op-
erate online. Given a bound on the maximum kernel matrix size,
we define the set of all obtainable sizes as the resizing range. We
then propose a simple online technique that resizes the kernel matrix
within the resizing range. The modified algorithm is applied to the
nonlinear system identification problem that was used to evaluate
the original algorithm. Results show that an increase in performance
is achieved without increasing the original algorithm’s computation
time.

Index Terms— identification, learning systems, least squares
methods, nonlinear filters, time-varying filters

1. INTRODUCTION

The design of fast adaptive nonlinear filters is a heavily researched
topic in the field of signal processing. Traditionally, algorithms
based on kernel methods were not capable of online operation since
they inherently caused the kernel matrix to grow without bound
[1]. To address this issue, the sliding-window kernel recursive least-
squares (RLS) algorithm was proposed. This algorithm implements
a “sliding-window” technique that discards all but the N most re-
cent data inputs [2, 3]. Moreover, a downsizing/upsizing technique
allows the algorithm to calculate the N ×N regularized and inverse
regularized kernel matrices1 in O(N2) time instead of O(N3) time.

Consider an N × N “sliding-window” kernel matrix used to
adaptively filter a nonlinear system. If the system is time-invariant,
the N most recent data inputs accurately represent the current sys-
tem. This condition is not the case following an abrupt system
change; “remembering” irrelevant data inputs decreases the per-
formance of the filter. This decrease in performance provides the
motivation to resize the “sliding-window” kernel matrix depending
on the system’s behavior. However, operations to the kernel matrix
are computationally expensive, especially for online algorithms.

In this paper we provide the groundwork for developing resizing
techniques for the sliding-window kernel RLS algorithm. Given
a maximum kernel matrix size N × N , we can calculate the on-
line computation time allocated for kernel matrix operations. This

1Henceforth referred to as the regularized kernel matrices

finite capacity limits how the modified algorithm can resize the
“sliding-window” kernel matrix, forming the resizing range. We
show through a simple technique that using the resizing range can
increase filter performance for time-varying nonlinear systems.

2. SLIDING-WINDOW KERNEL RLS ALGORITHM

2.1. Regularized Least-Squares

The regularized least-squares method is commonly used for system
identification in offline machine learning problems [4, 5, 6]. Given
a training matrix of n independent and identically distributed vector
inputs

X = (�x1, . . . , �xn)T
(1)

and their respective scalar outputs

�Y = (y1, . . . , yn)T
(2)

the regularized least-squares method learns a function in the repro-
ducing kernel Hilbert space (RKHS) by solving

min
f∈H

"
nX

i=1

(f(�xi) − yi)
2 + λ‖f‖2

H

#
(3)

where (f(�xi) − yi) is the empirical error on the ith data entry and
‖f‖H is a regularization term weighted by the constant λ. By defin-
ing a positive definite kernel κ with a feature map Φ, we can trans-
form the training data from the input space into a high-dimensional
feature space

κ(�xi, �xj) =< Φ(�xi), Φ(�xj) >H (4)

Since the representer theorem implies that the learned function
f in RKHS can be expressed as

f(�x) =
nX

i=1

ciκ(�xi, �x), ci ∈ R (5)

we can rewrite (3) as

min
�c∈Rn

h
‖Kc − �Y ‖2

2 + λcT Kc
i

(6)

where the kernel matrix K is defined by

K = κ(XT , XT) (7)

3389978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Solving for (6) results in the learned function coefficients

�c = (K + λI)−1�Y = G−1�Y (8)

where G is the regularized kernel matrix.
Thus, for any future data input, we can use the trained coeffi-

cients in (5) to make a prediction for the output.

2.2. “Sliding-Window” Technique

As previously stated, kernel methods such as regularized least-
squares are traditionally used for offline applications. Applied to
an online application, the kernel matrix would grow infinitely large
as n tends to ∞. Even if the size of the kernel matrix is limited to
N × N , the algorithm would require O(N3) time to recalculate the
regularized kernel matrices after each data input.

To address the shortcomings in online use of the regularized
least-squares method, Van Vaerenbergh et al. proposed the “sliding-
window” technique [2, 3]. Suppose the N × N regularized kernel
matrix Gn is calculated from data inputs {�xn−N , . . . , �xn}. Instead
of directly calculating Gn+1 from data inputs {�xn−N+1, . . . , �xn+1},
we first downsize Gn by extracting the contribution from �xn−N to
obtain

Ǧn =

2
64

Gn(2, 2) · · · Gn(2, N)
...

. . .
...

Gn(N, 2) · · · Gn(N, N)

3
75 (9)

and then upsize Ǧn by importing the data input �xn+1 to obtain

Gn+1 =

»
Ǧn κ(Xn, �xn+1)

κ(�xn+1, Xn) κ(�xn+1, �xn+1) + λ

–
(10)

where

Xn = (�xn−N+1, . . . , �xn)T
(11)

The inverse regularized kernel matrix G−1
n can also be computed

through an upsizing/downsizing technique. Using the definitions lo-
cated in Appendix A, we first downsize G−1

n to obtain

Ǧ−1
n = D − �f �fT /G−1

n (1, 1) (12)

and then upsize Ǧ−1
n to obtain

G−1
n+1 =

"
Ǧ−1

n (I +�b �bT (Ǧ−1
n)Hg) −Ǧ−1

n
�bg

−(Ǧ−1
n

�b)T g g

#
(13)

By implementing the “sliding-window” technique for online ap-
plications, we can calculate the updated function coefficients for (5)
in O(N2) time.

3. RESIZING THE KERNEL MATRIX

3.1. Online Computation Time Capacity

In practice, the kernel matrix size is bounded above due to the fil-
ter’s finite computational resources. We will assume that computa-
tion time is the limiting resource responsible for the bounded size
N × N . For the fast adaptive filter to operate online, the regular-
ized kernel matrices need to be downsized and upsized within the
time-span of a single iteration. The following propositions describe
the computation time required to upsize and downsize. Refer to Ap-
pendix B and C for proofs.

Proposition 1 (Computation Time to Downsize). The computation
time required to downsize the regularized kernel matrices is

TD(m) = m2 + m + O(1) (14)

where m × m is the kernel matrix size.

Proposition 2 (Computation Time to Upsize). The computation
time required to upsize the regularized kernel matrices is

TU (m) = 5m2 + 2mTκ + 3m + O(1) (15)

where m × m is the kernel matrix size and Tκ is the computation
cost to calculate the kernel in (4).

Corollary 1 (Computation Time to Downsize/Upsize). The compu-
tation time required for the downsizing/upsizing technique is

TD/U (m) = 6m2 + 2mTκ + 4m + O(1) (16)

where m × m is the kernel matrix size and Tκ is the computation
cost to calculate the kernel in (4).

Corollary 1 implies that the fast adapting filter needs to process
at least TD/U (N) operations online. More specifically, this capacity
refers to the time allotted for the algorithm to downsize and upsize
the regularized kernel matrices. If the kernel matrix size is smaller
than N × N at any given time, the downsizing/upsizing technique
will not fully utilize the computation time allocated by the filter. It is
this “residual” computation time that gives the algorithm flexibility
to resize the kernel matrix online.

3.2. The Resizing Range

Consider a kernel matrix of size m × m, where 1 < m < N . Prior
to upsizing, we have the option to bypass downsizing the regularized
kernel matrices. This sequence will cause the kernel matrix size to
grow by one. We may also be able to recursively upsize r more
times, where data inputs would be recalled from the r most recent
iterations not being used to calculate the current kernel matrix. From
(15) and (16), the upsizing range RU

m of computationally obtainable
kernel matrix sizes given m is

RU
m =

(
m̄ ≤ N :

m̄X
i=m

TU (i) ≤ TD/U (N)

)
(17)

There is also the option to recursively downsize the regularized
kernel matrices. However, enough computation time must be re-
served to upsize with the most recent data input. From (14),(15),
and (16), the downsizing range RD

m of computationally obtainable
kernel matrix sizes given m is

RD
m =

(
m̄ ≥ 1 :

mX
i=m̄

TD(i) + TU (m̄) ≤ TD/U (N)

)
(18)

Combining (17) and (18), the resizing range Rm for any kernel
matrix of size m × m is

Rm = RU
m ∪RD

m ∪RU
1 (19)

where the union with RU
1 represents the option of discarding the

regularized kernel matrices prior to upsizing, an operation that takes
O(1) time.

3390

Fig. 1. The original sliding-window kernel RLS algorithm adap-
tively filters a nonlinear Wiener system. The linear channel is ini-
tialized with H1 and then is abruptly changed to H2 at n = 500.
The overall performance en and system behavior ên parameters are
shown for a kernel matrix of fixed size 150 × 150.

4. APPLICATIONS TO THE
NONLINEAR WIENER SYSTEM

4.1. System Identification Problem

The following summarizes the nonlinear Wiener system described
by Van Vaerenbergh et al [2, 3]. A binary signal xn ∈ {+1,−1}
is sent through a communication channel composed of a linear filter
H(z) of length L convolved with a nonlinear transformation f(u).
The channel is located within a black box such that the noisefree
output signal vn is inaccessible. Instead, a summation of vn and
additive white Gaussian noise (AWGN) is outputted as a noisy signal
yn.

The sliding-window kernel RLS algorithm acts as a fast adap-
tive filter for the nonlinear Wiener system. Given xn and yn, the
filter predicts vn based on the function coefficients learned over the
last m iterations, where m × m is the current kernel matrix size.
Overall performance en is measured in mean squared error (MSE)
between the predicted and noiseless signals v̂n and vn averaged over
250 Monte-Carlo simulations.

For all simulations the following parameters are used: AWGN
level is SNR = 20dB; channel length is L = 4; regularization
constant is λ = 1; memoryless nonlinearity is f(u) = tanh (u);
polynomial kernel is κ(�xi, �xj) = (1 + �x′

i�xj)
3; linear channels are

H1(z) = 1 − 0.3668z−1 − 0.4764z−2 + 0.8070z−3
(20)

H2(z) = 1 − 0.8326z−1 + 0.6656z−2 + 0.7153z−3
(21)

4.2. Estimating System Behavior

Figure 1 shows the overall performance en for a fixed size kernel
matrix. In addition, the MSE between the predicted and noisy signals
v̂n and yn is plotted. This parameter, labeled ên, describes how
different the filter’s and system’s output signals are. Unlike en, the
components of ên, labeled |v̂n−yn|, can be calculated online by the
fast adaptive filter.

During filter initialization when only n < N data inputs exist,
the kernel matrix is relatively small, so the predicted signal v̂n does
not stray far from the noisy signal yn. As the size of the kernel
matrix increases, the function coefficients in (5) are further trained
and assumed to minimize |v̂n − vn|. Thus, the metric |v̂n − yn|
becomes an increasingly better estimation of the noise signal of a
time-invariant system.

Fig. 2. False positive rates for threshold detection are dependent on
the kernel matrix size. Error percentages are averaged over 10,000
simulations of the time-invariant nonlinear Wiener system.

If the system’s noise level is bounded, we can use |v̂n − yn|
to detect system changes. For example, the abrupt linear channel
change in Figure 1 causes ên to spike above its steady state level at
the SNR of 20dB. By setting a threshold, we can declare a system
change when |v̂n − yn| exceeds this value. However, we would like
to know the false positive rate for a given threshold.

Let σ be the standard deviation of a system’s AWGN. For the
given thresholds, Figure 2 shows the relationship between the kernel
matrix size and the false positive rate of a time-invariant system. For
small kernel matrix sizes, the filter has lower false positive rates,
a direct result from their tendency to predict a signal v̂n similar to
the noisy signal yn. As m increases, the confidence levels of the
1σ, 2σ, and 3σ thresholds tend to the Gaussian empirical confidence
levels of 68, 95, and 99.7 percent.

4.3. A Simple Technique Using the Resizing Range

We propose a simple resizing technique to demonstrate the potential
performance increase of using the resizing range. When a given a
threshold is exceeded by |v̂n − yn|, the modified algorithm resizes
the m × m kernel matrix to max(m̄ ∈ R1(m)), where

R1(m) =

(
m̄ ≤ N :

m̄X
i=1

TU (i) ≤ TD/U (m)

)
(22)

In other words, a resizing range subset is created assuming the cur-
rent value m × m is the maximum kernel matrix size for the filter.

To gather intuition on how this technique works, consider both
a true and false positive occurrence for a kernel matrix of m = N .
Both occurrences resize the kernel matrix to max(m̄ ∈ R1). For
the true positive occurrence, the modified algorithm will iteratively
decrease the kernel matrix to max(m̄ ∈ R1(m)) until the threshold
is no longer triggered. This allows the kernel matrix size to remain
around some m × m that achieves acceptable system behavior with
respect to |v̂n − yn|. For the false positive occurrence, the modified
algorithm of m < N is now less likely to trigger another false posi-
tive (see Figure 2). This property allows the kernel matrix size to be
iteratively increased back to its optimal size of m = N .

Figure 3 shows the original and modified algorithms adaptively
filtering a nonlinear Wiener system whose linear channel undergoes
an abrupt change. As expected, the resizing technique allows the
filter to adapt much faster to the H2 linear channel by essentially
discarding the data inputs prior to the change. We also see the effect

3391

Fig. 3. A modified algorithm using the simple resizing technique
adaptively filters the same system described in Figure 1. An esti-
mated system noise σ̂ is calculated from |v̂n − yn| averaged over
the iterations 150 < n < 500. Thresholds of 2σ̂ and 3σ̂ are imple-
mented beginning at n = 500. The overall performance parameter
en is shown for the kernel matrices of N = 150.

Fig. 4. The modified algorithm described in Figure 3 adaptively fil-
ters a nonlinear Wiener system whose linear channel varies linearly
from H1 at n = 500 to H2 at n = 1000.

that the threshold has on steady state filter performance; low thresh-
olds, which correspond to higher false positive rates, yield worse
performance when the system is time-invariant.

Figure 4 shows a more gradual linear channel transition from
H1 to H2. When the system is linearly varying, the modified algo-
rithms achieve better performance than the original. Here the resiz-
ing technique retains a fraction of the data inputs to construct the
kernel matrix; high thresholds result in larger fractions on average.

5. CONCLUSION

The resizing methodology gives the sliding-window kernel RLS al-
gorithm additional flexibility for fast adaptive nonlinear filtering ap-
plications. Through simple modifications to the original algorithm,
we showed increased performance for time-varying systems.

We also examined the system behavior metric |v̂n − yn| and its
application of detecting system changes. Furthermore, confidence
levels in select thresholds for this metric are shown to depend on the
system noise and kernel matrix size.

Our goal is to provide the groundwork for more elaborate algo-
rithms to adaptively modify the kernel matrix size within the resizing
range. We conclude that the techniques presented are applicable in
practice since they preserve the original algorithm’s O(N2) time.

6. REFERENCES

[1] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” Signal Processing, IEEE Transactions on,
vol. 52, no. 8, pp. 2275–2285, Aug. 2004.

[2] S. Van Vaerenbergh, J. Via, and I. Santamana, “A sliding-
window kernel rls algorithm and its application to nonlinear
channel identification,” Acoustics, Speech and Signal Process-
ing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, vol. 5, May 2006.

[3] S. Van Vaerenbergh, J. Via, and I. Santamana, “Nonlinear sys-
tem identification using a new sliding-window kernel rls algo-
rithm,” Journal of Communications, vol. 2, no. 3, pp. 1–8, May
2007.

[4] V. N. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag New York, Inc., New York, USA, 1995.

[5] N. Aronszajn, “Theory of reproducing kernels,” Transactions of
the American Mathematical Society, vol. 68, pp. 337–404, 1950.

[6] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and
neural networks architectures,” Neural Computation, vol. 7, no.
2, pp. 219–269, March 1995.

A. INVERSE REGULARIZED KERNEL MATRIX

Definitions for downsizing calculations

D =

2
64

G−1
n (2, 2) · · · G−1

n (2, N)
...

. . .
...

G−1
n (N, 2) · · · G−1

n (N, N)

3
75 (23)

�f =
`
G−1

n (2, 1), . . . , G−1
n (N, 1)

´T
(24)

Definitions for upsizing calculations

�b = (Gn(1, N), . . . , Gn(N − 1, N))T
(25)

g = (Gn+1(N, N) −�bT Ǧ−1
n

�b)−1
(26)

B. PROOF OF PROPOSITION 1

Proof. From (9), the computation time required to downsize Gn to
Ǧn is constant time for all m. From (12), the computation time

required to downsize G−1
n to Ǧ−1

n is m2 + m + O(1). Summing
these results we have

TD(m) = m2 + m + O(1) (27)

C. PROOF OF PROPOSITION 2

Proof. From (10), the computation time required to upsize Ǧn to
Gn+1 is 2mTκ+O(1) where Tκ is the computation cost to calculate
the kernel in (4). From (13), the computation time required to upsize

Ǧ−1
n to G−1

n+1 is Tg(m) + 4m2 + 2m + O(1) where Tg(m) =

m2 + m + O(1) is calculated from (26). Summing these results we
have

TU (m) = 5m2 + 2mTκ + 3m + O(1) (28)

3392

